
Citation: Jiang, W.; Wu, S.; Yan, X.;

Qiu, H.; Guo, S.; Zhu, B.; Zhang, H.

Impact of Temperature on the Tensile

Properties of Hypereutectic

High-Entropy Alloys. Coatings 2023,

13, 1836. https://doi.org/10.3390/

coatings13111836

Academic Editor: Michał Kulka

Received: 8 October 2023

Revised: 21 October 2023

Accepted: 23 October 2023

Published: 27 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

coatings

Article

Impact of Temperature on the Tensile Properties of
Hypereutectic High-Entropy Alloys
Wei Jiang 1,2, Shuaishuai Wu 1,2, Xuehui Yan 1,2, Haochen Qiu 1,2,3, Shengli Guo 1,2,3, Baohong Zhu 1,2,3,*
and Hanjun Zhang 1,2,3

1 GRIMAT Engineering Institute Co., Ltd., Beijing 101407, China; wjiang111@126.com (W.J.);
wushuaishuai@grinm.com (S.W.); yanxuehui@grinm.com (X.Y.); qiuhaochen@grinm.com (H.Q.);
guoshengli@grinm.com (S.G.); zhanghanjun7549@163.com (H.Z.)

2 China GRINM Group Corporation Limited, Beijing 100088, China
3 General Research Institute for Nonferrous Metals, Beijing 100088, China
* Correspondence: zhubh@grinm.com

Abstract: Eutectic high-entropy alloys (EHEAs) can achieve a balance of high strength and ductility.
It has been found that the mechanical properties of hypoeutectic high-entropy alloys are superior to
those of EHEAs. In this work, hypereutectic Al1.1CoCrFeNi2.1 alloy was prepared, and the mechanical
properties in a wide temperature range were studied. The presence of both soft ordered L12 and hard
BCC (B2) phases results in a combination of ductile and brittle fracture modes. The Al1.1CoCrFeNi2.1

hypereutectic high-entropy alloy contains more primary soft L12 phases, which ensure excellent
ductility. Moreover, the Orowan by-passing mechanism caused by the B2 precipitates increases in
the strength of the alloy for low-temperature tensile tests (−100 ◦C and 23 ± 2 ◦C). The −100 ◦C test
exhibits a dimple morphology and demonstrates the highest ultimate tensile strength of 1231 MPa,
along with an excellent elongation of 44%. At high tensile temperatures (650 ◦C, 750 ◦C, and 850 ◦C),
the dislocation cutting mechanism and dynamic recrystallization increase the plasticity. However,
the presence of a large number of cracks near the spherical primary L12 phase significantly reduces
the ductility and strength. The results show that the hypereutectic Al1.1CoCrFeNi2.1 exhibits superior
plasticity and strength properties at low temperatures. The findings of the article provide a new
approach to enhancing the comprehensive mechanical properties of hypereutectic alloys.

Keywords: hypereutectic; precipitate phase; dynamic recrystallization; mechanical properties

1. Introduction

Yeh et al. in 2004 [1–6], established the concept of high-entropy alloys (HEAs), which
were originally defined based on the viewpoint that high-mixing entropy favors the forma-
tion of a single solid–solution phase. HEAs contain at least four principal elements with an
atomic percentage of 5%–35% [7–10]. HEAs have attracted increased attention due to their
desirable properties resulting from a high entropy effect, slow diffusion effect, and cocktail
effect [11–15].

From a mechanical standpoint, it is widely acknowledged that single-phased body-
centered-cubic (BCC) HEAs possess constrained ductility. Conversely, single-phase face-
centered-cubic (FCC) HEAs may possess enhanced ductility but display lower strength [16–19].
Eutectic high-entropy alloys (EHEAs), which contain a mixture of soft FCC and hard BCC
phases, can achieve a balance of high strength and ductility, as well as excellent castabil-
ity [5,20–25]. Among the reported EHEAs, the AlCoCrFeNi2.1 alloy, with the combination
of a hard phase and soft phase, which contributes to achieving excellent mechanical proper-
ties, has attracted the most attention and is considered a potential structural and functional
material [26–32].

The AlCoCrFeNiNi2.2 hypereutectic high-entropy alloy contains more primary FCC
phases. Therefore, the ductility of the AlCoCrFeNiNi2.2 hypereutectic high-entropy alloy
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is superior to that of the AlCoCrFeNi2.1 eutectic high-entropy alloy [33]. Moreover, it is
believed that the Al atoms in AlCoCrFeNi-based alloys can lead to the formation of a B2
precipitate phase, and the precipitate guarantees the strength of the alloys [34–37]. The
above advantages make it clear that there is great potential for their application in the field
of structural materials. However, hypereutectic alloys, which are prepared by increasing
the Al content, have been scarcely investigated. Moreover, the influence of the primary
FCC phase and B2 precipitate phase on the tensile properties of hypereutectic alloys in
a wide temperature range have seldom been studied. Therefore, a novel hypereutectic
Al1.1CoCrFeNi2.1 high-entropy alloy is prepared. This study presents a detailed discus-
sion of the microstructural evolution and mechanical properties of the alloy in a wide
temperature range.

2. Materials and Methods
2.1. Material Processing

In this work, the as-cast Al1.1CoCrFeNi2.1 (at%) high-entropy alloy was prepared in a
vacuum magnetic levitation induction furnace. The raw materials of high purity Al, Co,
Cr, Fe, and Ni (>99.9 at% pure) were remelted at least 5 times in the Ar atmosphere to
guarantee homogeneity.

2.2. Tensile Test

Tensile tests were conducted at −100 ◦C (−100-alloy), 23 ± 2 ◦C (room temperature,
RT-alloy), and elevated temperatures of 650 ◦C (650-alloy), 750 ◦C (750-alloy), and 850 ◦C
(850-alloy) in air with a strain rate of 10−3 s −1. Dog-bone flat samples with the size of
49 mm × 12 mm were machined from the as-cast samples. The tensile properties were
evaluated using a universal testing machine with a strain rate of 0.015 mm/min prior to
the yield point and 4.8 mm/min after the yield point. Three parallel samples were tested to
obtain the average values of the results.

2.3. Microstructural Characterization

The phase constitution of the alloys was determined by X-ray diffraction (XRD) at
30 kV with Cu Kα radiation. The XRD measurement was conducted at a step size of 4◦ for
a range of 40◦–100◦. The morphology and microstructure of the alloys were observed by
scanning-electron microscopy (SEM). The chemical composition of the alloys was identified
using energy dispersive X-ray spectroscopy (EDS). The grain distribution was investigated
by SEM, coupled with an electron backscattered diffraction (EBSD) detector. Transmission
electron microscopy (TEM) was utilized to identify the microstructure of the alloys.

3. Results
3.1. Microstructure of the As-Cast Alloy

Figure 1 shows the SEM image and XRD pattern of the hypereutectic Al1.1CoCrFeNi2.1
alloy. The eutectic structures and dendrite structures can be observed in the as-cast condi-
tion. Two phases, a white phase (lamellar phase and primary spherical phase) and black
phase, exhibit a significant distinction due to the different composition and microstructure,
as shown in Figure 1a. The composition of the alloy was 18.12Al-16.01Co-16.11Cr-16.07Fe-
33.69Ni (at%) from the EDS results, and the alloy consisted of an FCC and BCC dual-phase
from the XRD results (Figure 1b).

Combined with the elemental distributions of the alloy (Figure 2), the white phase
was recognized to consist of FCC phases (lamellar and spherical) enriched in Ni, Fe, Co,
and Cr elements, whereas the black phase was identified as consisting of BCC enriched in
Al and Ni.
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Figure 2. Elemental distributions of the hypereutectic Al1.1CoCrFeNi2.1.

Figure 3 gives the TEM images and corresponding selected-area electron diffraction
(SEAD) patterns of the as-cast hypereutectic Al1.1CoCrFeNi2.1 alloy. The main diffraction
spot of the FCC phase is shown in Figure 3a. The presence of superlattice reflections at
the {001} position indicates the existence of the L12-ordered structure. The nano-sized
precipitates (in BCC-lamellae) had a B2 superlattice structure (inset in Figure 3b).
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3.2. Microstructure of the Alloy after Tensile Tests

To further provide insight into the deformation mechanism, TEM observation of the
sample after tension tests (RT-alloy and 650-alloy) was conducted and the results are shown
in Figures 4 and 5. As shown in Figure 4a, at room temperature, parallel dislocations appear
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in the FCC phases, indicating the occurrence of dislocation slip and cross slip. Meanwhile,
the deformation of FCC and BCC (B2) phases is asynchronous; the BCC (B2) phase is much
harder than the FCC phase. Due to the weaker deformability property of the BCC (B2)
phase, shear bands and shear fractures are observed in the BCC (B2) phases due to shearing
stress concentration, and a high density of dislocations piled up at the shear fracture. From
the magnified TEM image of Figure 4b, numerous nano-sized B2 precipitates are uniformly
dispersed in the BCC phases with sizes of about 40 nm.
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Figure 5. TEM images of 650-alloy: (a) low magnification and (b) dislocation morphology around
B2 phase.

From the 650 ◦C tensile test (650-alloy), the dislocation density is decreased obviously,
and necking is observed for the BCC (B2) phases. The BCC (B2) phase undergoes softening
and both FCC and BCC (B2) phases experience severe plastic deformation (Figure 5a). From
the magnified TEM image of Figure 5b, numerous nano-sized B2 precipitates are uniformly
dispersed in the BCC phases with sizes of about 20 nm. After the high temperature tension
test, the nano-sized precipitates dissolve into the BCC phase, causing a reduction in size.

The EBSD grain distribution maps of the tensile samples for the −100-alloy and RT-
alloy are shown in Figure 6. The tensile sample at −100 ◦C (−100-alloy) exhibits a grain
distribution comparable to that of the tensile sample at room temperature (RT-alloy).
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However, newly formed fine grains in the high-temperature tensile samples were
observed, suggesting the occurrence of recrystallisation (Figure 7a–c). The fraction of recrys-
tallized grains increased with increasing tensile temperatures. Recrystallization promotes
the dissociation of the dislocation. Since the dissociation of the partial dislocation decreases
the dislocation density and reduces the barrier to dislocation movement, the work hard-
ening phenomenon decreases at higher temperatures, and consequently, it promotes the
plastic deformation ability. In conclusion, smaller B2 precipitates and the recrystallization
enhanced the collaborative deformation ability of the L12 and BCC (B2) phases, which are
beneficial to the excellent plastic deformation capacity at high temperatures.

Coatings 2023, 13, x FOR PEER REVIEW 5 of 10 
 

 

 
Figure 6. EBSD grain distribution maps of (a) −100-alloy; (b) RT-alloy. 

However, newly formed fine grains in the high-temperature tensile samples were 
observed, suggesting the occurrence of recrystallisation (Figure 7a–c). The fraction of re-
crystallized grains increased with increasing tensile temperatures. Recrystallization pro-
motes the dissociation of the dislocation. Since the dissociation of the partial dislocation 
decreases the dislocation density and reduces the barrier to dislocation movement, the 
work hardening phenomenon decreases at higher temperatures, and consequently, it pro-
motes the plastic deformation ability. In conclusion, smaller B2 precipitates and the recrys-
tallization enhanced the collaborative deformation ability of the L12 and BCC (B2) phases, 
which are beneficial to the excellent plastic deformation capacity at high temperatures. 

 
Figure 7. EBSD grain distribution maps of (a) 650-alloy; (b) 750-alloy; (c) 850-alloy. 

3.3. Mechanical Properties 
The tensile properties of the hypereutectic Al1.1CoCrFeNi2.1 alloys are shown in Fig-

ure 8. The strain of the alloys increased with increasing tension temperatures. The −100-
alloy shows the highest ultimate strength of 1238 MPa. At room temperature, the alloy 
(RT-alloy) shows an ultimate tensile strength of 964 MPa. At elevated temperatures, there 
is a significant reduction in strength. The ultimate tensile strength is 455 MPa for the 650-
alloy, and 278 MPa for the 750-alloy. The 850-alloy exhibits the lowest ultimate tensile 
strength, with a value of 156 MPa. Although the plastic deformation capacity exhibits a 
rising tendency, the strain is still lower than the −100-alloy. 

Figure 7. EBSD grain distribution maps of (a) 650-alloy; (b) 750-alloy; (c) 850-alloy.

3.3. Mechanical Properties

The tensile properties of the hypereutectic Al1.1CoCrFeNi2.1 alloys are shown in
Figure 8. The strain of the alloys increased with increasing tension temperatures. The
−100-alloy shows the highest ultimate strength of 1238 MPa. At room temperature, the
alloy (RT-alloy) shows an ultimate tensile strength of 964 MPa. At elevated temperatures,
there is a significant reduction in strength. The ultimate tensile strength is 455 MPa for the
650-alloy, and 278 MPa for the 750-alloy. The 850-alloy exhibits the lowest ultimate tensile
strength, with a value of 156 MPa. Although the plastic deformation capacity exhibits a
rising tendency, the strain is still lower than the −100-alloy.
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To determine the fracture mechanism, typical fracture features of the alloys are ob-
served, as shown in Figure 9. The tensile fractography of the −100-alloy exhibits a large
number of dimple morphologies with a minor presence of trench-like morphologies, and
no cracks are observed (Figure 9a). The RT-alloy also shows a mixture of trench-like and
dimples morphology (Figure 9b). Two different kinds of fracture modes can be clearly
distinguished for both the RT-alloy and the −100-alloy: a ductile fracture in the L12 phase
and brittle-like fracture in the BCC (B2) phase. The incompatibility of strain arising from
different levels of elasticity and plasticity between the BCC (B2) and L12 phases lead to
the local stress concentration. During the tension, the ductile L12 phase is stretched and
then gradually becomes thinner and edged up, whereas the BCC (B2) phase deforms dif-
ficultly and forms a trench bottom. Moreover, many more dimples are observed on the
fracture surface of the −100-alloy compared to the RT-alloy, indicating its superior plastic
deformation ability.
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However, for the high-temperature tensile tests, as shown in Figure 9c–f, although
numerous dimples also appear (ductile fracture), the cracks observed near the spherical
L12 phase (Figure 9f) significantly reduce the plastic deformation ability.

4. Discussion

With an increasing tensile temperature, the tensile strength decreased. However, the
total elongation of the alloys shows an increasing tendency, except for the low-temperature
tensile samples (−100-alloy and RT-alloy). The −100 ◦C test exhibits the highest ultimate
tensile strength, along with an excellent elongation. The effect of the tensile temperature on
the tensile properties is investigated for the hypereutectic Al1.1CoCrFeNi2.1 alloy.

4.1. Synergistic Effect of L12 and BCC (B2) Phases

It has been known from earlier studies that the FCC phase (L12 phase) is more ductile
than the BCC (B2) phase [23]. It seems plausible that the dislocation in the L12 phase is
easier to move than that in the BCC (B2) phase. A large number of dislocations (dislocation
slip and cross slip) are observed within the L12 phase at room temperature (RT-alloy), as
shown in Figure 4a. The deformation of the FCC and BCC (B2) phases is asynchronous,
resulting in the fractures of the BCC (B2) phases.

The precipitates inhibit the dislocation motion and result in a strengthening effect.
Figure 4b shows that the B2 precipitate phase observed during the deformation process can
effectively pin the dislocations through a process known as the Orowan bypass mechanism.
When the dislocations approach the precipitates, they start to curve around the non-
deformable particles. Under sufficiently applied stress, dislocations may move across the
precipitates, leaving behind Orowan loops around the particles (Figure 10a). Dislocation
movement can be impeded by the B2 precipitates, thereby improving the strength for the
−100-alloy and RT-alloy.
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For the 650-alloy, dislocations are easily cut through by the smaller B2 precipitates
(20 nm), resulting in dislocation slip (Figures 5b and 10b). The dislocation cutting phe-
nomenon is identified as the main mechanism for the softening of the BCC (B2) phases in
the 650-alloy. Softening of the BCC (B2) phases occurs without shear fracture, and plastic
deformation occurs simultaneously in the L12 and BCC (B2) phases. Therefore, the ductility
increases with increasing tensile temperatures.

However, during high temperature tensile tests, the bonding strength of the spherical
primary L12 and BCC (B2) phases decreases. The cracks observed near the spherical
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L12 phase significantly reduce the plastic deformation ability and strength. Therefore,
the plastic deformation ability of the low temperature tensile tests (−100-alloy) is more
outstanding than that of the high temperature tensile tests.

4.2. Dynamic Recrystallization

The alloy undergoes recrystallization during the high-temperature tensile tests. When
the dislocation density and driving force reach sufficient levels in the heated, formable
alloy, recrystallization takes place. This is because the accelerated diffusion rate of the
grain boundaries at high temperatures leads to the continuous growth of sub-grains, ulti-
mately forming new recrystallized grains. In general, when a high temperature collectively
ensures the sufficient nucleation time and the high diffusion rate of the grain boundary,
dynamic recrystallization occurs. At the same time, the phenomenon of accumulated
high-density dislocations disappeare, which improves the plastic deformation ability of the
high temperature tensile tests, as shown in Figure 5a.

In conclusion, the Orowan by-passing mechanism and dislocation cutting mechanism
affect the dislocation slip. Besides, dynamic recrystallization in the matrix reduces the
stress concentration arising from dislocation motion and increases the plastic deformation
ability. For the low temperature tensile tests, the Orowan by-passing mechanism caused by
the B2 precipitates increase the strength (−100-alloy and RT-alloy). At high temperatures
(650-alloy, 750-alloy, and 850-alloy), the dislocation cutting mechanism and dynamic recrys-
tallization increase the plasticity, while the cracks near the spherical L12 phase significantly
reduced the plastic deformation ability.

The Al1.1CoCrFeNi2.1 hypereutectic high-entropy alloy contains more primary soft
FCC phases, which ensure excellent ductility. Moreover, the interaction of the B2 phase and
dislocations triggers the Orowan bypass mechanism, thereby contributing to the excellent
strength of the alloy. Therefore, compared to other reported hypereutectic high entropy
alloys, the alloy studied in this work demonstrates comprehensive mechanical performance
advantages [5,19,23].

5. Conclusions

In summary, in this work, hypereutectic Al1.1CoCrFeNi2.1 alloys were prepared by
vacuum magnetic levitation induction melting. Based on the above analysis and results,
the main conclusions are as follows:

1. The alloy consisted of L12 (lamellae and spherical) and BCC (B2) phases. Numerous
nano-sized coherent B2 precipitates are uniformly dispersed in the BCC phases. A
ductile fracture occurs in the L12 phase, while a brittle-like fracture occurs in the BCC
(B2) phase for both the −100-alloy and RT-alloy.

2. At low tensile temperatures (−100 ◦C and 23 ± 2 ◦C), the Orowan by-passing mecha-
nism affects the dislocation slip, contributing to the excellent strength of the alloy. The
−100-alloy exhibits the highest ultimate tensile strength of 1231 MPa and excellent
elongation of 44%.

3. At high tensile temperatures, the presence of smaller B2 precipitates and the recrystal-
lization resulting from crystallization enhance the collaborative deformation ability of
the L12 and BCC (B2) phase. However, the cracks observed near the spherical primary
L12 phase significantly reduced the plastic deformation ability and strength.
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