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Abstract: In this work, 3D periodic “grid-type” CuO/Cu2O layers were fabricated on a copper sheet
using laser processing techniques, and the laser processing parameters were optimized for favorable
ZnO nanowire growth. It was found that ZnO nanowires could be successfully prepared to form a
CuO-Cu2O-ZnO heterojunction structure without an extra catalyst or seed layer coating, which could
be attributed to the copper oxide active sites induced via laser texturing. ZnO nanowires on laser
textured “grid-type” copper substrates demonstrated an effective piezocatalytic performance with
different morphologies and the generation of abundant reactive oxygen species in the CuO-Cu2O-
ZnO catalytic system, providing a fundamental mechanism for the degradation of organic dye in
water. This simple and low-cost method could provide a useful guide for the large-scale efficient and
versatile synthesis of immobilized piezoelectric catalysts.

Keywords: laser processing; ZnO heterojunction; piezocatalytic; wastewater treatment

1. Introduction

Over the past few decades, as the adverse effects of rapid global industrialization
have intensified, water pollution has become a serious global problem that poses a major
challenge to the sustainable development of human civilization. Therefore, research into
the removal of contaminants from natural water systems is urgent and necessary. Among
various water treatment solutions, utilizing energy from nature to purify water sources is
likely to be the most promising technology because it is a green, energy-saving, and facile
method [1–3]. Currently, piezoelectric catalysts such as BaTiO3 [4], MoS2 [5,6], TiO2 [7],
and ZnO [8] have been widely studied and reported. Among them, ZnO nanowires have
shown excellent performance in harvesting mechanical energy in the natural environment
(such as wind energy, tidal energy, energy from acoustic waves, and atmospheric pres-
sure) [9–12], and can be applied in the fabrication of piezoelectric nanogenerators [13–15],
high-performance visible/ultraviolet photoelectric detectors [16,17], the decomposition
of water to produce sustainable hydrogen fuel [18,19], and wastewater treatment in in-
dustry, etc. When ZnO nanowires are deformed under the action of an external force,
a piezoelectric field can be generated on the surface, which induces electrons and holes
in the nanowires to migrate in opposite directions [20], and the separated charges react
with oxygen and OH− in the water and produce reactive oxygen species (ROS) that con-
tinuously degrade pollutants in the water [21]. However, the high recombination rate of
separated electron–hole pairs during piezoelectric catalytic degradation consumes exter-
nal input mechanical energy and reduces piezoelectric catalytic efficiency. Many efforts
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have been made to prevent the recombination of electron–hole pairs, such as the devel-
opment of various novel ZnO nanostructures [22–24], the construction of efficient ZnO
nanowire heterojunctions [25–27], the introduction of external electric fields, and the cou-
pling of piezoelectric with photoelectric effects of ZnO nanowires [28,29]. Among them,
the construction of heterojunctions is considered to be one of the most effective methods
to improve the efficiency of electron and hole separation within ZnO nanowires, such as
ZnO-CuO [30], ZnO-CeO2 [31], ZnO-Au@Pt [32], ZnO-GO [33], ZnO-Ag [34], etc. These
as-prepared hybrid catalysts are mainly divided into non-immobilized and immobilized
catalysts, which have inherent limitations in their use. For example, non-immobilized
catalysts are prone to the introduction of secondary contamination in operation and cannot
be used on a large scale. Most immobilized catalysts require a seed layer to be implemented
before the reaction, and their high cost and complex fabrication processes likewise limit
their practical application at the industrial level [35]. Therefore, it is of great significance to
develop a seed-layer-free, immobilized ZnO catalyst fabrication process.

Recently, some works have reported the seedless hydrothermal synthesis of ZnO-
immobilized catalysts. However, most of them required expensive single-crystal substrates
(e.g., GaN [36]), deposited Ti/Au film [37], or the introduction of an external electrical
field to enhance the ZnO nucleation [38]. Therefore, the preparation of periodic and
patterned arrays of CuO-Cu2O-ZnO heterojunction on 3D micro-/nano-structured copper
substrates remains a great challenge. In recent years, laser processing technology has
attracted a lot of attention in the preparation of water treatment materials due to its unique
advantages such as high energy density and short processing time [39–41], including
processing various superhydrophobic surfaces with self-cleaning functions and preparing
graphene materials with anti-fouling and anti-bacterial functions [42,43]. Our group also
reported the fabrication of copper mesh with an oil–water separation function using
laser processing technology for oil spill treatment in the environment, along with other
uses [44,45]. The unique advantages of laser processing technology have opened up a new
path for the development of efficient water treatment materials.

In this work, a laser-processing-technique-assisted hydrothermal method was pro-
posed to fabricate a CuO-Cu2O-ZnO heterojunction array with efficient piezoelectric cat-
alytic capacity for water purification, where a periodic three-dimensional CuO-Cu2O-Cu
substrate was fabricated via laser ablation, followed by the hydrothermal-synthesis-induced
growth of ZnO nanowires on a 3D CuO-Cu2O-Cu substrate for the formation of a CuO-
Cu2O-ZnO heterojunction structure. The CuO-Cu2O-Cu substrates generated via laser
processing simplified the hydrothermal growth process of ZnO nanowires and helped
to promote the separation of electron and hole pairs inside ZnO nanowires, improving
their piezoelectric catalytic water purification capability. The piezocatalytic activity of the
CuO-Cu2O-ZnO heterojunction array was evaluated via MB decomposition under ultra-
sonic vibration in the dark. The results showed that the CuO-Cu2O-ZnO heterojunction
array possessed up to 34% degradation capacity within 30 min. Furthermore, the hydroxyl
radicals and superoxide anions generated during piezoelectric catalysis were detected via
the terephthalic acid photoluminescence (TA-PL) method and the nitroblue tetrazolium
(NBT) transformation method, respectively. The results showed that a large amount of
reactive oxygen species were generated in the CuO-Cu2O-ZnO catalytic system, which
provided a basic mechanism for the degradation of organic dyes in water. The combination
of the unique advantages of laser processing technology and hydrothermal methods could
provide a highly efficient and cost-effective method for developing new and versatile
immobilization catalysts.

2. Materials and Methods
2.1. Materials

All of the chemicals were of analytical grade and used without further purification.
Zinc nitrate hexahydrate (Zn(NO3)2·6H2O, 1 mol/L), copper sheet, hexamethylenete-
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tramine (HMTA; C6H12N4, 30 wt%), ammonia water, terephthalic acid (TA), and nitroblue
tetrazolium (NBT) were obtained from Aladdin Chemistry Co. Ltd. (Shanghai, China).

2.2. Preparation of Periodic 3D CuO-Cu2O-ZnO Heterojunction Array

The copper sheet, with a thickness of ≈300 µm, was cut into pieces of around
1 cm × 1 cm and cleaned with deionized water, followed by hotplate drying. A nanosec-
ond pulsed laser ablation system was applied to create a patterned “grid-type” substrate
microstructure in ambient air, as shown in Figure 1a. A laser with a wavelength of 1064 nm,
pulse repetition rate (PRR) of 25 kHz, spot size of ≈30 µm, scanning speed of 500 mm s−1,
and scan line spacing of ≈0.05 mm was used, whereas the number of scanning repetitions
was set at 1, 5, and 10, respectively. To optimize laser processing parameters for the growth
of ZnO nanowires, Zn(NO3)2 and HAMT reactant concentrations at 50 mM in 3 M ammonia
aqueous solution were chosen to prepare the ZnO nanowire growth solution, and then
the solution was transferred to a 25 mL reaction kettle and stirred with a glass rod for
one minute to mix it well. Then, we placed the processing surface of the copper sheet
downward against the inner wall of the reaction kettle. The reaction temperature was set
to 150 ◦C and the growth time was two hours. After the reaction, the copper sheets were
removed, rinsed several times with deionized water, and placed on a drying table at 100 ◦C
to dry. Figure 1b,c shows a schematic diagram of hydrothermally grown ZnO nanorods on
the “grid-type” substrate. The laser processing parameters for the “grid-type” substrate
were set at 10 rounds of laser scanning and spot line spacing of 50 µm. ZnO nanowires
were obtained under hydrothermal conditions in 3 M ammonia aqueous solution with both
Zn(NO3)2 and HAMT reactant concentrations of 1 mM, 25 mM, 50 mM, 100 mM, 200 mM,
400 mM, 600 mM, and 800 mM (molar concentrations and volume ratios, Zn(NO3)2:HAMT
= 1:1), respectively, which are labeled as S1, S2, S3, S4, S5, S6, S7, and S8, in order.
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2.3. Mechanical Stability of ZnO Nanowires on Laser Ablated Substrate

The adhesion of the ZnO nanowires was tested using an ultrasonic cleaning experi-
ment. First, the grid-type substrate was put in a beaker. A total of 20 mL of deionized water
was added, and it was treated in an ultrasonic cleaner with 120 W power for 5 min; then, it
was placed on a drying table at 100 ◦C to dry it.

2.4. Piezocatalytic Performance Evaluation

As shown in Figure 1d, in order to test the catalytic activity of the CuO-Cu2O-ZnO
catalysts, 0.3 mg of methylene blue powder was dissolved in 500 mL of deionized water,
and then 30 mL of methylene blue solution was taken out at a time to conduct the catalytic
degradation experiment, ensuring the same initial concentration of MB at the beginning
of each experiment for each experimental group. At room temperature, each group of
samples was placed into beakers containing MB solution and kept in the dark for 5 min
to reach dissociation and adsorption equilibrium. The beaker was then placed in an
ultrasonic cleaner with 120W and a frequency of 40 kHZ for degradation experiments. After
taking out 3–4 mL of the solution every five minutes and performing centrifuge treatment,
the change in MB concentration was measured using a UV-Vis spectrophotometer. To
prevent the effect of heat generated from ultrasonic vibrations, the water in the ultrasonic
cleaner was changed every ten minutes until the experiment was completed. The catalytic
capacity was defined as C/C0 × 100%; the corresponding degradation rate was defined
as (1 − C/C0) × 100%; C0 was the concentration of MB at T = 0 min when the adsorption
equilibrium was reached; and C was the concentration of MB after 30 min of catalysis [46].

2.5. Active Species Trapping

Radical trapping experiments were carried out to identify the primary reactive oxygen
species (ROS) generated in each of the eight CuO-Cu2O-ZnO heterojunction array systems.
To identify the ·OH radicals, the reaction of terephthalic acid (TA) with ·OH to produce
the highly fluorescent 2-hydroxy terephthalic acid (TAOH) was investigated. At fixed
time intervals of the piezocatalytic treatment, an aliquot of the solution was withdrawn
and transferred in a cuvette, and the PL spectrum was recorded using a fluorescence
spectrometer operating at an excitation wavelength of 315 nm and an emission wavelength
of 429 nm. To detect the radical ·O2- formed under piezocatalytic conditions, a reaction was
carried out of NBT with ·O2- to form the insoluble purple formazan, spectrophotometrically
monitoring the changes in the concentration of NBT. For this purpose, an NBT solution
with a concentration of 0.03 mM was prepared and the UV-Vis spectra of the solution
were recorded at different times of reaction; we observed a continuous decrease in the
NBT absorption maximum centered at 259 nm as the reaction proceeded and the reagents
were consumed.

Firstly, a 5 mM terephthalic acid solution was prepared in a NaOH solution (10 mM)
to analyze the radical of ·OH. Then, 20 pieces of experimental samples were added to
45 mL of the above solution and exposed to ultrasonic irradiation. The fluorescence spectra
were recorded using a fluorescence spectrometer operating at an excitation wavelength
of 315 nm and an emission wavelength of 429 nm. NBT reacted with ·O2

− to form the
insoluble purple formazan, thus leading to a decrease in absorbance at 259 nm. The NBT
solution was prepared with a concentration of 0.03 mM. The production of ·O2

− could be
tested by monitoring the concentration change in NBT using a UV-Vis spectrophotometer
(PerkinElmer, USA).

2.6. Characterization

The surface morphology, composition, and chemical valence of the samples were
studied via scanning electron microscopy (SEM, Germany, GeminiSEM 500), X-ray powder
diffraction (Japan, Shimadzu XRD-7000), and X-ray photoelectron spectroscopy (XPS, USA,
Thermo Scientific, ESCALAB Xi+). The efficiency of MB degradation using CuO-Cu2O-ZnO
catalysts and the detection of superoxide anion production during piezoelectric catalysis
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were examined via UV-Vis spectroscopy (USA, LAMBDA 1050+). The hydroxyl radical
production was detected via transient fluorescence spectroscopy (UK, Edinburgh FLS1000,
FLS1000).

3. Results and Discussion
3.1. Growth of ZnO Nanowires on Laser Textured Copper Substrate

Figure 2a,b shows the “grid-type” substrate fabricated on a copper sheet using laser
processing techniques. The regular 3D “dimple” pits were left where the laser spot
scanned [47], “tapered bumps” were formed in the middle of every four 3D “dimple”
pits, and a large number of nanoparticles and inhomogeneous corrugated transition layers
were deposited next to them. The regular 3D “dimple” pits and 3D “tapered bumps”
were vertically cross-distributed with a diameter of about 40 µm on the bottom. These
experimental results can be explained in terms of a dynamic ablation process using a laser.
At high laser fluences, the ablated copper atoms are anisotropically ejected into the air with
a plasma plume formation, demonstrating the high kinetic energy of the species. Then,
the plasma strongly interacts with the air molecules, leading to plasma nucleation and
oxidation of the copper atoms, forming nanoparticles and aggregate. Finally, these particles
are deposited on the copper surface under the operation of gravity and air resistance [48].

From Figure 2c, it can be seen that large amounts of CuO and Cu2O were produced
on the surface of the 3D “grid-type” substrate, which are key to growing ZnO without
a catalyst or seed layer coating. The physical reason for such enhanced nucleation and
regular growth in the presence of CuO-Cu2O heterojunction may be attributed to a galvanic
effect in the substrate [49]. Although the system is quite complex, we have represented the
main chemical reactions in the following equations [50]:

C6H12N4 + Zn2+ →
[
Zn(C6H12N4)]

2+ (1)

NH3 + H2O→ NH+
4 + OH− (2)

Zn2+ + 4NH3 → Zn
(

NH3)
2+
4 (3)

Zn2+ + 4OH− → Zn
(

OH)2−
4 (4)

Zn
(

NH3)
2+
4 + 2OH− → ZnO + 4NH3 + H2O (5)

Zn
(

OH)2−
4 → ZnO + H2O + 2OH− (6)[

Zn(C6H12N4)]
2+ + 2OH− → ZnO + H2O + C6H12N4 (7)

Under the action of the built-in electric field of the CuO-Cu2O heterojunction, the
positively charged intermediates Zn(NH3)4

2+, [Zn(C6H12N4)]2+, and OH− formed in the
hydrothermal reaction migrate towards the substrate containing CuO and Cu2O and then
react to form ZnO crystals. These enable the laser-processed copper substrate to grow
ZnO nanorods without any catalyst or seed layer coating, which is consistent with recent
investigations into the Al-based galvanic-cell effect for synthesizing ZnO nanorods on
conducting substrates [51].

Figure 2d–i shows the SEM images of the ZnO nanowires, grown via hydrothermal
synthesis, on “grid-type” substrates prepared using different numbers of laser scans. The
patterned ZnO nanowire arrays mainly consisted of nanorods with pinpoint tops, which
were densely and uniformly distributed on the “grid-type” substrate. The nanorod lengths
were in the range of 1~5 µm. Furthermore, as the number of laser scans increased, more
and more ZnO nanowires were grown on the substrate, which were attributed to the
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greater number of induced copper oxide active sites as the number of laser scans increased.
The XRD patterns of the 3D “grid-type” substrates prepared with different numbers of
laser scans are shown in Figure 2c. As the number of laser scans increased, the peak
intensity of copper decreased, relative to that of CuO and Cu2O, indicating that the copper
substrate was more severely ablated by the laser, resulting in a larger surface area of the
copper substrate being oxidized, producing more CuO-Cu2O particles and inhomogeneous
corrugated transition layers, which is beneficial for the growth of ZnO nanowires.
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substrate after a number of laser scanning repetitions of 1, 5, and 10; (d–i) hydrothermal growth of
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(j–l) adhesion test for ZnO nanowires; (j) before ultrasonic cleaning for 5 min; (k,l) after ultrasonic
cleaning for 5 min.

The long-term performance of immobilized hybrid catalysts is governed by the sta-
bility and adhesion of ZnO nanowires to the immobilizing substrate. Ultrasonic cleaning
experiments for ZnO nanowires are shown in Figure 2j–l. Figure 2j shows the SEM images
before ultrasonic stripping, and Figure 2k,l shows the SEM images after ultrasonic cleaning
in deionized water for 5 min. The figure shows that most of the ZnO nanowires remain on
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the copper sheet, which further indicates the strong adhesion of the ZnO nanowires grown
on the copper sheet [52]. As shown in Figure 2a,b, a large number of nanoparticles, regular
pits [53], and corrugated transition layers were produced on the copper sheet, increasing
the roughness of the substrate surface, which may be one of the important reasons for the
strong adhesion of ZnO nanowires on the 3D CuO-Cu2O substrate [54,55].

Figure 3a shows the XRD pattern of the CuO-Cu2O-ZnO heterojunction constructed
on a copper sheet. The sharp diffraction peaks indicate that the grown ZnO nanowires
exhibit a good crystalline quality, and all of the diffraction peaks correspond to the wurtzite
structured ZnO (JCPDS card no. 36-1451) [56]. Other peaks are attributed to the Cu (JCPDS
card no. 04-0836), Cu2O (JCPDS card no.99-0041), and cubic CuO (JCPDS card no. 71-
0251) [57]. This demonstrates the successful preparation of CuO-Cu2O-ZnO heterojunction
catalysts on a “grid-type” substrate. We further analyzed the elemental valence state of
the substrate copper surface after laser processing via XPS. Figure 3b shows the XPS scan
spectrum of a “grid-type” copper sheet after the hydrothermal growth of ZnO nanowires,
and from which the main binding energy peaks of carbon (C 1s), oxygen (O 1s), zinc (Zn
2p), and copper (Cu 2p) can be observed. As shown in Figure 3c, the peak at binding
energy of 935.2 eV corresponds to CuO [58], while the peak at binding energy of 933.5 eV
corresponds to Cu2O [59]. This is a good indication of the generation of CuO and Cu2O on
the copper surface after laser processing. The XPS spectrum of Zn 2p is shown in Figure 3d
and the two strong peaks at binding energies of 1023.06 eV and 1046.20 eV correspond
to Zn 2p3/2 and Zn 2p1/2, respectively, which indicates the presence of Zn in the form
of ZnO. Figure 3e shows the XPS spectra of C 1S, and the three strong peaks at binding
energies 284.8 eV, 286.5 eV, and 288.7 eV can be assigned to the C-C bond, C-O-C bond, and
HO-C=O bond, respectively. Figure 3f shows the spectra of O 1S, and the three strong peaks
at binding energies 530.1 eV, 531.5 eV, and 532.5 eV can be seen to originate from the Cu-O
bond, Zn-OH bond, and -OH bond. It has been documented that these oxygen-containing
functional groups facilitate the anchoring of ZnO nanorods [33].

In this section, 3D periodic “grid-type” CuO-Cu2O-ZnO heterojunctions were success-
fully fabricated via the laser-processing-technique-assisted hydrothermal method, and the
laser processing parameters were optimized for favorable ZnO nanowire growth. The CuO-
Cu2O-ZnO heterojunction structure was further verified by XRD and XPS characterizations.
Furthermore, it was found that laser-induced copper oxide active sites are essential for the
preparation of CuO-Cu2O-ZnO heterojunction structures without the need for catalysts
and seed layer coatings.

3.2. Modulating the Morphology of ZnO Nanowires

Figure 4 shows the SEM images of ZnO nanowire morphology obtained under hy-
drothermal conditions with reactant concentrations of 1 mM, 25 mM, 50 mM, 100 mM,
200 mM, 400 mM, 600 mM, and 800 mM, respectively. From Figure 4a,e, it can be seen that
at an initial concentration of 1 mM, the grown ZnO nanowires are extremely short, with a
length of about 0.33 um and a diameter of about 0.13 µm, due to the low concentration of
Zn2+. When the concentration of reactants exceeds 50 mM, as shown in Figure 4c,g, the
length of the ZnO nanowires is 3.55 µm and the diameter is 0.34 µm, and the growing
density of ZnO can be seen to have increased tremendously by this time. As shown in
Figure 4i,m, when the concentration increases to 200 mM, the length of the ZnO nanowires
continues to increase to approximately 4.6 µm and the growth density of the ZnO nanowires
is almost maximized, but the nanowires are not uniform, and the coarse and fine ones
are mixed, with diameters varying from approximately 0.36 µm to 0.7 µm. As shown in
Figure 4j,n, when the growth concentration reaches 400 mM, the morphology of the ZnO
nanowires starts to change from a cylindrical rod to a hexagonal prism with a length of
4.7 µm and a diameter of 1.2 µm. There is a small bump on top of the hexagonal prism. As
shown in Figure 4k,o, when the concentration exceeds 600 mM, the small bumps on the
hexagonal prism disappear, and the morphology of the ZnO nanowires becomes completely
hexagonal prismatic and does not change with the increase in concentration.
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and (00
−
10) facets of the ZnO nanowires, which is related to the surface energy difference

between the crystalline facets. In ZnO nanowires, (0001) polar planes have the highest

surface energy (2.0 J/m2) [56] compared to other crystalline planes (e.g., (00
−
10) planes,

1.16 J/m2) [60], and crystalline planes with larger surface energies have lower nucleation-
free energy barriers (i.e., lower critical nucleation concentrations). Furthermore, crystal
growth occurs when the concentration of reactants exceeds the critical concentration of each
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crystalline surface. In the early stages of the hydrothermal reaction, the reactant solution

is supersaturated for both the (0001) and (00
−
10) planes, so that ZnO crystals cannot only

grow axially but also laterally; however, even in the same concentration of the reaction

solution, the ZnO nuclei of the (0001) compared to the (00
−
10) planes also face greater

supersaturation, which leads to faster axial growth of ZnO crystals than lateral growth,
resulting in the formation of ZnO nanowires with a length greater than the diameter.
Furthermore, as the concentration of reactants increases, the supersaturation between
the different crystalline planes is lifted relatively more slowly, leading to a continuous
increase in the length and diameter of the ZnO nanowires and finally to the formation of
ZnO nanowires with different aspect ratios [56,60]. The trends of length, diameter, and
aspect ratio of ZnO nanowires grown at growth concentrations from 1 mM to 800 mM
are shown in Figure 4q–s. As the growth concentration was increased, the length of the
ZnO nanowire increased from 0.33 µm to 5.4 µm and the diameter increased from 0.14 µm
to 1.6 µm, with the ZnO nanowire length increasing much faster than the diameter; this
growth process of ZnO nanowires can be divided into two stages. In the first growth
stage, as the concentration of the reactant increased from 1 mM to 50 mM, the length of
the ZnO nanowires increased from 0.33 µm to 3.55 µm; the most significant change in the
length of the ZnO nanowires was observed during this process. In contrast, the diameter
of the ZnO nanowires increased more slowly as the concentration increased from 1 mM
to 50 mM, and an increase in diameter of the ZnO nanowires was seen from 0.14 µm to
0.34 µm, with the aspect ratio of the ZnO nanowires at 1 mM being 2.35 and increasing
with increasing reactant concentration, reaching a maximum aspect ratio of 10.44 at 50 mM.
In the second growth stage, as the concentration of reactants increased from 100 mM to
800 mM, the growth rate of the length of the ZnO nanorods began to slow down, increasing
from approximately 3.6 µm to 5.4 µm in length. Conversely, the growth rate of the diameter
of the ZnO nanorods increased from 0.5 µm to 1.6 µm when the growth concentration
was increased from 100 mM to 800 mM. Particularly, when the concentration of reactants
increased from 200 mM to over 400 mM, the morphology of ZnO changed from nanowires
to hexagonal prisms, and the diameter of the ZnO nanomaterials increased from 0.7 µm
to 1.2 µm, so that at these concentrations the most significant change was observed in
the diameter of ZnO. Furthermore, the aspect ratio of the ZnO nanorods was 7.22 at a
reactant concentration of 100 mM and decreased to 2.62 when the reactant concentration
was increased to 800 mM. This demonstrates that different concentrations of reactants
cause different growth rates of ZnO nanowires along the radial and axial directions, which
ultimately leads to the formation of ZnO nanowires with tunable aspect ratios.

3.3. Piezocatalytic Performance Evaluation

The piezocatalytic activity of the as-prepared samples was analyzed via MB decompo-
sition with ultrasonication in the dark with an initial concentration of MB at 0.6 mg/L [33].
Figure 5a,b shows the piezoelectric catalytic degradation performance of the mixed ZnO
nanowire arrays from sample 1 to sample 8. As expected, within a certain range, increasing
the growth concentration of ZnO nanowires is beneficial for improving the piezoelectric
catalytic degradation of immobilized hybrid ZnO nanowires. Sample 1 was grown at a con-
centration of 1 mM and had the lowest piezoelectric catalytic degradation performance (8%),
while sample 8 was grown at a concentration of 800 mM and had the highest degradation
performance (34%). As shown in Figure 4, as the growth concentration was increased, the
length of the ZnO nanowire increased from 0.33 µm to 5.4 µm and the diameter increased
from 0.14 µm to 1.6 µm; the increase in length of the ZnO nanowires was much faster than
the increase in diameter. The higher piezocatalytic degradation performance of the mixed
ZnO nanowire arrays with higher growth concentrations can be attributed to the larger
active surface area under external forces from the longer length of the ZnO nanowires; there
were more reaction sites for pollutant decomposition. Furthermore, the more significant
the increase in the length of the ZnO nanowires, the more likely the ZnO nanowires are to
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bend and deform under the same external pressure, determining a more efficient internal
migration of electrons and holes, thus leading to better piezoelectric catalytic degradation
performance of the ZnO nanowires [18,52].
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Figure 4. (a–p) SEM images of ZnO grown on “grid-type” substrate using eight different reactant
concentrations: (a,e) 1 mM; (b,f) 25 mM; (c,g) 50 mM; (d,h) 100 mM; (i,m) 200 mM; (j,n) 400 mM;
(k,o) 600 mM; and (l,p) 800 mM. Growth time: 2 h; growth temperature: 150 ◦C; (q–s) length,
diameter, and aspect ratio statistics of ZnO nanorods grown on “grid-type” substrates for eight
reactant concentrations; (q) length; (r) diameter; (s) aspect ratio.

To further evaluate the piezoelectric degradation performance of CuO-Cu2O-ZnO
piezoelectric catalysts, we recorded the UV-Vis absorption spectra of sample 8 during
catalytic degradation. The illustration in the top left corner of Figure 5b shows the UV–Vis
absorption spectra (500–730 nm) of the MB solution, acquired at different ultrasonic stirring
times. It can be observed that the intensity of the maximum absorption peak, located
at 664 nm, progressively decreases with the prolongation of the ultrasonic stirring time.
Furthermore, in the box of Figure 5b, the MB solutions at increasing ultrasonic stirring
times are shown in the top left corner, highlighting how the initial blue color of the MB
solution gradually fades, thus fully demonstrating the piezoelectric catalytic capacity of
ZnO nanowires grown on copper substrates.
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Figure 5. (a) The piezoelectric catalytic degradation process of a group of eight hybrid ZnO samples;
(b) statistics of piezoelectric catalytic degradation of a group of eight hybrid ZnO samples for 30 mins.
The upper left picture shows the color change in MB solution and UV-Vis absorption spectra of MB
dye at different degradation times in the presence of sample S8; (c) fluorescence spectra of TAOH for
detecting ·OH generated by sample S8 and heterogeneous CuO-Cu2O-ZnO piezoelectric-catalytic
degradation of MB; (d) UV–Vis absorption spectra of NBT for detecting ·O2- generated by sample S8
and heterogeneous CuO-Cu2O-ZnO piezoelectric-catalytic degradation of MB; and (e) mechanism
of production of reactive oxygen species by CuO-Cu2O-ZnO heterojunction under the action of
ultrasonic waves.

To elucidate the mechanism of piezocatalysis, sample S8 was examined for reactive
oxygen species (ROS) produced during piezoelectric catalytic degradation. Hydroxyl radi-
cals and superoxide anions generated during piezoelectric catalysis were detected via the
terephthalic acid photoluminescence (TA-PL) method and NBT transformation method,
respectively. NBT can react with ·O2– to form insoluble purple formazan in aqueous solu-
tion; therefore, the generated superoxide ions can be determined spectrophotometrically
using NBT as a probe by monitoring the concentration changes in NBT because of the
catalytic reaction. Figure 5c shows the NBT spectra recorded at different times during
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the piezoelectric catalysis process, from 0 min to 30 mins, highlighting the decreasing
intensity of the absorbance signal of NBT at 259 nm in the solution. This indicates that
the ·O2- produced in the piezoelectric catalysis process is involved in the degradation of
MB [61,62]. The rapid and selective reaction of terephthalic acid (TA) with ·OH produces
highly fluorescent 2-hydroxy terephthalic acid (TAOH), which fluoresces at 429 nm. The
PL intensities of TAOH (see Figure 5d), significantly enhanced with the prolonged catalytic
reaction time, demonstrate that ·OH radicals are continuously generated in the piezocat-
alytic process [63,64]. The findings confirm that CuO-Cu2O-ZnO can efficiently produce
·O2- and ·OH for the degradation of pollutants.

The initial occurrence required for the degradation process is the generation of con-
duction band electrons (e−) and valence band holes (h+) (electron–hole pairs) in semi-
conductors [49]. The mechanism of ·O2

− and ·OH-activated oxide generation by the
CuO-Cu2O-ZnO hybrid catalyst for the degradation of organic pollutants is shown in
Figure 5e. It can be concluded that the efficient piezoelectric catalytic performance of
ZnO nanowires on copper sheets can be attributed to the coupling effect of the efficient
charge transfer process of the hybrid CuO-Cu2O-ZnO heterojunction and the piezoelectric
field generated by the ZnO nanowires under the action of an ultrasound. Under intense
ultrasonic irradiation, the water produces extremely active bubbles, which subsequently
collapse and generate localized high water pressure, causing the ZnO nanowires to bend
and allowing the ZnO nanowires to generate built-in potential to induce the separation
of electrons and holes. As shown in Figure 3c, CuO and Cu2O are generated after laser
processing, and CuO and Cu2O are p-type semiconductors, while ZnO is an n-type semi-
conductor. As shown in Figure 5e, when p-type and n-type semiconductors are in contact,
the electrons moved from the CB (conduction band) of ZnO to the VB (valence band) of
CuO and Cu2O via electrostatic attraction, which results in the electrons staying in the CB
of CuO and Cu2O and the hole remaining in the VB of ZnO, respectively. This process
could reduce the recombination of electron and hole pairs on the surface of ZnO [65]. It has
been shown that the CB potential of CuO is −0.92 eV versus the NHE (normal hydrogen
electrode) potential, and the CB potential of Cu2O is −1.2 eV versus the NHE [66], which
is more negative than the standard redox potential of O2/·O2

− (−0.33 eV versus NHE);
so, the electrons in the CB of CuO and Cu2O can reduce the oxygen dissolved in water
to produce ·O2

−. Meanwhile, the VB potential of ZnO (+3.01 eV versus NHE) is more
positive than the standard redox potential of ·OH/H2O (+2.38 eV versus NHE), and so
the holes in the VB of ZnO can oxidize H2O to produce ·OH. Under the coupling effect of
the efficient charge transfer process of the hybrid ZnO heterojunction and the piezoelectric
field generated via the bending of ZnO nanorods, a large number of reactive oxygen species
(ROS) are generated in the hybrid catalytic degradation system, in which hydroxyl radicals
can oxidize methylene blue in water to produce non-toxic CO2 and H2O. Figure 5e [67]
shows the reaction equations associated with the process.

4. Conclusions

In this work, immobilized CuO-Cu2O-ZnO hybrid catalysts were fabricated on a
3D CuO-Cu2O-Cu substrate via the laser-processing-technology-assisted hydrothermal
method without any catalyst or seed layer coating before the hydrothermal reaction. A
periodic three-dimensional CuO-Cu2O-Cu substrate was firstly fabricated via laser abla-
tion, followed by the hydrothermal-synthesis-induced growth of ZnO nanowires on a 3D
CuO-Cu2O-Cu substrate for the formation of a CuO-Cu2O-ZnO heterojunction structure.
The laser processing parameters were optimized for favorable ZnO growth. The surface
morphology and chemical composition of CuO-Cu2O-ZnO hybrid catalysts were charac-
terized using SEM, XRD, and XPS techniques, indicating the successful preparation of
CuO-Cu2O-ZnO heterojunction catalysts on a grid-type substrate. Furthermore, it was
found that the formation of Cu2O-CuO on the copper sheet via laser processing was crucial
for the preparation of the CuO-Cu2O-ZnO heterojunction catalyst. The process of change
in the morphology of ZnO nanowires and their physical mechanisms were investigated
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in detail using reactant concentrations ranging from 1 mM to 800 mM. ZnO nanorods
on “grid-type” copper substrates demonstrated effective piezoelectric catalytic abilities
with different morphologies, and it was found that longer ZnO nanowires have a stronger
piezoelectric catalytic degradation performance. This can be attributed to the fact that the
longer the length of the ZnO nanowires, the greater the active surface area under external
forces, providing more reaction sites for pollutant decomposition. Furthermore, the easier
it is to bend and deform the ZnO nanowire under the same external pressure, the more
efficient the internal migration of electrons and holes is, which leads to better piezoelectric
catalytic degradation performance of ZnO nanowires. Abundant reactive oxygen species
were detected in the hybrid piezoelectric ZnO catalysis system, which indicates that the
catalytic piezoelectric pathway degrades organic compounds in water. This simple and
low-cost method could provide a useful guide for the large-scale efficient and versatile
synthesis of immobilized piezoelectric catalysts for the water redemption industry.
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