
Citation: Bednarczyk, P.;

Ossowicz-Rupniewska, P.; Klebeko, J.;

Rokicka, J.; Bai, Y.; Czech, Z.

Self-Healing UV-Curable Urethane

(Meth)acrylates with Various Soft

Segment Chemistry. Coatings 2023, 13,

2045. https://doi.org/10.3390/

coatings13122045

Academic Editors: Andriy Voronov

and Roman A. Surmenev

Received: 31 October 2023

Revised: 23 November 2023

Accepted: 1 December 2023

Published: 5 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

coatings

Article

Self-Healing UV-Curable Urethane (Meth)acrylates with
Various Soft Segment Chemistry
Paulina Bednarczyk 1,* , Paula Ossowicz-Rupniewska 1 , Joanna Klebeko 1, Joanna Rokicka 1 , Yongping Bai 2,3

and Zbigniew Czech 1

1 Department of Chemical Organic Technology and Polymeric Materials, Faculty of Chemical Technology
and Engineering, West Pomeranian University of Technology in Szczecin, Piastów Ave. 42,
71-065 Szczecin, Poland; possowicz@zut.edu.pl (P.O.-R.); joanna.klebeko@zut.edu.pl (J.K.);
psa_czech@wp.pl (Z.C.)

2 School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
3 Wuxi HIT New Material Research Institute Co., Ltd., Wuxi 214000, China
* Correspondence: bednarczyk.pb@gmail.com or paulina.bednarczyk@zut.edu.pl

Abstract: This study explores the synthesis and evaluation of UV-curable urethane (meth)acrylates
(UA) incorporating a Diels–Alder adduct (HODA), diisocyanate, poly(ethylene glycol), and hydroxy
(meth)acrylate. Six UAs, distinguished by the soft segment of polymer chains, underwent compre-
hensive characterization using FTIR and NMR spectroscopy. Real-time monitoring of the UV-curing
process and analysis of self-healing properties were performed. The research investigates the in-
fluence of various molecular weights of PEGs on the self-healing process, revealing dependencies
on photopolymerization kinetics, microstructure, thermal properties, and thermoreversibility of
urethane (meth)acrylates. This work provides valuable insights into the development of UV-curable
coatings with tailored properties for potential applications in advanced materials.

Keywords: photocuring; urethane acrylate oligomers; self-healing polymers; Diels–Alder reaction
photopolymerization; coatings

1. Introduction

Self-healing coatings have garnered notable interest in recent years for their capacity
to rectify damage and prolong the lifespan of diverse materials. One avenue for crafting
self-healing coatings involves leveraging reversible covalent bonds, exemplified by the
Diels–Alder reaction [1,2]. Recognized as a reversible reaction between a diene and a
dienophile [3], the Diels–Alder reaction presents a viable strategy for introducing dynamic
covalent bonds into coatings, enabling them to undergo repair processes when subjected
to specific conditions, such as heat or mechanical stress. By incorporating these dynamic
covalent bonds into a coating, the coating can self-heal when damaged [4]. When the
surface is scratched or otherwise damaged, the dynamic covalent bonds within the coating
can break and reform, effectively repairing the damage. This process can repeatedly occur,
extending the service life of the coating and the underlying material [5,6]. One advantage
of Diels–Alder-based self-healing coatings is that they can be designed to have specific
properties, such as a particular rate of bond exchange or sensitivity to certain stimuli. This
allows for the development of tailored coatings that can provide optimal performance
in specific applications [7]. In summary, self-healing coatings based on the Diels–Alder
reaction offer a promising approach to extending the service life of various materials by
repairing damage via the use of dynamic covalent bonds [3,8,9].

Photopolymerization is the process of curing polymeric materials by irradiating them
with light. Acrylates are a group of polymers that are often used in photopolymerization
due to their reactivity and ability to cure quickly when exposed to UV irradiation [10,11].
Photopolymerization of acrylates is used in many fields, including the automotive industry,
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medicine, printing, and the production of optical materials. It is a fast, easy-to-use, and
controllable process, making it very popular in the industry [11–15]. Among the acrylates,
urethane (meth)acrylates (UAs) can be distinguished. UV-curable oligomers, known as
UAs, exhibit superior chemical and mechanical characteristics when employed in the for-
mulation of UV-curable coatings. These coatings can offer either rigid or flexible properties,
depending on factors such as molecular weight, functionality, and chemical structure [16].
Noteworthy advancements have been observed when implementing UAs in coatings for
various applications, including metals, mobile phones, and electronic devices [15,17]. The
synthesis of UAs involves the reaction between isocyanate and compounds featuring hy-
droxyl groups [18]. In the structure of the urethane (meth)acrylates carbon chain, there are
mainly three components: (i) the (meth)acrylate group responsible for curing the resins,
(ii) the “hard” segment, and (iii) the “soft” segment. The soft segments in urethane acrylate
are thermoplastic elastomers in the form of, e.g., poly(ethylene glycol) (PEG) that are
responsible for the flexibility and pliability of the material [19].

Poly(ethylene glycol)s, commonly abbreviated as PEGs, represent a significant cat-
egory of polymeric materials in various applications [14]. The properties of PEG-based
oligomers depended on the PEG molecular weight [20]. With the elevation of molecular
weight, the morphological characteristics of PEG transitioned to liquid, viscous, and solid
states [20]. PEG is a polyether compound with low surface tension that reacts easily with
other chemicals. When PEG is added to elastomers, it creates strong bonds between them,
which contributes to improving their mechanical and thermal properties [21]. PEG is
also hydrophilic, meaning it attracts water and helps keep elastomers flexible even at low
temperatures. These properties make PEG a popular addition to urethane acrylate soft
segments, which contribute to improving their quality and performance in many applica-
tions, such as the coating industry, the production of polymeric products such as medical
bands, protectors, insulation materials, and many more [22]. The scientific community
has made substantial progress in exploring and innovating new applications for systems
incorporating PEG. Notably, these materials have garnered significant interest, particularly
in the coatings industry [5,13], the development of pressure-sensitive adhesives [23,24],
hydrogels [25–27], and diverse drug delivery applications. This encompasses approaches
such as direct PEGylation of therapeutics [28,29] and the utilization of PEG-based car-
riers [30], such as nanoparticles [31,32], dendrimers [5,15,33], or micelles [32,34,35]. Re-
searchers are currently investigating the impact of PEG’s molecular weight on polymer
properties. In a study by Xiang et al., a comparative analysis was conducted on the per-
formance of UV-curable flexible hyperbranched polyurethane acrylate (F-HBPUA), which
incorporated flexible segments such as PEG200 and PEG600 [36]. In a distinct investi-
gation, Ji et al. developed a photocuring ink featuring acryloyl-modified polyethylene
glycol (AcrylPEG), generating test samples via 3D printing technology and evaluating the
influence of varied molecular weights of PEG on sample performance [20]. Additionally,
Feng et al. demonstrated that a slight increase in PEG content led to improvements in the
tensile strength, ductility, and impact resistance of epoxy resin.

PEG has gained widespread recognition as a flexible monomer for enhancing the
properties of photocurable materials [20]. Recent attention has focused on incorporating
functional groups into PEG-related materials, including those responsible for polymer
self-healing [37–42]. Typically, two approaches are employed for PEG functionalization,
involving the modification of terminal hydroxyl groups via a sequence of reactions to yield
derivatives containing diene or dienophile structures for employment in the Diels–Alder
reaction [37,38,43–45]. The second method consists of incorporating a Diels–Alder structure,
e.g., HODA, into the structure of a polymer chain containing PEG. Nevertheless, achieving
the desired derivatizations often involves a series of distinct steps.

In the current investigation, we describe the synthesis and assessment of six ure-
thane (meth)acrylate oligomers that incorporate inherent Diels–Alder structures within the
polymer chains. These photoreactive oligomers exhibit diverse carbon chain structures,
particularly varying soft segments in the form of PEGs with different molecular weights.
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The resulting resins form thin polymer films cured using UV radiation. Our investigation
delves into the effects of distinct molecular weights and PEG contents on the performance
of the photocuring process, properties of cured coatings, and self-healing behavior. This
research contributes valuable insights into the development of self-healing polymeric mate-
rials applicable to diverse industries, including coatings and the production of polymeric
elements such as automobile varnishes and plastic components.

2. Materials and Methods
2.1. Materials

All reagents used in the study were commercially available and obtained without
further purification. Maleic anhydride (98%) and dibutyltin dilaurate (95%) were sourced
from Alfa Aesar (Haverhill, MA, USA). Furan (≥99.9%) was purchased from Fluka (Char-
lotte, NC, USA). Hydroquinone (99%), polyethylene glycol PEG 600, and PEG 1000 (for
synthesis) were acquired from Sigma-Aldrich (Steinheim am Albuch, Germany). Fur-
furyl alcohol (98%) and isophorone diisocyanate (IPDI) (98%) were supplied by Across
Organics (Geel, Belgium). Polyethylene glycol PEG 400 (Pluriol E400) was provided by
BASF (Ludwigshafen, Germany). 2-Hydroxypropyl acrylate (HPA) and 2-hydroxypropyl
methacrylate (HPMA) were generously donated by Cognis Performance Chemicals (Hythe,
UK). Analytical-grade ethanolamine and triethanolamine were sourced from Chempur
(Piekary Śląskie, Poland). Diethyl ether (99.5%) and anhydrous ethanol p.a. (99.8%) were
obtained from Avantor Performance Materials Poland S.A. (POCH, Gliwice, Poland). High-
purity acetone, isopropanol, xylene, toluene, and dichloromethane were purchased from
StanLab (Lublin, Poland).

2.2. Synthesis of UA-DA Prepolymers

The synthesis of urethane acrylates with a built-in Diels–Alder structure (UA-DA)
was performed according to the method outlined in [46]. 1-(hydroxymethyl)-10-oxatricyclo
[5.2.1.02.6]—HODA (dec-8-ene-3,5-dione-2-aminoethanol) was produced using a modified
four-step procedure [38,47–49]. Then, HODA and 10 mL dichloromethane were added
to the reactor, equipped with a thermometer, magnetic stirrer, and dropper. After purg-
ing with argon gas, isophorone diisocyanate (IPDI) was applied drop by drop over one
hour while stirring. Eight hours were spent stirring the reaction at 30 ◦C in an inert gas
atmosphere. Next, PEG (400, 600, or 1000) and dibutyltin dilaurate (catalyst) were added
to dichloromethane. At temperatures of 75 ◦C, the stirring process lasted three hours.
Then, 2-hydroxypropyl acrylate (HPA) or 2-hydroxypropyl methacrylate (HPMA) and
dibutyltin dilaurate were poured into the reaction mixture. The mixture was refrigerated to
a temperature of 55 ◦C (ATR-FTIR control). The reaction continued until the -NCO group
band at 2270 cm−1 disappeared. The quantities of reagents are listed in Table 1.

Table 1. Amounts of substrates used for syntheses of UA-DA prepolymers.

Sample Code mHODA
(g)

mDD
(g)

mIPDI
(g) MPEG

mPEG
(g)

mDD
(g) HR(M)A mHR(M)A

mDD
(g)

PEG400-HPA 9.98 0.26 18.53 400 8.34 0.25 HPA 5.42 0.33
PEG600-HPA 9.35 0.21 17.45 600 11.78 0.21 HPA 5.11 0.30
PEG1000-HPA 9.33 0.31 17.35 1000 19.51 0.26 HPA 5.07 0.31

PEG400-HPMA 9.52 0.26 17.70 400 7.96 0.29 HPMA 5.73 0.34
PEG600-HPMA 9.47 0.21 17.59 600 11.87 0.22 HPMA 5.70 0.33

PEG1000-HPMA 9.23 0.21 16.92 1000 19.03 0.22 HPMA 5.49 0.27

mHODA represents the mass of the utilized 1-(hydroxymethyl)-10-oxatricyclo [5.2.1.02.6] dec-8-ene-3,5-dione-2-
aminoethanol (HODA); mDD indicates the mass of the applied dibutyltin dilaurate (DD); mIPDI denotes the mass
of the employed isophorone diisocyanate; MPEG signifies the average molecular mass of the utilized polyethylene
glycol (PEG); and mPEG corresponds to the mass of the employed polyethylene glycol. HR(M)A refers to the type
of (meth)acrylate employed in the synthesis, and mHR(M)A stands for the mass of the used (meth)acrylate.
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2.3. General Analytical Methods for Structural Confirmation

Spectroscopic techniques, including 1H NMR, 13C NMR, and ATR-FTIR, were em-
ployed to verify the structure and purity of the synthesized compounds. The 1H nuclear
magnetic resonance (NMR) spectra were obtained utilizing a BRUKER DPX-400 spectrome-
ter (Billerica, MA, USA) operating at 400 MHz in CD2Cl2 as the solvent. Chemical shifts
(ppm) were referenced to tetramethylsilane (TMS) as the internal standard. ATR-FTIR
spectra were captured employing a Thermo Scientific Nicolet 380 (Waltham, MA, USA)
spectrometer featuring an ATR diamond plate. The spectra were obtained in transmission
mode within the range of 4000 to 400 cm−1, with a resolution of 4 cm−1, and analyzed
using version 7.3 of the Omnic program.

2.4. Formulation of Coating Compositions and Cured Films

The formulation of photoreactive coating compositions involves the combination of
synthesized urethane acrylate prepolymers with 3 wt.% of a radical photoinitiator, specifi-
cally ethyl(2,4,6-trimethylbenzoyl)-phenyl phosphinate (Omnirad TPOL, IGM Resins). To
achieve a uniform mixture, the components were thoroughly blended in the absence of
light. Subsequently, the resulting curing mixture was applied to glass substrates using a
gap applicator with a thickness of 120 µm. The polymeric film was then subjected to a UV
lamp (Aktiprint-mini 18-2; type: UN50029, Technigraf GmbH, Grävenwiesbach, Germany)
with a UV light intensity of 200 mW/cm2 at room temperature.

2.5. Assessment of the Photopolymerization Process and Cured Coatings Properties

The UV-curing procedure of the fabricated urethane acrylates was comprehensively
characterized using Fourier transform infrared spectroscopy (FTIR) and photo-differential
scanning calorimetry (photo-DSC).

FTIR analysis was conducted on a Nicolet iS5 instrument (Thermo Fisher Scientific,
Waltham, MA, USA) with a scanning range of 400–4000 cm−1 and a resolution of 4 cm−1.
Real-time IR (RT-IR)) spectroscopy facilitated in situ monitoring of the photopolymerization
process by measuring the dissolution of the characteristic bonds under ultraviolet light
exposure [50]. The urethane acrylates, along with an initiator mixture, were placed in a
15 mm diameter and 0.2 mm thick glass mold. Simultaneous exposure to a UV light source
(mercury UV lamp, 36 W, 280–400 nm, 10 mW/cm2) and an IR analyzing light beam allowed
quantification of the degree of polymerization (DC) using the formula (Equation (1)):

DC (%) = (A0 − At)·100/A0, (1)

where A0 represents the initial peak area before irradiation, and At denotes the peak area
at time t. The photopolymerization rate (Rp) was determined using the below equation
(Equation (2)):

Rp = dDC/dt, (2)

where t represents the irradiation time [51].
Additionally, a photo-differential scanning calorimetry (photo-DSC) instrument (Q100,

TA Instruments, New Castle, DE, USA) equipped with the Omnicure S2000 UV light emitter
(280–480 nm, 200 mW/cm2; Excelitas Technologies, Waltham, MA, USA) was employed to
isothermally monitor the UV-curing process at 25 ◦C in a nitrogen atmosphere for 10 min,
providing insights into the photoreactivity of the synthesized systems.

The characteristics of the cured coatings were evaluated via various tests, including
tack-free time, pendulum hardness test, adhesion, gloss, and yellowness index. The
properties of the cured coatings were evaluated through via tests, including tack-free time,
Pendulum hardness, adhesion, gloss, and yellowness index. Tack-free time, indicating the
time at which the coating achieves its final technical parameters, was measured following
ISO 9117. The hardness of coatings was assessed using a Persoz pendulum hardness test
on a glass substrate (TQC Sheen, Capelle aan Ijssel, The Netherlands) in accordance with
ISO 1522. Adhesion to glass substrates was evaluated using the cross-cut method per
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PN-EN ISO 2409 (BYK, Wesel, Germany). Gloss was measured using the GLS spectrometer
(SADT Development Technology Co., Ltd., Beijing, China) according to ASTM D523. The
yellowness index, describing color changes, was determined using a precision colorimeter
NH-145 in adherence to ASTM E313 (3NH Technology Co., Ltd., Shenzhen, China).

2.6. Investigation of Self-Healing Properties

To comprehend the thermally reversible mechanism of the synthesized urethane
acrylates, various methods, including DSC, TG, and FTIR, were employed. Additionally,
an optical microscope was utilized to observe the self-healing properties of the cured films.
This methodology was presented in detail in our previous publication [52].

The DSC method was applied to elucidate the thermally reversible mechanism of the
Diels–Alder (DA) structures in the cured coatings. A DSC apparatus (Q100, TA Instruments,
New Castle, DE, USA) was employed, with aluminum pans used to seal samples weighing
between 7 and 10 mg. The measurements involved a heating-cooling-heating cycle in the
temperature range of −90 to 300 ◦C, with a heating ramp of 10 ◦C/min.

Furthermore, the thermal stability of all obtained prepolymers was assessed via
thermogravimetric (TG) analysis using the Netzsch Proteus Thermal Analysis TG 209
F1 Libra apparatus (Netzsch, Selb, Germany). Alumina crucibles were utilized, and the
analysis was conducted in an oxidizing atmosphere (nitrogen flow, as protective gas;
10 cm3/min and airflow—25 cm3/min) over the temperature range of 25 to 1000 ◦C (Al2O3).

To monitor the self-healing properties of the cured films, an optical microscope was
employed, allowing for a comprehensive examination of the material’s ability to recover
from damage.

3. Results and Discussion
3.1. Synthesis and Characterization of Urethane Acrylates

Initially, a set of six urethane (meth)acrylate (UA-DA) featuring an embedded Diels–
Alder (DA) structure was synthesized. These UA-DA oligomers exhibited variations in the
chemistry of the soft segment, specifically in the molecular weight of polyethylene glycol
(PEG) employed during the synthesis. The selected PEGs for extending the prepolymer
chain were PEG400, PEG600, and PEG1000. Figure 1 illustrates the prepolymer chain of the
obtained resins, taking into consideration the specific PEG utilized. The synthesis process
involves the formation of urethane moieties via the reaction of hydroxyl groups in the
HODA structure with diisocyanate (IPDI) in a molar ratio of 1:2. Subsequently, the terminal
isocyanate groups react with the appropriate polyol (PEG400, PEG600, or PEG1000) and
hydroxypropyl (meth)acrylate (HPA or HPMA) in an equimolar ratio.

Figure 2 illustrates the FTIR spectra of the synthesized oligomers, while the FTIR and
NMR spectra obtained during the multi-step reaction can be found in the Supplementary
Materials (Figures S1–S15) or detailed in our prior research [46]. The spectra exhibit char-
acteristic bands confirming the formation of the intended structures. The confirmation
of the compound’s structure was based on the analysis of typical urethane peaks, includ-
ing the band at approximately 3350 cm−1 assigned to vN–H, the strong bands at around
2850–3000 cm−1 attributed to vC–H, the strong bands at about 1700 cm−1 designated as
vC=O, the strong bands at roughly 1520 cm−1 assigned to vC-N, and bands at approximately
1170 cm−1 assigned to vC-O-C. Additionally, vibrations specific to the Diels–Alder struc-
ture derived from the C=C bond at 3065 cm−1 and characteristic vibrations of the double
bond from acrylate at 810 cm-1 were observed. This confirms the successful synthesis of
oligomers containing Diels–Alder bonds. Any variations in the bands among different
oligomers were minimal and attributed to structural differences.
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Figure 1. Scheme of the urethane (meth)acrylates with built-in DA structure and various soft segment
molecular weights (PEG 400, PEG 600, or PEG 1000, respectively) and photoreactive groups (HPA
or HPMA).

The confirmation of the chemical structure of the synthesized urethane (meth)acrylates
was additionally validated via the analysis of NMR spectra. Detailed results of the 1H NMR
spectra can be found in the Supplementary Materials (Figures S10–S16). Figure 3 provides
a comparative illustration of the 1H NMR spectra of the obtained urethane acrylates. The
analysis of the NMR spectra confirmed the identity of the synthesized compounds, and it
facilitated the determination of the number “n” in the PEG chain (OCH2CH2)n.
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3.2. The UV Curing Process of Obtained Urethane (Meth)acrylates

The photopolymerization process was monitored in order to determine the influence
of the photocuring kinetics of the coatings on the self-healing properties. In this study, a
mixture of the obtained urethane (meth)acrylate oligomers with 3 wt.% radical photoinitia-
tor was used. The findings are depicted in Figure 4, showcasing the conversion degree of
unsaturated bonds (C=C) tracked via the disappearance of the 810 cm−1 peak and the rate
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of alterations observed during UV irradiation. It is noteworthy to mention that our prior
research established that photocuring did not alter the existence of the Diels–Alder (DA)
structure in the prepolymer chain, a crucial factor contributing to the self-healing attributes
of the coatings [46]. This paper presents the conversion degree of acrylate groups (for HPA)
or methacrylate groups (for HPMA) as a result of the process initiated by UV radiation,
apart from the general tendency to achieve a higher conversion of unsaturated bonds for
acrylate groups compared to methacrylate groups. There are also visible dependencies
of conversion changes resulting from the structure of the soft segment, i.e., the polyols
used. With the increase in the length of the soft segment, a greater degree of unsaturation
bonds is reacted. These significant changes are probably due to a reduction in the stiffness
of the polymer network and the possibility of easier migration of radicals. The highest
conversion was achieved in the case of urethane acrylate containing a soft segment in the
form of polyether glycol with a molecular weight of 1000 g/mol (PEG1000-HPA; 89%)
and the lowest in the case of urethane methacrylate containing a soft segment in the form
of polyether glycol with a molecular weight of 400 g/mol (PEG400-HPMA; 32%). The
photo-DSC method was used to determine the time to achieve maximum heat flow during
photopolymerization (Table 2), which was the shortest in the case of PEG400-HPA. In
addition, this oligomer also showed the highest reaction rate monitored by FTIR. Further, it
was also noted that methacrylates had a higher total enthalpy of the photocuring process
compared to methacrylates. The kinetic characteristics of the photopolymerization process
can be used to gain a deeper knowledge of the self-healing of coatings.
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Figure 4. The conversion degree (DC) and photopolymerization rate (Rp) of photoreactive compo-
sitions based on urethane (meth)acrylates with built-in DA adducts (HPA—in the case of acrylate
groups or HPMA—in the case of methacrylate groups) differing in the length of the soft segment of
the prepolymer chain (PEG 400, 600, or 1000) which were monitored by FTIR.
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Table 2. Characteristics of the photocuring process for UA-DA compositions, as identified via
photo-DSC or FTIR methods.

Sample Code ∆Htotal (J/g) tmax (s) DCmax (%) Rpmax (%/min)

PEG400-HPA 290 1.8 57 128
PEG600-HPA 232 7.8 83 89

PEG1000-HPA 139 8.4 89 61
PEG400-HPMA 435 4.2 32 27
PEG600-HPMA 451 4.2 67 57

PEG1000-HPMA 465 4.2 86 71
∆Htotal—total enthalpy of the photocuring process; tmax—time to achieve maximum heat flow (the time when
there was no radiation was subtracted); DCmax—maximum conversion degree; Rpmax—the maximum rate
of conversions.

3.3. Properties of Cured Coatings

To investigate the impact of different soft segments in the prepolymer chain architec-
tures of the synthesized urethane (meth)acrylates with a built-in DA structure on the cured
coatings, the essential properties of the cured coatings were assessed and are detailed in
Table 3. All coatings exhibited rapid surface dryness within a brief timeframe, ranging
from 3 to 6 seconds. In accordance with the assumptions resulting from the characteristics
of the photopolymerization process regarding the reduced stiffness of polymer networks in
the case of elongation of the soft segment, harder coatings are obtained for UA containing
shorter soft segments. A noticeable tendency is also to obtain harder coatings based on
UA with methacrylate groups compared to UA with acrylate groups, which is probably
due to the stiffer structure of the carbon chain resulting from the presence of an additional
methyl group. Along with the increase in the hardness of the coatings, a slight decrease in
adhesion to the substrate was observed. All coatings had excellent gloss and were colorless.

Table 3. Properties of the cured UA-DA coatings.

Sample Code Tack-Free
Time (s) Hardness Adhesion Gloss (GU) Yellowness

Index

PEG400-HPA 3 70 2.5 146 5.4
PEG600-HPA 3 65 2.0 151 5.4
PEG1000-HPA 6 58 1.0 166 5.5

PEG400-HPMA 3 131 2.5 103 4.3
PEG600-HPMA 3 119 1.5 150 3.9

PEG1000-HPMA 6 111 1.5 151 3.6

3.4. Thermal Properties of Obtained Urethane (Meth)acrylates

The thermoreversibility of the synthesized urethane (meth)acrylates was assessed
for practical applications, exploring the correlation between polymer chain architecture
and the self-healing performance of UV-cured coatings. Polymer behavior at elevated
temperatures is known to be influenced by its structure. Therefore, these relationships were
comprehensively examined using DSC, TG, and FTIR methods.

DA and retro-DA reactions were predominantly examined using differential scanning
calorimetry (DSC) measurements, which entailed a heating-cooling-heating cycle for cured
films of UA-DA. As depicted in Figure 5, the first heating cycles of the tested samples
reveal two broad endothermic peaks corresponding to the glass transition and the rDA
reaction [37,38,45,53], as anticipated. The first heating cycle of the cured samples in the
given temperature-time conditions was characterized by determining (i) the glass transition
temperature (Tg), (ii) the onset temperature of the rDA reaction (TrDAonset), (iii) the tempera-
ture peak of the rDA reaction, and (iv) the total enthalpy of the rDA reaction (∆H). It is noted
that UA-DA-based coatings with longer carbon chains in the soft segments achieve lower
glass transition temperatures (TgPEG1000 > TgPEG600 > TgPEG400), and their cured coatings
have a lower hardness. Therefore, the theory explaining the generally observed trends in
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the variability of Tg resulting from the change in the polymer microstructure [54,55] is asso-
ciated with a change in the stiffness of polymer networks and the mobility of carbon chains.
The relaxation of polymer segments may also affect the self-healing ability of coatings. The
clarification of the molecular correlation between Tg and polymer characteristics is valuable
for the design and processing of novel synthetic materials. Furthermore, it contributes to
comprehending the dynamics and managing the retention of self-healing properties. As
mentioned above, the second endothermic peak is related to the retro-Diels–Alder reaction.
Interestingly, the onset temperature of the rDA reaction (TrDAonset) is lower for UA-DA
with higher glass transition temperatures and starts at 91 ◦C for acrylates (PEG400-HPA)
and 102 ◦C for methacrylates (PEG400-HPMA). In all the cases studied, the temperature
peak of the rDA reaction is 141 ± 3 ◦C, respectively, in the range of 138–144 ◦C for acrylates
and 140–141 ◦C for methacrylates. On the other hand, when considering the total reaction
enthalpy of rDA (∆H), a wide range of results is observed for acrylates with different
lengths of the soft segment (3.46–24.58 J/g), while methacrylates show slight differences in
the total reaction enthalpy of rDA (14.55–17.97 J/g). Low enthalpy may indicate a slow or
difficult occurrence of the r-DA reaction, ultimately responsible for the worse self-healing
properties of the coatings. In connection with the above, significant relationships are found
between the microstructure of the obtained urethane (meth)acrylates and their thermal
properties or ability to thermoreversibility.
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Figure 5. Differential scanning calorimetry (DSC) curves observed during the initial heating cycle
for the UV-cured urethane (meth)acrylates with built-in DA structure and different soft segment
chemistry (PEG 400, 600, or 1000).

The thermogravimetric technique was utilized to evaluate the thermal stability of the
obtained oligomers, focusing on properties such as onset decomposition temperature and
maximum decomposition temperature (determined from DTG curves), as summarized
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in Table 4. Multi-step decomposition was observed for all analyzed urethane acrylates;
however, their thermal stability was found to be at least approximately 283 ◦C. This
testing not only affirms the robust thermal properties of the investigated oligomers, even
with the presence of temperature-sensitive DA structures but also underscores the thermal
stability of the self-healing properties of the obtained coatings within the tested temperature
range—indicating no decomposition of the tested compounds. The TG and DTG curves
of the obtained urethane (meth)acrylates are provided in the Supplementary Materials
(Figures S17–S21).

Table 4. Thermal stability of the obtained urethane (meth)acrylates.

Sample Code TIDT (◦C) TMDT (◦C)

PEG400-HPA 291.2 324.0
PEG600-HPA 283.1 321.7
PEG1000-HPA 274.3 317.9

PEG400-HPMA 290.8 324.6
PEG600-HPMA 291.3 328.3

PEG1000-HPMA 307.5 331.9
TIDT—onset decomposition temperature; TMDT—maximum decomposition temperature.

3.5. Self-Healing Ability of Coatings Based on Urethane (Meth)acrylate Oligomers with Built-in
DA Structure and Differences in the Length of the Soft Segment

The evaluation of the self-healing ability of UV-cured coatings typically involves mon-
itoring changes in scratch size on the surface. Consequently, the coatings were deliberately
scratched, and alterations were observed under controlled conditions. The experiment
focused on measuring the reduced crack width after subjecting the samples to elevated
temperatures. Testing spanned temperatures between 70 and 120 ◦C, with results presented
as a percentage reduction in the width of the examined cracks relative to their initial di-
mensions. To strike a balance between achieving successful self-healing properties of the
coatings and using the lowest possible temperature, a temperature range of 70–120 ◦C was
employed in the studies. Literature reports suggest that a temperature of 60 ◦C is neces-
sary for the reconstruction of Diels–Alder (DA) bonds embedded in the chain structure
of urethane acrylate (UA) oligomers. Therefore, the lower limit of the temperature used
to determine the self-healing (SH) properties of cured coatings was selected at a slightly
higher temperature, specifically, 70 ◦C. Furthermore, as the temperature of approximately
110 ◦C corresponds to the retro-DA (r-DA) reaction, we opted for a slightly higher tem-
perature of 120 ◦C as the upper limit. Figures 6 and 7 illustrate the self-healing degree
(SH,%) for all examined samples concerning changes in heating temperature, accompanied
by microscopic images depicting samples with the highest degree of self-healing at specific
temperatures. The degree of self-healing of all tested samples increased with the increase
in the set temperature of the process and then decreased. In most cases, the increase was
up to 110 ◦C, and in only some cases, up to 120 ◦C (PEG1000-HPA, PEG400-HPMA). This
temperature is close to the onset temperature of the rDA reaction determined by DSC
(TrDAonset; range for acrylates: 91–126 ◦C; range for methacrylates: 102–108 ◦C). In the case
of UA-DA-based coatings with acrylate groups, a general tendency to decrease the degree
of self-healing with the increasing length of the soft segment was observed, especially in
tests at temperatures of about 100 ◦C. Shorter chain oligomers with a higher degree of
self-healing also had a lower rDA reaction onset temperature, a lower rDA reaction tem-
perature peak, and a higher total enthalpy of the rDA reaction, as determined by the DSC
method. A similar analogy was observed for UA-DA-based coatings with methacrylate
groups. However, in this case, PEG600-HPMA reached its maximum degree of self-healing
at the lowest temperature, i.e., 100 ◦C. In the DSC study, this sample was characterized
by the highest (among methacrylates) reaction enthalpy, 17.91 J/g. The results presented
contradict the anticipated outcomes based on existing literature, which suggests that longer
or less complex carbon chain polymers typically yield more flexible coatings [56]. In theory,
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greater mobility and facilitation of self-healing processes should be expected [57–60]. How-
ever, the observed results from the microscopic approach may be linked to the previously
described examination of the Diels–Alder mechanism in UV-cured coatings conducted
under varying temperature conditions.
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Figure 7. Self-healing characteristics observed in microscopic images of urethane methacrylate
coatings exposed to different temperatures.

4. Conclusions

In summary, a series of urethane (meth)acrylate oligomers incorporating a Diels–Alder
structure and distinct soft segments with varying molecular chain lengths (PEG400, PEG600,
and PEG1000) were successfully synthesized. The exploration of structure–property rela-
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tionships via the changes in soft segment molecular weights yielded valuable insights into
the performance of these photoreactive oligomers. The investigation encompassed diverse
aspects, including the kinetics of photopolymerization, cured coating properties, thermal
characteristics, and self-healing capabilities. Noteworthy dependencies on C=C conversion
changes during photopolymerization were observed, stemming from the specific structure
of the soft segment represented by the polyols employed. The augmentation of soft segment
length led to a pronounced increase in unsaturation bond reactivity, likely attributed to a
reduction in polymer network stiffness and enhanced radical migration. Conversely, in the
context of cured polymers, coatings derived from UA-DA with lengthier carbon chains in
the soft segments exhibited lower glass transition temperatures and reduced coating hard-
ness. This outcome was linked to alterations in polymer network stiffness and carbon chain
mobility. Furthermore, the elongation of the soft segment correlated with an elevation in
the onset temperature of the retro-Diels–Alder (rDA) reaction, contributing to a diminished
degree of self-healing in the coatings. The elucidation of molecular relationships between
C=C conversion, glass transition temperature (Tg), and polymer properties provides valu-
able insights for the design and processing of novel synthetic materials. Understanding
these dynamics is pivotal for controlling and preserving the self-healing properties of
coatings. Importantly, the strategic incorporation of Diels–Alder structures and the tailored
modulation of soft segment characteristics underscore the potential of these materials in
diverse applications, particularly in industries where self-healing polymeric coatings play
a critical role.
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of FTIR spectra investigating the reaction of receiving PEG1000-HPMA after 0 (blue) and 3 h (red)
of reaction time. Comparison of FTIR peaks: NCO stretching at 2270 cm−1; Figure S10: 1H NMR
spectra of PEG400-HPA; Figure S11: 1H NMR spectra of PEG600-HPA; Figure S12: 1H NMR spectra
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