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Abstract: The Marangoni effect is a phenomenon of mass transfer between two fluids with different
surface tensions, which has been used in many fields. In this paper, we prepared ultrathin conduc-
tive films with graphene (GN) and carbon nanotubes (CNTs) based on the Marangoni effect. The
Marangoni self-assembled film exhibited excellent properties, showing a conductivity of 8.3 kΩ·sq−1,
a transparency of 74% at 550 nm and a thickness of 28 nm when the mass ratio of CNTs and GN was
1:1. The conductive films were transferred to flexible substrates twice and fabricated face to face as
strain sensors. The 3M4910-based strain sensors, which were prepared with a simple process and
high material utilization rate, exhibited good sensitivity (GF = 5.7), a wide working range (193%)
and satisfactory cyclic stability. The PDMS-based GN sensor showed high sensitivity (GF = 34), a
wide working range (78%) and excellent stability (ε = 10%, > 8000 cycles). It has been proved that the
sensors can be used to detect different joint movements of the human body and subtle movements,
showing good application prospects in physiological signal detection.

Keywords: Marangoni effect; flexible strain sensors; graphene; carbon nanotubes

1. Introduction

The Marangoni effect is a phenomenon of mass transfer between two fluids with
different surface tensions where the fluid flows from a region of low surface tension to a
region of high surface tension [1,2]. In nature, some insects can propel themselves rapidly
by using the Marangoni effect without employing the oscillatory movements of legs [1].
The Marangoni effect is also responsible for the formation of “wine tears” on glass walls. As
the alcohol in the wine evaporates from the surface continuously, the alcohol concentration
of the liquid on the glass wall drops even faster, causing the surface tension of the liquid
on the glass wall to be greater than that of the liquid in the glass, so that the wine moves
upward along the glass wall and eventually forms “wine tears”. The Marangoni effect can
be used to induce nanosheets spread out into a thin single film. Compared with the films
prepared by drip casting and spin coating, the film based on the Marangoni effect has a
significant advantage in uniformity, a fast film-formation rate and simple operation [2].

Shim et al. [2] demonstrated a rapid interfacial assembly strategy for large-area
graphene sheets. When EA (ethyl acetate) was injected into a water/N-methylpyrrolidone
suspension of graphene, EA triggered the graphene sheets’ convective transport rapidly
and assembled into a uniform graphene film of arbitrarily large areas in a matter of min-
utes. The Marangoni effect has important applications in different fields. For example,
Wu et al. [3] used Marangoni self-assembly technology to prepare large-area graphene films
with a low friction coefficient (about 0.05) and developed a new lubrication system, which
has broad prospects in engineering applications. Yoshida et al. [1] proposed a Marangoni
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propelling microrobot integrated with a wireless photonic colloidal crystal hydrogel sensor
for detecting water environments and transmitting environmental information.

Recently, the Marangoni effect has been used in the fabrication of flexible strain
sensors, which convert mechanical strains into electrical signals [4]. As the “nerve endings”
in the Internet of Things world, flexible strain sensors are the key components of intelligent
devices and wearable devices, which have a wide range of applications in human–computer
interaction [5–7], electronic skin [8], health monitoring [9–11], etc.

According to sensing principles, flexible sensors can generally be divided into resis-
tance sensors [12,13], capacitive sensors [14] and piezoelectric sensors [15,16]. Resistance
sensors, which convert strains to resistance changes, have been widely studied because of
their simple structures, high sensing performance, simple signal conversion mechanism
and stable signal output. Moreover, flexible sensors can be roughly classified according
to their microstructures, including full-filling [17,18], sandwich-like [9,19] and adsorption
sensors [20,21]. The sandwich-like sensors, consisting of conductive films and two layers
of flexible substrates, have received extensive attention owing to their high sensitivity and
stability. The common methods of sensor preparation include spinning coating [22], spray-
ing [9,23], scraping [24], rod coating [25], printing [12,19], swelling/permeating [26–28],
self-assembly [5,29], layer-by-layer (LBL) assembly [20,30,31], laser inducement [32–34],
chemical vapor deposition (CVD) [35,36], electrodeposition (ED) [37], etc. Flexible strain
sensors are generally composed of conductive materials and flexible substrates. Conduc-
tive materials play an important role in constructing conductive networks and generating
resistance change under strain. Graphene (GN) [12,25], carbon nanotubes (CNTs) [8,9,20],
carbon black (CB) [38], silver nanowires (AgNWs) [29,39] and conductive polymers [37,40]
have been widely used as conductive materials. Flexible substrates show the function of
supporting and connecting conductive materials, responding to stress and strain, which
is crucial to the flexibility and stretchability of sensors. Flexible substrates such as poly-
dimethylsiloxane (PDMS) [9,22], polyurethane (PU) [8,12,15] and fabric [41,42] have been
widely applied in the electronic field. Gauge factor (GF) is a factor used to estimate the
sensitivity of strain sensors, which is defined as GF = (∆R/R0)/ε, where R0 (Ω), ∆R (Ω)
and ε (%) represent the initial resistance without strain, and the resistance change with
strain and applied strain, respectively [43,44]. Sensitivity and the working range are a
pair of parameters that restrict each other. The strategy of increasing sensitivity often
reduces the working range and vice versa. Generally, the sensing performance of sensors is
synthetically evaluated by their conductivity, sensitivity, working range, response time and
cyclic stability [43,44].

Most of the sensors based on the Marangoni effect employ ultrathin graphene films
as sensitive layers, all of which show high sensitivity and excellent sensing performance.
Li et al. [43] injected graphene/ethanol dispersion onto the surface of deionized (DI) water.
Due to the Marangoni effect, ethanol with graphene sheets flowed from the region of low
surface tension (ethanol) to that of high surface tension (DI water). As ethanol evaporated,
graphene sheets collided and bonded at the liquid/air interface through π–π interactions.
“Fish scale” graphene film was formed on the water surface with a thickness of 2.5–5.0 nm
and high transparency (86%–94% at 550 nm). Ultrathin graphene film (UGF) strain sensors
with a “fish scale” microstructure showed an ultrahigh sensitivity of 1037 GF at 2% strain
and could be used to detect electrical signals generated by small deformation, such as pulse
and sound waves. Similarly, Jia et al. [44] skimmed the assembled graphene film to pre-
stretched PDMS substrates. The strain sensor (pre-strain, 50%) based on the double-layer
pleated graphene films showed high sensitivity (GF = 37.1), a wide working range (>50%)
and excellent cyclic stability (ε = 20%, >5000 times). Jiang et al. [45] transferred Marangoni
self-assembled graphene films to patterned PDMS by skimming, and assembled them onto
an interdigitated Ni/Au electrode to fabricate a high-performance piezoresistive pressure
sensor. The sensor exhibited high sensitivity (1.04–1875.5 kPa−1) and high durability
(15,000 cycles) over a large linear detection range (1–40 kPa).
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Inspired by the Marangoni effect, we prepared Marangoni-assembled ultrathin con-
ductive films with GN and CNTs to exert their synergistic effect. After transferring the
films twice onto flexible substrates and assembling them face to face, we obtained flexible
strain sensors with high conductivity. Expensive instruments and complicated operations
are not necessary in the fabrication progress, and the sensitivity, working range and cyclic
stability of strain sensors are excellent. Compared with the reported Marangoni-based
sensors, our fabrication process improves the utilization of carbonous nanomaterials and
exerts the synergistic effect of GN and CNTs to adjust the sensitivity and working range
of sensors.

2. Materials and Methods
2.1. Materials

The graphite paper was supplied by Beijing Jinglong Special Carbon Technology Co.,
Ltd. (Beijing, China). CNTs (carbon purity: >99 wt%; diameter: 5–15 nm; length: 10–30 µm)
was purchased from Chengdu Organic Chemicals Co., Ltd. (Chengdu, China). 3M4910
tape was obtained from 3M China Co., Ltd. (Shanghai, China). PDMS (Sylgard 184 Silicone
Elastomer) was provided by Dow Corning Corp. (Midland, MI, USA). Conductive silver
paste was supplied by Shenzhen Woweisi Electronic Technology Co., Ltd. (Shenzhen,
China). NaOH (superior purity) was provided by Damao Chemical Reagent Factory
(Tianjin, China). Ethanol (95%, analytical purity) was purchased from Tianjin Jiangtian
Chemical Technology Co., Ltd. (Tianjin, China).

2.2. Preparation of the Sensor

Preparation of graphene. GN was produced by electrochemical exfoliation method.
The graphite paper (anode) was electrolyzed at 5.5 V, using the platinum electrode as
the contrast electrode (cathode) and 1 mol·L−1 NaOH solution as the electrolyte. The
electrolysis process was carried out in an ice bath and more than 100 mg product was
obtained within 20 min. After the electrolysis process, the electrolyte solution was filtered
through a 0.22 µm PTFE microporous filter membrane, and then the filter cake was washed
to neutral with DI water. After drying at 50 ◦C for about 6 h, GN was obtained.

Fabrication of Marangoni-driven conductive film. We used GN and CNTs as conduc-
tive materials. A certain volume of carbonous nanomaterials/ethanol dispersion with the
concentration of 1 mg·mL−1 was added dropwise onto the surface of 100 cm2 DI water in a
plastic square petri dish. As the dispersion dropped in, the carbonous nanomaterials (GN
or CNTs) gradually covered the water surface, forming a layer of continuous film in a few
seconds. Then we put the matching lid on the petri dish tightly and flipped it carefully to
transfer the film onto the lid. After that, the film on the lid was dried at 50 ◦C for 20 min.

Transfer of Marangoni-driven conductive film. The dried conductive film on the
petri dish lid was pasted onto 3M4910 tape. A scraping plate was used to drive out the
bubbles so as to make a thorough transfer of conductive film. After freezing at −20 ◦C
for 15 min, the 3M tape (lost elasticity temporarily to avoid being stretched) was torn off,
and the conductive film was transferred onto the stretchable 3M tape. In addition, the
paste progress can be repeated again to increase their electrical conductivity. Moreover, the
conductive film on water can be transferred to PDMS (main agent to hardener mass ratio
10:1, spun at 300 r·min−1 on the spin coater, cured at 45 ◦C for 6 h) by skimming method,
which skims a layer of conductive film by PDMS with the plane size of 0.8 cm × 2.5 cm on
a glass sheet.

Fabrication procedures of the strain sensor. A strain sensor was fabricated by com-
bining two pieces of composite films face to face. The substrate of the composite film was
3M tape (3M4910) or PDMS, where only one layer of conductive film could be pasted to
PDMS, while one or two layers of conductive film could be pasted to 3M4910 tape. In
order to distinguish the number of the conductive film layers of the sensor, we named the
3M4910-based sensors composed of different layers of conductive film as the (m + n) sensor,
where m and n, respectively, represented the number of layers of conductive film pasted on
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the 3M tapes. For example, (2 + 1) represented the sensor formed by a piece of 3M tape with
two conductive layers and another piece of 3M tape with one conductive layer, while (1 + 0)
represented a sensor composed of a piece of 3M tape with one layer of conductive layer
and another piece of clean 3M tape without conductive film. For 3M4910-based sensors, if
their names were not specified, they were (2 + 2)-type sensors. Copper wires were drawn
by conductive silver paste at both ends of the conductive layer to form electrodes. The
width of the conductive layer was 0.8 cm and the distance between the two electrodes was
2 cm. For clarity, a schematic diagram for the fabrication procedures of the 3M4910-based
strain sensor and photos are presented in Figure 1.
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Figure 1. Fabrication procedures of 3M4910-based flexible strain sensor using Marangoni effect.
(a) A certain volume of carbon/ethanol dispersion was dripped onto the surface of DI water in plastic
square petri dish to assemble Marangoni-driven conductive film. (b) The lid of the petri dish was
closed tightly and the petri dish was turned gently to transfer the conductive film on water to the lid.
(c) The conductive film was pasted onto 3M4910 tape, and freezing for 15 min is helpful to peel off
the tape without stretching. Copper wires were drawn by conductive silver paste at both ends of the
conductive layer to form electrodes. Two layers of conductive tapes were combined face to face to
form a strain senor. The picture of a (d) stretched and (e) bent strain sensor.

2.3. Characterization and Measurement

The morphologies of GN and CNTs were characterized by field emission scanning
electron microscope (SEM, Regulus 8100, Hitachi, Tokyo, Japan) at an accelerating voltage
of 3.0 kV, transmission electron microscopy (TEM, Talos F200x, FEI, Brno, Czechia) and
atomic force microscope (AFM, Dimension Icon, Bruker, Karlsruhe, Germany). A thin layer
of platinum was sputter-coated before SEM measurements. Raman spectrometer (inVia,
Renishaw, Wotton-under-Edge, UK) was employed to characterize the quality of CNTs
and GN with 532 nm laser. The thickness of Marangoni-assembled films was measured by
an ellipsometer (M-2000v, J. A. Woollam Co., Inc., Lincoln, NE, USA). Sheet resistances of
the conductive films were measured by a four-probe resistivity tester (RTS-8, Guangzhou
Four Probe Technology Co., Ltd., Guangzhou, China) under 25 ◦C and 60% RH. A UV-
visible spectrophotometer (TU-1900, Beijing Purkinje General Instrument Co., Ltd., Beijing,
China) was employed to measure the light transmittance of the samples in the range
of 400–800 nm. The strain-sensing behaviors were measured using an electrochemical
workstation (VERTEX V16407, Ivium Technologies, Eindhoven, Netherlands) coupled with
a universal electronic tensile machine (WDW-05L, Jinan Spai Technology Co., Ltd., Jinan,
China) with the rate of 50 mm·min−1.
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3. Results and Discussion
3.1. The Characterization of CNTs and GN

SEM, AFM and TEM were used to characterize the microstructure of carbon materials.
As can be seen from Figures 2 and S1a,b, CNTs are a one-dimensional structure with a
pipe diameter of about 10–20 nm. In the natural state, CNTs are curled and intertwined,
forming an interconnected network. GN exhibits a two-dimensional layered structure in
Figures 2b,c and S1c,d. Moreover, GN is composed of multiple stacked layers together
with a large number of folds. These folds are easily disperses under a strong ultrasound,
thus forming small transverse lamellae and causing cracks around the GN. TEM was used
to analyse the microstructure of GN (Figure 2d). The TEM image shows that the surface of
the GN is relatively flat and the transverse size of the lamellae is about 1–2 µm. In Figure 2e,
the AFM image further proves that the transverse size of GN is about 1–3 µm and the
thickness is about 1.4 nm, which means the GN has a large lateral dimension and thin
thickness and may be composed of 1–3 layers of a GN monolayer [43]. The cracks were
observed around the graphene lamellar layer as well.
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images of GN. (e) AFM images of GN. The inset of panels shows the thickness of GN. (f) Raman
spectra of CNTs and GN.

Raman spectroscopy was used to assess the quality of CNTs and GN, as shown in
Figure 2f. The value of ID/IG is critical to evaluate the degree of crystal defects of graphene
derivatives. The larger the value of ID/IG, the more defects exist in the material; conversely,
the smaller the value of ID/IG, the fewer defects exist and the more structured the material.
The ID/IG values of CNTs and GN were 1.29 and 0.75, respectively, indicating the high
quality of the CNTs and GN with few defects.

3.2. Effects of the Proportions of CNTs and GN

One-dimensional CNTs and two-dimensional GN can be combined as conductive
materials to enhance their synergy. Marangoni-assembled films exhibit different structures
and performance when CNTs and GN are mixed in different proportions, which is crucial
for sensor design. GN nanosheets can easily slip during stretching, resulting in damage to
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the conductive network, which is beneficial to the sensitivity but limits the working range
of sensors. CNTs have a certain tensile property due to their one-dimensional structure
with a high length–diameter ratio, and are curly and tangled in their natural state. Even the
sensor based on CNTs is stretched due to large strains, although the CNTs’ network is not
completely destroyed, which benefits the conductivity and working range of the sensor.

In the process of Marangoni assembly, we injected 1 mg·mL−1 carbonous nanomateri-
als/ethanol dispersion with the volume of 0.5 mL, in which the CNTs’ mass proportions
were 25%, 50%, 75% and 100%, respectively. When GN was used alone without CNTs,
the Marangoni self-assembly phenomenon of the carbon nanomaterials was completely
different to the GN/CNTs composite, so we will discuss the situation separately.

Compared with the 25% CNTs film (Figures 3a and S2a,e), there were more CNTs
distributed on the surface of the GN nanosheets when the mass ratio of CNTs and GN
increased to 1:1, as shown in Figures 3b and S2b. It could be clearly observed that the junctions
between GN nanosheets were also overlapped by CNTs, and the conductive pathways were
further increased. It is worth noting that the GN network was formed while CNTs were too
sparse to form a single CNT network. Figures 3c and S2c,f show the microstructure of the
conductive film with 75% CNTs. It can be seen that it was not only GN nanosheets that were
connected to a network, but CNTs were also connected to form a CNT network. While using
100% of CNTs, the conductive network obtained by self-assembly with the same mass of
carbonous materials was tighter, as shown in Figures 3d and S2d.
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Figure 3. Effects of proportions of CNTs and GN on microstructure of conductive films and properties
of sensors. SEM images of Marangoni self-assembled conductive films with different proportions of
CNTs: (a) 25% CNTs, (b) 50% CNTs, (c) 75% CNTs, (d) 100% CNTs. (e) Sheet resistance of Marangoni
self-assembled conductive films. (f) Strain−∆R/R0 curves and (g) enlarged strain−∆R/R0 curves of
strain sensors. (h) Working range diagram and (i) sensitivity diagram of strain sensors.
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The thicknesses of the films with 50% CNTs and 100% CNTs were 28 nm and 38 nm,
respectively, tested by the ellipsometer on polished silicon wafer substrates. Four kinds
of conductive films were transferred to quartz plates, and the resistance of the films was
measured by a four-probe resistivity tester. As can be seen from Figure 3e, the sheet resis-
tances of the conductive films with CNTs of 25%, 50%, 75% and 100% were 21.1 kΩ·sq−1,
10.0 kΩ·sq−1, 8.3 kΩ·sq−1 and 7.3 kΩ·sq−1, respectively. The conductivity increased suc-
cessively mainly because the electrical conductivity of the CNTs (0.12 Ω·cm) used in the
experiment was higher than that of the GN (1.57 Ω·cm).

We used 3M4910 tape as a flexible substrate, and pasted the self-assembled films twice
on the tape. Two pieces of composite conductive films were assembled face to face with
copper tapes as electrodes, then a strain sensor was obtained. We stretched the sensors using
a tension machine with the rate of 50 mm·min−1, and recorded the resistance change. As
shown in Figure 3f–i, the ratio of GN and CNTs affected the working range and sensitivity
of the sensors. The working range broadened as the CNTs’ proportion increased, while the
sensitivity decreased. GN has a lamellar structure, which means it can easily slip during
stretching and result in damage to the conductive network [43,44]. When the composite
film was stretched to large strains, CNTs worked as “bridges”, which was helpful to reduce
the agglomeration between GN nanosheets, increase the number of conductive paths and
enhance the overall electrical conductivity to a large extent. Therefore, a higher proportion
of CNTs is helpful to protect the network and increase the working range.

The working range of the sensor with 75% CNTs was broader than that of the sensor
with 100% CNTs because of the synergistic effect of GN and CNTs. When the CNTs’ network
was completely destroyed under a large strain, GN with a large area could still play a role
in connecting the CNTs. Therefore, the conductive network with 75% CNTs was less likely
to be damaged than that with 100% CNTs.

3.3. Effect of Carbonous Nanomaterials/Ethanol Dispersion Volume on Properties of Sensors

The volume of the added dispersion affects the density of the self-assembled film
when the water surface is limited. A total of 1 mg·mL−1 50% CNTs/ethanol dispersion with
different volumes was added dropwise to a 100 cm2 water surface. In the self-assembly
process, when less than 0.3 mL dispersion was used, the conductive film could not cover
the entire water surface, while when more than 0.6 mL dispersion was added, the excess
carbon material aggregated on the water surface or sank in the water.

Figures 4a–d and S3 show the SEM images of Marangoni-assembled films formed by
50% CNTs dispersion in different volumes. It can be seen that GN and CNTs completely
covered the silicon substrate at the addition of the volume of 0.3 mL, forming good conduc-
tive paths. CNTs were also evenly distributed on the GN layer when the added volume was
successively increased to 0.4, 0.5 and 0.6 mL. The sheet resistances of films self-assembled
by different volumes of dispersions were 17.7 kΩ·sq−1, 12.9 kΩ·sq−1, 10.0 kΩ·sq−1 and
8.5 kΩ·sq−1, respectively, as shown in Figure 4e. The more carbon materials that were used
in self-assembly, the denser the conductive network, and the better the conductivity of
the film.

As shown in Figure 4f, the transmittance of the conductive film was tested with an
ultraviolet–visible spectrophotometer. The films self-assembled from 0.3 mL and 0.5 mL
dispersion had light transmittances of 83% and 74% at 550 nm, respectively. As the
volume of dispersion increased, the density of the film increased, so the light transmittance
decreased gradually.

As can be seen from Figure 4g–i, the working ranges of sensors prepared by different
volumes of dispersion are all over 170%, and the sensitivities are 2.9, 3.6, 5.7 and 3.9,
respectively. With more and more carbon materials assembled on films, the GN and
CNTs connected with each other even tighter, with a certain overlap area. The tighter
the conductive network, the less likely it was to be broken. Therefore, when the sensor
was stretched to large strains, the overlapped nanosheets and numerous CNTs were more
helpful to avoid the network being damaged totally, which increased the working range
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and decreased the sensitivity of the sensor. However, the sensitivity of the sensor from
0.5 mL dispersion was higher than that of the sensor from 0.4 mL dispersion, possibly
because the aggregation between nanomaterials made the sheets slip more easily, resulting
in the film being more prone to fracturing.
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Figure 4. SEM images of Marangoni self-assembled conductive films made by different volumes of
50% CNTs/ethanol dispersion (a) 0.3 mL, (b) 0.4 mL, (c) 0.5 mL, (d) 0.6 mL. (e) Sheet resistance of
50% CNT conductive films made by different volumes of dispersion. (f) Transmittance spectra in the
wavelength range from 400 to 800 nm of 50% CNT conductive films made by different volumes of
dispersion. (g) Strain−∆R/R0 diagram of 50% CNT strain sensors made of Marangoni self-assembled
conductive films with different volumes of dispersion. (h) Working range diagram and (i) sensitivity
diagram of 50% CNT strain sensors made of Marangoni self-assembled conductive films with different
volumes of dispersion.

3.4. Effect of Layers of Conductive Films on Properties of Sensors

The number of conductive films transferred to the substrate has an important effect on
the conductivity of the sensor. In the experiment, we pasted conductive films (50% CNTs
film assembled by 0.5 mL dispersion) at different times with the 3M tape and assembled
them face to face to fabricate sensors with different layers of conductive films. It is worth
mentioning that the conductive film could be completely transferred using the 3M tape
firstly, and a small part of the film was left in the second pasting because the stickiness of
the 3M tape reduced a lot after the first pasting. After pasting twice, the stickiness of the
tape was too weak to paste any film.
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As shown in Figure 5a, the transparency of the films decreased together with the total
paste times. The (2 + 2) sensor still exhibited good transparency and the printed words
“strain sensor” under the films could be observed clearly. The resistance of the sensors
with different layers of conductive films increased in turn with the decrease in conductive
film layers, shown in Figure 5b. In other words, the more conductive materials that were
transferred to the substrate, the conductive layer was thicker, and the conductivity of the
sensor was better.
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Figure 5. (a) The transparency of 3M tapes with different layers of Marangoni self-assembled
conductive films made by 0.5 mL 50% CNTs/ethanol dispersion. (b) Resistance of strain sensors made
by different layers of conductive films. (c) Strain−∆R/R0 diagram and (d) enlarged strain−∆R/R0

diagram of strain sensors made by different layers of conductive films. (e) Working range diagram and
(f) sensitivity diagram of strain sensors made by different layers of conductive films. (g) Resistance
changes of the 50% CNTs strain sensor made by 0.5 mL dispersion under different strains. Three
insets are the enlarged figures of several cycles at different times. (h) Stability test of 50% CNTs strain
sensor at ε = 10%, with the rate of 20 mm·min−1. The relative resistance changes of the 50% CNTs
strain sensor in response to (i) finger bend, (j) wrist bend and (k) knee bend. The illustration shows
the corresponding actions.
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Electrical signals were collected under constant tension, and the resistance change is
shown in Figure 5c–f. The working ranges of sensors with different layers of conductive
films were 193% (2 + 2), 112% (2 + 1), 85% (1 + 1) and 61% (2 + 0). As the thickness of the
conductive layer and the content of carbon materials increased, the network was harder to
break and the working range of the sensor increased as a result.

The sensitivity of the sensors (2 + 2), (2 + 1) and (1 + 1) increased from 5.7 to 7.3 and
9.3, respectively. In other words, the sensors’ sensitivities became higher and higher as the
thickness of the conductive layers and the content of carbon materials decreased because
the conductive network became easier to break. Moreover, the (2 + 0) sensor was less
sensitive than the (1 + 1) one because these two layers of conductive films were pressed
tightly together and the conductive network was not so easy to damage.

The (2 + 2) sensors responded to different strains repeatedly with the rate of 50 mm·min−1,
as shown in Figure 5g. ∆R/R0 increased as the sensor was stretched, and exhibited basically
consistent performance under the same strain, showing good recovery performance and
stability. The microstructure of the film after repeated stretching and recovery with the
strain of 30% is shown in Figure S4.

Cyclic stability is an important performance measurement for sensors. In Figure 5h, the
3M-based sensor (made of 0.5 mL 50% CNTs/ethanol dispersion) was repeatedly stretched
to ε = 10% at a rate of 20 mm·min−1. After cycle testing for a long time, the electrical signal
basically remained stable and the peak shape remained consistent.

The (2 + 2) sensor was applied to the joints of the human body to detect the resistance
change during movement, as shown in Figure 5i–k. When the sensor was fixed at the
second joint of the index finger and bent to about 45◦, the sensor responded quickly and
sensitively, with ∆R/R0 reaching 4. When the bend degree increased to the maximum
(about 120◦), ∆R/R0 raised to about 15. In addition, when the finger repeated the same
bending motion several times, the electrical signals were similar, due to the sensor’s good
accuracy and repeatability.

The sensor was affixed to the wrist and knee to detect changes in electrical signals
caused by different joints, as shown in Figure 5j,k. The relative resistance increased as the
wrist joint gradually bent, and decreased as the joint gradually returned to the straight
state. When the wrist was bent inward by about 30◦, ∆R/R0 increased to about 0.4, and
when it bent inward by about 45◦ (maximum), ∆R/R0 increased to about 0.7. Moreover,
when the tester subjected the sensor on the knee to a kick back motion, the electronic signal
responded quickly, and ∆R/R0 reached about 0.2. The sensor made from 50% CNTs proved
its ability to detect human body action.

3.5. Effect of Substrates on Properties of Sensors

A flexible substrate is an important part of a sensor, as it affects the structure
and function of the sensor. In order to explore the influence of substrate types on the
performance of the sensor, the sensors based on 3M4910 and PDMS were fabricated
using the conductive films formed by carbonous materials/ethanol dispersion with
50% CNTs and 100% CNTs, respectively.

The 3M4910-based sensor was fabricated by using 3M4910 tape to paste a 50% CNTs
film twice face to face, while the PDMS-based sensor was fabricated by skimming the
conductive film twice. No matter which kind of material was used as the flexible substrate,
the sensitivity and working range of the sensors showed the same trend as the proportion
of CNTs; that is, the sensor with 100% CNTs, exhibited a wider working range and lower
sensitivity than that with 50% CNTs, as shown in Figure 6.

When the proportion of CNTs was the same, the working range of the 3M4910-based
sensor was much larger than that of the PDMS-based sensor because 3M tape has a higher
fracture strain (more than 1100%). Even if the 3M4910-based sensor was stretched to an
extremely high strain and lost its conductivity totally, the 3M tape remained unbroken.
When the PDMS-based sensor was stretched so there was a sharp increase in resistance, the
PDMS ruptured at the same time. The sensitivity of the PDMS-based sensor was slightly
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higher than that of the 3M4910-based sensor, which may be caused by the harder PDMS
material and there being less carbon material.
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3.6. GN Strain Sensor

When using GN/ethanol dispersion without CNTs to prepare conductive films through
Marangoni self-assembly, the experimental results were completely different from the case
with CNTs. At least 3 mL of GN/ethanol dispersion was required to form a dense GN film
on a 100 cm2 water surface, while when using the dispersion containing 50% CNTs and
50% GN, only 0.5 mL dispersion was needed to form a self-assembled film of the same area.
The SEM images, as shown in Figure 7a,b, exhibit GN nanosheets stacked on the top of
each other similar to “fish scales”. The GN film was as thick as 4 µm, and the average sheet
resistance of the GN films was 1.4 kΩ·sq−1, measured by AFM and a four-probe resistivity
tester, respectively. A large number of bubbles and cracks occurred frequently when we
transferred the GN films on water to petri dish lids, which limited the transfer of the GN
films to 3M tape by pasting. Therefore, we used PDMS as the flexible substrate to skim the
GN films repeatedly, and the average resistance of the GN sensors fabricated face to face
was 10.9 kΩ.

We stretched the GN sensors at the rate of 50 mm·min−1 and recorded the change in
resistance to obtain the strain−∆R/R0 relationship diagram, as shown in Figure 7c. GN
sensors exhibited a smaller working range (78%) and higher sensitivity (GF = 34) than
GN/CNTs sensors, mainly due to the GN nanosheets slipping very easily and causing
resistance changes when the film was stretched without the overlapping of CNTs.

The GN sensor was repeatedly stretched to different strains and recovered at the
stretching rate of 50 mm·min−1, and the results are shown in Figure 7d,e. The ∆R/R0
was obviously different under different strains, and was basically consistent under the
same strain, showing good recovery performance and stability. As shown in Figure 7f, the
response and recovery time of the GN sensor were about 110 ms and 250 ms, respectively,
which means the sensor responses were fast enough to be applied in reality.
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Figure 7. (a,b) SEM images of Marangoni self-assembled GN film, magnified 1 k and 5 k, respectively.
(c) Strain−∆R/R0 diagram of the GN sensor. (d) Resistance changes of the GN sensor under small
strains and (e) large strains. (f) Response time and recovery time of the GN sensor (ε = 5%, with
the rate of 500 mm·min−1). The inserts are the enlarged figures of response time and recovery time,
respectively. (g) Stability test of the GN sensor at ε = 10%, with the rate of 100 mm·min−1. Three
insets are the enlarged figures of several cycles at different times.

The GN sensor also exhibited excellent cyclic stability. In Figure 7g, the sensor was
stretched to ε = 10% with the rate of 100 mm·min−1. After 8000 cycles of testing, the
electrical signal remained stable. In conclusion, the test shows that the sensors have
excellent cyclic stability and can meet the requirements of electronic devices.

As shown in Figure 8a–c, when the GN sensor was stretched together with the bend
and recover of the finger, wrist and knee, the resistance changed quickly and ∆R/R0 was
higher than that of the 50% CNTs sensor because of the high sensitivity of the GN sensor. In
addition, the GN sensor could detect subtle movements of the human body. In Figure 8d–i,
the sensor was successfully applied to detect the mouth opening, swallowing, saying “hi”,
a frown, a blink and the pulse beating, and all of these output stable and reliable electrical
signals. The experiments have proved that our strain sensors show great potential in
real-time motion detection and can hopefully be applied in reality.



Coatings 2023, 13, 1101 13 of 16

Coatings 2023, 13, x FOR PEER REVIEW 13 of 16 
 

 

8d–i, the sensor was successfully applied to detect the mouth opening, swallowing, saying 
“hi”, a frown, a blink and the pulse beating, and all of these output stable and reliable 
electrical signals. The experiments have proved that our strain sensors show great poten-
tial in real-time motion detection and can hopefully be applied in reality. 

 
Figure 8. Practical applications of strain sensors. The relative resistance changes of the GN sensor in 
response to (a) finger bend, (b) wrist bend, (c) knee bend, (d) mouth open, (e) swallow, (f) saying 
“hi”, (g) frown, (h) blink and (i) pulse beating. The illustration shows the corresponding actions. 

4. Conclusions 
In this paper, we designed high-performance flexible strain sensors with a simple 

strategy. Ultrathin GN/CNTs conductive films were self-assembled on the water surface 
in a few seconds due to the Marangoni effect. The sheet resistance, optical transmittance 
(at 550 nm) and thickness of the Marangoni self-assembled film (with the mass ratio of 
CNTs and GN 1:1) were 8.3 kΩ·sq−1, 74% and 28 nm, respectively. After transferring the 
films to flexible substrates twice and packaging them face to face, flexible strain sensors 
with high sensing performance were obtained. The mass ratio of CNTs and GN and over-
all carbon content exhibited an enormous influence on sensors’ properties, especially their 
sensitivity, working range, conductivity and transparency. The synergistic effect between 
CNTs and GN was helpful for the conductivity and working range of sensors because of 
the combined network structure. With the increase in overall carbon content, the conduc-
tivity and working range of sensors increased, while their sensitivity and optical transmit-

Figure 8. Practical applications of strain sensors. The relative resistance changes of the GN sensor in
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“hi”, (g) frown, (h) blink and (i) pulse beating. The illustration shows the corresponding actions.

4. Conclusions

In this paper, we designed high-performance flexible strain sensors with a simple
strategy. Ultrathin GN/CNTs conductive films were self-assembled on the water surface
in a few seconds due to the Marangoni effect. The sheet resistance, optical transmittance
(at 550 nm) and thickness of the Marangoni self-assembled film (with the mass ratio of
CNTs and GN 1:1) were 8.3 kΩ·sq−1, 74% and 28 nm, respectively. After transferring the
films to flexible substrates twice and packaging them face to face, flexible strain sensors
with high sensing performance were obtained. The mass ratio of CNTs and GN and overall
carbon content exhibited an enormous influence on sensors’ properties, especially their
sensitivity, working range, conductivity and transparency. The synergistic effect between
CNTs and GN was helpful for the conductivity and working range of sensors because of the
combined network structure. With the increase in overall carbon content, the conductivity
and working range of sensors increased, while their sensitivity and optical transmittance
decreased, for the reason that tighter and thicker conductive networks were vulnerable to
being destroyed. The sensors made of the Marangoni self-assembled film using 0.5 mL
carbonous nanomaterials/ethanol dispersion with 50% CNTs based on 3M4910 showed
satisfactory sensitivity (GF = 5.7), a large working range (193%) and good cyclic stability.
The sensors made of the film assembled by 3 mL GN/ethanol dispersion based on PDMS
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exhibited high sensitivity (GF = 34), a wide working range (78%) and excellent cyclic
stability (ε = 10%, >8000 cycles). In addition, they both performed outstandingly in sensing
different strains with a short response and recovery time. The experimental results indicate
the remarkable potential for the strain sensors to be applied in human motion detection.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/coatings13061101/s1, Figure S1. SEM images of (a,b) CNTs and (c,d) GN.
Figure S2. SEM images of Marangoni self-assembled conductive films made by different proportions
of CNTs and GN. (a) 25% CNTs, (b) 50% CNTs, (c) 75% CNTs, (d) 100% CNTs, magnified 5 k,
(e) 25% CNTs and (f) 75% CNTs, magnified 1 k. Figure S3. SEM images of Marangoni self-assembled
conductive films made by different volumes of 50% CNTs/ethanol dispersion. (a) 0.3 mL, (b) 0.4 mL,
(c) 0.5 mL, (d) 0.6 mL, magnified 1 k. Figure S4. The SEM images of Marangoni self-assembled films
based on 3M4910 after stretching and recovery repeatedly with the strain of 30%.
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