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Abstract: Spurred by the rapid development of fiber optic sensing technology, photonic crystal
fiber (PCF) sensors based on surface plasmon resonance (SPR) have received widespread attention.
However, they can only detect a narrow range, and the coating process is complex. Herein, a
wide-range SPR sensor is designed. It consists of a ring-core PCF filled with plasmonic materials.
Compared to the process of depositing a coating inside the air hole, the analyte and gold nanowires
fill our PCF, thus simplifying the manufacturing complexity. The ring-core structure enhances the
directional power transmission between the guided mode and the surface plasmon polariton (SPP)
mode. The sensor is numerically analyzed using the finite element method (FEM). The results show
that the PCF-SPR sensor has a wavelength sensitivity and amplitude sensitivity of 40,000 nm/RIU
and 2141 RIU−1, and the resolution is 2.5 × 10−6 RIU−1 for the detection range of 1.13–1.45. The high-
sensitivity sensor boasting a wide refractive index detection range performs better than conventional
solid-core PCF-SPR sensors, boding well for biochemical sensing.

Keywords: surface plasmon resonance; photonic crystal fibers; sensing; ring-core structure

1. Introduction

Optical fiber sensing technology is regarded as one of the key components of intelligent
detection fields which has been pushing great progresses in the new scientific and techno-
logical revolution [1]. In recent years, highly sensitive sensors with an extra-wide detection
range are urgently needed in order to accurately measure concentrations of biomedical
analytes, harmful chemicals, and environmental pollutants [2,3]. Among the reported
sensors, photonic crystal fiber sensors based on surface plasmon resonance (PCF-SPR) for
refractive index (RI) detection have undoubtedly gained great attention due to their advan-
tages of small size, extremely high sensitivity, and remote monitoring. PCF-SPR sensors are
integrated with the superiorities of both the PCF and SPR sensing techniques [4,5]. On the
one hand, surface plasmon resonance (SPR) is a physical optical phenomenon that occurs
at the metal/dielectric interface, which is extremely sensitive to the RI of the surrounding
medium [6–9]. On the other hand, PCF is a new type of microstructured optical fiber with
periodically arranged air holes introduced into the cladding, which has been widely used in
fiber optic communication, fluorescence enhancement, and other fields due to the flexibility
of the structural design. In addition, the combination of PCF and SPR technology can
effectively improve the RI range and sensitivity of sensors, and PCF–SPR has become one
of the hot topics in the optical field [10–13].
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The dominant advantage of PCF-SPR sensors lies in their comprehensive high perfor-
mances regarding controllable wavelength and higher wavelength sensitivity and resolu-
tion as well as figure of merit. For instance, compared with conventional optical fibers, the
effective RI of the guide mode in single-mode fibers is close to that of the core material;
single-mode fiber SPR sensors have been demonstrated almost exclusively in visible light,
which limits the RI detection range and sensitivity of the sensors [14]. In principle, by using
multimode fibers, the phase matching conditions of SPR can occur in the near-infrared
band. However, the power distribution of higher-order modes in multimode fiber SPR
sensors is very sensitive to emission conditions, which increases additional noise [15].

More recently, much of the work has focused on exaggerated RI detection ranges,
controlled resonance wavelengths, and extremely high sensitivity. For example, Wang
et al. [16] have designed a polarization-independent PCF-SPR sensor that can monitor the
RI range of 1.20–1.33 with a wavelength sensitivity of 12,000 nm/RIU and corresponding
to a resolution of 8.3 × 10−6 RIU−1. The resonance wavelengths of most PCF-SPR sensors
are concentrated in the visible and near-infrared wavelength regions. Han et al. [17]
have proposed a D-type PCF-SPR sensor for the refractive range of 1.37–1.41, boasting a
sensitivity of 6000 nm/RIU and a resolution of 1.667 × 10−5 RIU−1. To date, the maximum
wavelength sensitivity is up to 11,000–11,600 nm/RIU with a higher resolution of 10−6

RIU−1, displaying great application potential in biomedicine. However, the detection range
of the appealed PCF-SPR sensor is mostly limited and cannot achieve both high RI detection
and low RI detection. For PCF-SPR sensors, the sensing is fundamentally based on RI
detection, and an extra-wide detection range is desired in the fields of biology, biomedicine,
and chemistry. Consequently, it is essential to propose a sensor that works in a wider RI
range of analyte [18–20]. So far, a variety of types of PCF-SPR sensors have been proposed
and simulated, such as D-shaped, dual-core shaped, and open-slit shaped PCF [21–24].
Compared with the above structures, the ring-core PCF structure enhances the directional
power transmission between the guided mode and the surface plasmon polariton (SPP)
mode. This kind of structure adds large air holes inside the core, thus the effective RI of
the guided mode is close to the solution to be measured, and the optical field of the core
guide is more likely to leak to the metal region, ensuring efficient coupling between the
guided mode and plasmonic mode [25–28]. Therefore, the ring-core structure is worthy of
exploration and is expected to contribute novel strategies to the structure optimization of
PCF-SPR sensors.

Herein, a new ring-core PCF-SPR sensor with high sensitivity and a wide RI detection
range was designed. By using the COMSOL Multiphysics software, finite element analysis
was performed to optimize the sensor. The numerical results indicate that the maximum
wavelength sensitivity of the sensor is 40,000 nm/RIU, and the optimal resolution is
2.56 × 10−6 RIU−1. More importantly, the applicable RI range is between 1.13 and 1.45,
resulting in an improved sensitivity and detection range, which covers the detection of
most known biological analytes, such as proteins, viruses or DNA/RNA, and glucose
concentration in blood cells, etc. The ultra-high sensitivity can be used to monitor almost
all possible damping in biomolecules, consequently having a high potential in applications
such as biology and bioanalysis [29,30].

2. Numerical Modelling

The mode characteristics and properties of the ring-core PCF-SPR sensors were ana-
lyzed based on the finite element method. Figure 1 shows the cross-section of a ring-core
PCF-SPR structure. This structure consists of a central analyte channel and two layers of air
holes. The diameter of the central analyte channel is R. The inner air hole is made up of air
holes of two different sizes of R1 and R2. Two air holes with diameters of R2 are distributed
between adjacent air holes with diameters of R1, and the outer layer consists of eighteen air
holes with a diameter of R3. The distances from the central channel to the air holes with
inner layer diameters R2 and R1 are d1 and d2, respectively. The interval between the two
adjacent air holes with a diameter of R2 in the inner layer is d3, and the spacing between the
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outer air hole and air hole with a diameter of R1 in the inner layer is d4. The orange area of
the structure is filled with the analyte, while the blue area shows the bulk material of silica.
Considering the dispersion in the bulk material, the RI changes with the wavelength of the
incident light. The Sellmeier equation in Equation (1) is used to derive the RI of silica [31]:

n2(λ) = 1 +
A1λ2

λ2 − B1
+

A2λ2

λ2 − B2
+

A3λ2

λ2 − B3
(1)

where A1 = 0.6961663, A2 = 0.4079426, A3 = 0.897479, B1 = 0.684043, B2 = 0.1162414 and
B3 = 9.896161. Filling the air hole with a diameter of R1 in the positive x direction with gold
medium, the dielectric constant of gold is represented by the Drude model definition in
Equation (2) [32]:

εAu(ω) = ε∞ −
ω2

p

ω(ω + iωτ)
(2)
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Figure 1. Cross-section of the ring-core PCF-SPR sensor.

For gold, ε∞ = 9.75, ωp = 1.36 × 1016 rad/s, and ωτ = 1.45 × 1014 rad/s. However, the
traditional coating process is complex, and directly filling the gold medium can reduce
the operation complexity and increase the effects of the PCF-SPR. The outer green area
is the perfect matching layer (PML). The PML is considered as the boundary condition
to absorb the transitory field dispersed from the PCF structure, which can reduce the
reflection of electromagnetic fields in the fiber and make the calculation results more
accurate. The designed structure is divided by using the free triangular mesh in the finite
element software. The entire grid contains 14,898 domain units and 1618 boundary units
with a maximum cell size of 2.99 and a minimum cell size of 0.0134, which makes it easier
to identify the appropriate modes and produce more accurate results. After preliminary
simulation, a set of initial structural parameters is generated to excite the SPR and obtain
good loss spectra. The initial parameters are as follows: diameter of the central analyte
channel R = 14 µm; inner layer large air hole diameter R1 = 2 µm; inner layer small air hole
diameter R2 = 1 µm; outer air hole R3 = 2.5 µm, d1 = 9.5 µm, d2 = 10.5 µm, d3 = 0.5 µm, and
d4 = 0.5 µm.

Using this set of parameters, the structure may stably support multiple modes, but
different modes have different effects when exciting the SPR. In fact, the ring-core PCF-SPR
is composed of a metal waveguide on the right and a PCF waveguide on the left. The SPP
modes in the metal waveguide on the right can sense changes in the RI of the analyte. The
PCF waveguide on the left has the fundamental mode HE1,1 and higher-order mode HE2,1,
with different modes corresponding to two polarization states, namely x−polarization and
y−polarization. Figure 2 shows the coupling effect of different modes with plasmonic
modes for an RI of 1.38. The loss can be calculated from Equation (3) [33]:

L = 8.686 × 2π

λ
× 107Im(ne f f )(dB/cm) (3)
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where λ stands for the wavelength of the incident light in vacuum with a unit of nanometer
(nm) and Im(neff) is the imaginary part of the effective RI of the fundamental mode. There
is a sharp loss peak in the x−polarization state of the HE1,1 mode, but there is almost
no change in the resonance curve of the y-polarization state of the HE1,1 mode and the
higher-order mode HE2,1 mode. Figure 3 shows the optical field distributions of the HE1,1
mode x−and y-polarization states as well as the HE2,1 mode. The HE1,1 mode has a linear
polarization state, and the direction of the electric field consistently points towards the
vicinity of the metal, thus making it easier to excite the SPR. Therefore, we chose the HE1,1
mode x−polarization as the excitation mode.
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Based on the initial parameters, the RI detection range is determined to be 1.13–1.45,
within which effective resonance curves can be obtained. At the same time, it is important
to investigate the influences of several important parameters on the sensing properties in
order to observe if improvements have been made to the structure. The simulation results
indicate that the analyte channel R, inner air hole R1, and outer air hole R2 have significant
effects. The wavelength sensitivity from 1.38 to 1.39 is in the middle of the entire detection
range. Moreover, the refractive indices of common biochemical substances such as silicone
oil and sucrose are also located in this range and are widely used in basic fields such as
chemical processing and biomedicine, providing typical irreplaceability. Therefore, 1.38
and 1.39 were chosen as the detection ranges for the media to be measured in this work.
In order to analyze and improve these three important parameters, we take the method
of keeping the remaining parameters unchanged and improving each parameter in turn.
Considering the degree of influence of the three parameters on the wavelength sensitivity
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of the PCF sensor, firstly the diameter of the central analyte channel R was optimized,
followed by the inner air hole diameter R2 and the outer air hole diameter R3.

The initial parameter of the central analyte channel is R = 7 µm. When R > 8 µm, the
thickness of the ring-core area is too small and the mode cannot be stably transmitted,
causing mode distortion and the inability to excite the SPR. On the other hand, if the
ring-core area is too large, the analyte channel is too small and difficult to prepare. Thus,
the optimization diameter of the analyte channel R is 6 µm ≤ R ≤ 8 µm, with a step size
of 0.5 µm. Figure 4a shows the loss spectra of analytes for different R values. As the
diameter of the analyte channel increases, the resonance wavelength blue-shifts and the
loss increases gradually. The trend of the resonance wavelength and wavelength sensitivity
is shown in Figure 4b. The resonance wavelength is positively correlated with the diameter
of the analyte channel. When R > 7.5 µm, the wavelength sensitivity of the PCF structure
shows a significant downward trend. When 6 µm ≤ R ≤ 7.5 µm, the wavelength sensitivity
fluctuates between 24,000 and 25,000 nm/RIU. According to the FOM and FWHM shown
in Figure 4c, when R = 7 µm, the FOM has the maximum value, indicating that the overall
quality of the loss spectrum is better. The corresponding FWHM curve also exhibits a valley
at this value. When the FWHM is too large, the resonance peak is not sharp, resulting in
poor resolution. Hence, R = 7 µm was chosen as the diameter of the analyte channel, at
which point the wavelength sensitivity is 25,000 nm/RIU.

Coatings 2023, 13, x FOR PEER REVIEW 5 of 14 
 

 

In order to analyze and improve these three important parameters, we take the method of 
keeping the remaining parameters unchanged and improving each parameter in turn. 
Considering the degree of influence of the three parameters on the wavelength sensitivity 
of the PCF sensor, firstly the diameter of the central analyte channel R was optimized, 
followed by the inner air hole diameter R2 and the outer air hole diameter R3. 

The initial parameter of the central analyte channel is R = 7 µm. When R > 8 µm, the 
thickness of the ring-core area is too small and the mode cannot be stably transmitted, 
causing mode distortion and the inability to excite the SPR. On the other hand, if the ring-
core area is too large, the analyte channel is too small and difficult to prepare. Thus, the 
optimization diameter of the analyte channel R is 6 µm ≤ R ≤ 8 µm, with a step size of 0.5 
µm. Figure 4a shows the loss spectra of analytes for different R values. As the diameter of 
the analyte channel increases, the resonance wavelength blue-shifts and the loss increases 
gradually. The trend of the resonance wavelength and wavelength sensitivity is shown in 
Figure 4b. The resonance wavelength is positively correlated with the diameter of the an-
alyte channel. When R > 7.5 µm, the wavelength sensitivity of the PCF structure shows a 
significant downward trend. When 6 µm ≤ R ≤ 7.5 µm, the wavelength sensitivity fluctu-
ates between 24,000 and 25,000 nm/RIU. According to the FOM and FWHM shown in Figure 
4c, when R = 7 µm, the FOM has the maximum value, indicating that the overall quality 
of the loss spectrum is better. The corresponding FWHM curve also exhibits a valley at 
this value. When the FWHM is too large, the resonance peak is not sharp, resulting in poor 
resolution. Hence, R = 7 µm was chosen as the diameter of the analyte channel, at which 
point the wavelength sensitivity is 25,000 nm/RIU. 

   

Figure 4. (a) Loss curves; (b) wavelength sensitivity, and (c) relationship between FOM and FWHM: 
na = 1.38, 1.39, corresponding to a central analyte channel diameter of 6 µm ≤ R ≤ 8 µm. 

The R1 of the inner air hole was optimized to determine the gold medium. The initial 
parameter was R1 = 2 µm. When R1 > 2 µm, the fundamental mode is closer to the SPP 
mode and there is excessive loss at a short detection distance. When R1 < 1.2 µm, the air 
hole spacing is wide and cannot constrain the energy to the ring core, resulting in weak 
resonance between the fundamental mode and SPP mode. R1 decreases from 2 µm to 1.2 
µm in steps of 0.2 µm. The loss spectra corresponding to the analytes with RIs from 1.38 
to 1.39 are shown in Figure 5a. As R1 abates, the resonance wavelength red-shifts, and the 
loss rises. On the other hand, as shown in Figure 5b, the resonance wavelength change is 
inversely proportional to R1. Different R1 values have no remarkable influence on the 
wavelength sensitivity and, in fact, almost do not alter the wavelength sensitivity. There-
fore, R1 is not the main factor. When R1 < 1.8 µm, the resonance curve exhibits irregular 
subpeaks, and as the diameter of R1 declines, the fluctuation of the subpeaks increases. 
Figure 5c shows the changes in FOM and FWHM. When R1 ≥ 1.8 µm, the FOM shows a 
negative correlation with R1. When R1 = 1.8 µm, the FWHM of the resonance curve is nar-
rower, and R1 is determined to be 1.8 µm. 
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na = 1.38, 1.39, corresponding to a central analyte channel diameter of 6 µm ≤ R ≤ 8 µm.

The R1 of the inner air hole was optimized to determine the gold medium. The initial
parameter was R1 = 2 µm. When R1 > 2 µm, the fundamental mode is closer to the SPP
mode and there is excessive loss at a short detection distance. When R1 < 1.2 µm, the air
hole spacing is wide and cannot constrain the energy to the ring core, resulting in weak
resonance between the fundamental mode and SPP mode. R1 decreases from 2 µm to
1.2 µm in steps of 0.2 µm. The loss spectra corresponding to the analytes with RIs from
1.38 to 1.39 are shown in Figure 5a. As R1 abates, the resonance wavelength red-shifts,
and the loss rises. On the other hand, as shown in Figure 5b, the resonance wavelength
change is inversely proportional to R1. Different R1 values have no remarkable influence
on the wavelength sensitivity and, in fact, almost do not alter the wavelength sensitivity.
Therefore, R1 is not the main factor. When R1 < 1.8 µm, the resonance curve exhibits
irregular subpeaks, and as the diameter of R1 declines, the fluctuation of the subpeaks
increases. Figure 5c shows the changes in FOM and FWHM. When R1 ≥ 1.8 µm, the FOM
shows a negative correlation with R1. When R1 = 1.8 µm, the FWHM of the resonance
curve is narrower, and R1 is determined to be 1.8 µm.
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Figure 5. (a) Loss peak; (b) wavelength sensitivity, and (c) relationship between FOM and FWHM:
na = 1.38, 1.39, corresponding to the inner air hole diameter of 1.2 µm ≤ R1 ≤ 2 µm.

Based on R = 7 µm and R1 = 1.8 µm, the outer air hole R3 was optimized. The initial
R3 was 2.5 µm. It is shown experimentally that the size of the outer air hole should be
optimized within the range of 1.7 µm–2.5 µm. Values that are too large and too small
affect the degree of coupling between the fundamental mode and SPP mode. Figure 6a
shows the loss spectra when R3 goes up from 1.7 µm to 2.5 µm in steps of 0.2 µm. When
R3 = 1.7 µm, there is a clear subpeak in the resonance curve. When the diameter of the air
hole exceeds 1.7 µm, the position of the resonance peak remains almost unchanged and
shows a slight loss. The resonance curves overlap in the figure. Figure 6b displays the
resonance wavelength and wavelength sensitivity. The resonance wavelength is negatively
correlated with R3, and there is almost no obvious change when the sensitivity increases to
25,000 nm/RIU. As shown in Figure 6c, when R3 > 1.7 µm, the FOM and FWHM changes
are consistent with the wavelength sensitivity. A large diameter reduces the difficulty
in the optical fiber drawing process, and thus, the air hole with the maximum diameter
is selected, i.e., R3 = 2.5 µm. The optimal wavelength sensitivity is 25,000 nm/RIU. In
summary, R = 7 µm, R1 = 1.8 µm, and R3 = 2.5 µm.
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Figure 6. (a) Loss peak; (b) wavelength sensitivity, and (c) relationship between FOM and FWHM:
na = 1.38, 1.39, corresponding to the outer air hole diameter of 1.7 µm ≤ R3 ≤ 2.5 µm.

PCF structures can be fabricated using the sol–gel method, which utilizes the catalyst
to hydrolyze the materials, and shrinkage leads to the sol formation [34]. SiO2 powder
is processed into optical fiber preform using gel heat treatment; the optical fiber preform
is melted at a high temperature in the drawing tower and is drawn to form an optical
fiber [35,36]. Afterwards, the metal fills the air hole by chemical deposition, and the PCF-
SPR sensor is completed after coating. The schematic diagram of the sensor to detect RI (s)
is depicted in Figure 7. SMF is welded on both sides of the sensor, and the light source and
OSA are connected separately. The data measured by the OSA are transmitted to a PC to
generate the loss spectra.
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Figure 7. Schematic of the detection process using the PCF-SPR sensor.

3. Results and Discussion
3.1. Coupling Characteristics

After optimizing the structure, excellent sensing characteristics are obtained. Here,
we focus on the coupling characteristics, sensitivity, FOM, and other important indicators
of the PCF sensor. In general, the resonance conditions of the HE1,1 mode and plasmonic
mode require the propagation constants to be equal. That is, the dispersion curves of
the HE1,1 mode and plasmonic mode should intersect. When the RI of the analyte is
1.43, the dispersion relation diagrams of the HE1,1 mode and the plasmonic mode are as
shown in Figure 8. The effective RI of the fundamental mode moves gradually closer to
that of the plasmonic mode until it is reversed. At 2300 nm, the dispersion curve of the
fundamental mode intersects that of the plasmonic mode. At this point, the loss spectrum
of the fundamental mode shows a peak, indicating that most of the fundamental mode
energy is transferred to the plasmonic mode, and the energy coupling is strongest at that
point, thereby meeting the phase matching condition. Thus, the SPR is excited, and this
wavelength at that point is the resonant wavelength.
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Figure 9 exhibits the fundamental mode and SPP mode at different wavelengths and
reveals the changes in the electric fields between the fundamental mode and SPP mode
during the coupling process. As shown in Figure 9a,d, when the incident wavelength is
less than the resonant wavelength, the energy of the fundamental mode and SPP mode
is limited to the ring-core region and near the metal, and hence, energy transfer is not
significant. As the wavelength approaches the resonant wavelength, a portion of the energy
is transferred from the fundamental mode to the SPP mode. At the resonant wavelength, as
shown in Figure 9b,e, the energy exchange between the fundamental mode and SPP mode
is the largest, and coupling is the strongest. At this point, the SPR is excited. Figure 9c,f
show that when the incident wavelength exceeds the resonant wavelength, some of the
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energy transferred from the fundamental mode to the SPP mode returns to the fundamental
mode. The process of exciting the SPR is actually a process of energy conversion. When the
phase-matching condition is satisfied, strong coupling occurs between the fundamental
mode and the SPP mode, and the intensity of the reflected light drops sharply and reaches
a minimum value, forming a depression in the transmission spectrum. However, for
different RIs, the coupling degree between the fundamental mode and SPP mode varies,
and the peak loss changes. When the RI range is 1.13–1.45, the loss spectrum of the sensor
is as shown in Figure 10. When the analyte RI increases, the resonance wavelength of
the fundamental mode blue-shifts and the loss peak first increases and then diminishes.
The RI range is from 1.13 to 1.44, and the fundamental mode loss is positively correlated
with the resonance wavelength. When na = 1.44–1.45, the peak loss declines sharply. The
resonance peak becomes sharper and the coupling between the two modes becomes better.
It is seen that changing the refractive index of surrounding medium will also change the
position of the resonance peak. The shift of the resonance peak can inverse the change
in the characteristic physical parameters of the medium to detect the refractive index of
the analyte.
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Figure 9. (a–c) Distributions of the electric field of the fundamental mode and (d–f) electric fields of
the SPP mode at 1800 nm, 2200 nm, and 2400 nm.
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3.2. Wavelength Sensitivity and Resolution

To evaluate the performance of PCF-SPR sensors, sensitivity and resolution are the
two critical parameters. When SPR sensors use the wavelength detection methods, one of
the important indicators is the wavelength sensitivity, which is defined as the drift of the
resonance wavelength caused by changes in unit RI, as shown in Equation (4) [37]:

S(λ) =
∆λpeak

∆na
(4)
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where ∆λpeak is the resonance wavelength shift and ∆na represents the change in the analyte
RI. The wavelength sensitivity of the sensor is shown in Figure 11a. The wavelength
sensitivity increases with increasing analyte RIs. When the RI is 1.43, the maximum
wavelength sensitivity is 40,000 nm/RIU, and the average wavelength sensitivity of the
entire detection range is 17,000 nm/RIU. Figure 11a discloses the resonance wavelength
variations. As the RI increases, the resonance wavelength blue-shifts. When the RI is in
the range of 1.13–1.45, the response curve of the sensor exhibits nonlinear changes. The
relationship between the RI and resonant wavelength of the analyte obtained by polynomial
fitting is shown in Equation (5):

Y = INTERCEPT + B1X + B2X2 + B3X3 (5)

where INTERCEPT = 256.80104 ± 13.29545, B1 = −616.71482 ± 31.08698, B2 = 512.99692 ±
24.16041 and B3 = −144.23568 ± 6.24155.
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Figure 11. (a) PCF-SPR sensor wavelength sensitivity (histogram) and linear fitting of the resonance
wavelengths and analyte RIs (dotted line); (b) resolution of the PCF-SPR sensor.

The resolution reflects the minimum RI change that the sensor can detect from the
analyte, as shown in Equation (6) [38]:

R =
∆λmin

S(λ)
(6)

where the minimum resolution wavelength ∆λmin = 0.1 nm and S(λ) is the sensitivity of the
corresponding wavelength. Figure 11b presents the resolution of the sensor in the detection
range. When the RI goes up, the resolution decreases. In some RI ranges, the resolution
remains almost unchanged, and the optimal resolution is 2.56 × 10−6 RIU−1.

3.3. Structural Sensitivity

In manufacturing, there is normally a deviation between the actual preparation and
theoretical simulated values. The structural sensitivity reflects the impact of the structural
parameter changes on the sensing performance, which is described by the ratio of the
wavelength to parameter changes. A smaller structural sensitivity increases the stability
and the tolerance of production errors. Consequently, when designing PCF-SPR sensors,
the impact of structural parameters should be minimized. Figure 12a–d describe the
structural sensitivity of R, R1, and R3 for an RI of na = 1.38. Figure 12a,b show that as R3
increases, the resonance wavelength blue-shifts. A larger R3 reduces the distance between
the fundamental mode and SPP mode to boost the resonance intensity. At the same time,
the structural sensitivity is proportional to the diameter of the analyte channel. For an inner
layer air hole diameter R1 shown in Figure 12c,d, as R1 goes up, the resonance wavelength
shifts towards shorter wavelengths. The reason for the declining resonance intensity is
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that the spacing between the air holes in the cladding decreases, thus hindering the energy
leakage of the fundamental mode to the SPP mode. The overall structural sensitivity shows
a downward trend, and in the range of 1.6 µm to 1.8 µm, the structural sensitivity stabilizes
at 100 nm. Figure 12e,f show that when the diameter R3 of the outer air hole increases, the
resonance wavelength red-shifts, while the loss and structure sensitivity decrease. When
the diameter of the air hole is 1.9 µm, the loss curve basically coincides and the changes in
the structural sensitivity decrease gradually, indicating that when the outer air hole has
a certain value, the alteration of the structural parameters has less effect on the sensor
performance.
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Figure 12. (a) Loss peak and (b) structural sensitivity of the PCF-SPR sensor: na = 1.38, corresponding
to a central analyte channel diameter of 6 µm ≤ R ≤ 7.5 µm; (c) loss peak and (d) structural sensitivity
of the PCF-SPR sensor: na = 1.38, corresponding to inner air hole diameter of 1.2 µm ≤ R1 ≤ 1.8 µm;
(e) loss peak and (f) structural sensitivity of the PCF-SPR sensor: na = 1.38, corresponding to the outer
air hole diameter of 1.7 µm ≤ R3 ≤ 2.3 µm.
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3.4. Amplitude Sensitivity

To simplify the measurement of the sensitivity of the PCF, in addition to the wavelength
method, the amplitude method is adopted. The sensitivity of the PCF sensor can be
expressed by the amplitude sensitivity (7) [39]:

sA(λ) = − 1
α(λ, na)

∂α(λ, na)

∂na
(7)

where ∂α(λ,na) is the loss at a certain wavelength when the RI of the analyte is na, α(λ,na) is
the difference in the loss caused by changes in the RIs of adjacent analytes, and ∂na is the
change in the RI of the analyte. Figure 13 shows the changes in the amplitude sensitivity
for different RIs. When the RI goes up, the amplitude sensitivity increases first and then
decreases. The curve of amplitude sensitivity is similar, showing no obvious changes in
the range of 1.13–1.38. The peak appears in the range of 1.38–1.44, and the maximum
amplitude sensitivity of the sensor is 2052 RIU−1.
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3.5. FOM

FOM is a physical quantity that measures the overall performance of a sensor. It reflects
the comprehensive quality of the loss spectrum and is defined as the ratio of wavelength
sensitivity to FWHM for the RI of a specific analyte by Equation (8) [40]:

FOM =
S(λ)

FWHM
(8)

where FWHM is the full width at half maximum. The FWHM must be considered in
practical applications in addition to the sensitivity, resolution, and other indicators of
the sensor. The accuracy of the resonance wavelength of SPR sensors depends on the
FWHM. Figure 14 presents the relationship between FOM and RIs. As the RI goes up, FOM
increases. When the RI is 1.44, the maximum FOM is 394 RIU−1.
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Ref Characteristic RI Ranges 
Wavelength 

Sensitivity Range 
(nm/RIU) 

Resolution 
(RIU) 

[41] Solid−PCF 1.29–1.40 600–12,500 8.0 × 10−6 
[42] Solid−PCF 1.30–1.39 1000–12,000 5.4 × 10−5 

[43] Solid−PCF 1.32–1.38 X-pol:N/A—10,286 
Y-pol:N/A—9464 

9.72 × 10−6 

[44] Solid−PCF 1.33–1.40 2400–10,300 9.71 × 10−6 

[45] Eccentric−core 
PCF 

1.385–1.40 5000–10,000 2.0 × 10−5 

This work Ring−core PCF 1.13–1.45 8000–40,000 2.5 × 10−6 
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Figure 14. Relationship between the overall characteristics of the PCF-SPR sensor and the analyte RIs.

3.6. Comparison of Properties

To illustrate the advantages of the PCF-SPR sensor, the important characteristics are
compared with those of similar sensors reported recently, and as shown in Table 1, in
comparison with the traditional solid-core structures, our PCF sensor not only has a better
structure but also shows higher sensitivity in a wide RI range of 1.13–1.45.

Table 1. Comparison of the characteristics of our sensor with those of recently reported PCF-SPR
sensors.

Ref Characteristic RI Ranges Wavelength Sensitivity Range (nm/RIU) Resolution (RIU)

[41] Solid−PCF 1.29–1.40 600–12,500 8.0 × 10−6

[42] Solid−PCF 1.30–1.39 1000–12,000 5.4 × 10−5

[43] Solid−PCF 1.32–1.38 X-pol:N/A—10,286
Y-pol:N/A—9464 9.72 × 10−6

[44] Solid−PCF 1.33–1.40 2400–10,300 9.71 × 10−6

[45] Eccentric−core PCF 1.385–1.40 5000–10,000 2.0 × 10−5

This work Ring−core PCF 1.13–1.45 8000–40,000 2.5 × 10−6

4. Conclusions

A new ring-core PCF-SPR sensor with high sensitivity and a wide detection range was
designed. The SPP mode was excited by directly filling the gold medium to simplify the
preparation. The ring-core structure exhibits a high degree of coupling between modes.
Using the wavelength sensitivity and FOM as the main indicators, the COMSOL software
was used to analyze the analyte channel, inner layer air hole, and outer layer air. The
numerical results indicate that the stable detection of the RI of the analyte was accom-
plished in a wide RI range between 1.13 and 1.45. When the RI of the analyte is 1.43, the
maximum wavelength sensitivity, amplitude sensitivity, and resolution are 40,000 nm/RIU,
2141 RIU−1, and 2.5 × 10−6 RIU−1, respectively. The sensor also delivers high performance
in terms of the FOM and FWHM. Within the detection range, the FOM is 394 RIU−1 and
the FWHM is less than 0.5 µm. It thus has great potential in many applications, such as
petrochemical and environmental detection.
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