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Abstract: High-viscosity modified bitumen is affected by a complex thermal oxygen environment
during long-term service. However, the existing standard long-term thermal oxygen aging test
cannot fully simulate the effect of different thermal oxygen conditions on the aging of high-viscosity
modified bitumen. In this study, on the basis of the standard pressure aging vessel test, high-viscosity
modified bitumen was aged under different oxygen conditions through adjusting test parameters.
Then, the analysis of the complex moduli, phase angles, and creep and recovery properties was
conducted to evaluate the rheological properties of high-viscosity modified bitumen before and after
aging. Moreover, gel permeation chromatography was performed to evaluate the molecular size
distribution of high-viscosity modifiers during aging. The results indicate that aging improves the
modulus of high-viscosity modified bitumen and changes the phase angle of that. Temperature,
pressure, and time are the factors affecting the high-temperature sensitivity and viscoelastic properties
of high-viscosity modified bitumen. With respect to the creep and recovery property, different high-
viscosity modified bitumen exhibits different aging characteristics with the change of thermal oxygen
conditions. Gel-permeation-chromatography results directly illustrate that thermal oxygen conditions
influence the degradation of high-viscosity modifiers at the initial stage of long-term aging, which is
the key factor affecting the rheological properties of high-viscosity modified bitumen.

Keywords: high-viscosity modified bitumen; thermal oxygen conditions; aging; rheological properties;
molecular size distribution

1. Introduction

Currently, a variety of advanced material technologies are applied to improve the
service level of bituminous pavement [1–5]. Porous bituminous pavement is one of the
effective means for sponge city because of its ecological and environmental benefits, such
as water permeability, noise reduction, and low heat absorption. In order to ensure the
strength and stability of the skeleton-void structure of porous bituminous mixture, high-
viscosity modified bitumen (HVMB) is often used as binders in Asia because of its excellent
performance [6–8]. Specifically, HVMB is a kind of modified bitumen with high polymer
content, whose ingredients include thermoplastic polymer, resin, plasticizer, and so on [9].

During the long-term service life of HVMB, the degradation of high-viscosity modifiers
and the oxidation of bitumen would occur under the influence of environmental factors,
including high temperature, water, ultraviolet (UV) light, and oxygen, thus affecting the
service level of porous pavement [10–13]. Particularly, compared with dense bituminous
mixtures, bitumen is more likely to be aged due to a large number of void structures
of porous mixtures [14]. For the purpose of understanding the aging behavior, some
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scholars used laboratory tests to simulate the aging of HVMB and then conducted various
tests to evaluate the properties of HVMB before and after aging [10,11]. Considering the
complex environmental effect of HVMB during service, Sun et al. [10] adopted standard
pressure aging vessel (PAV) tests and accelerated weather aging tests to simulate the
long-term aging of HVMB and found that the aging of HVMB consisted of base-bitumen
oxidation and polymer degradation. After the weather aging, the aging degree reached its
highest. Furthermore, Zhang et al. [11] explored the simultaneous aging effects of moisture,
temperature, and ultraviolet light on HVMB with the help of a self-designed coupling
aging system. The research results indicated that the carbonyl index and sulfoxide index
were suitable for evaluating the effect of ultraviolet light and temperature, respectively.
Similarly, the research conducted by Li et al. [12] demonstrated that the combination of a
high temperature, UV-light, and acid-rain-solution environment had a significant impact
on the viscoelastic properties of HVMB. Among the many factors affecting bitumen aging,
thermal oxygen aging is one of the key factors affecting HVMB properties. Currently,
thin-film oven tests (TFOT) and rolling thin-film oven (RTFO) tests were always used to
simulate the short-term thermal oxygen aging of bitumen, and PAV tests conducted at
100 ◦C under 2.1 MPa of air for 20 h were adopted to simulate the long-term thermal oxygen
aging of bitumen [15]. The research conducted by Jiang et al. [16] revealed that the effect
of thermal long-term aging on HVMA exceeded that of short-term aging. Furthermore,
Hu et al. [13] found that after standard PAV aging, aged HVMB showed increased thermal
stability, viscosity, and elastic recovery and presented a rapid increase in carbonyl contents,
which revealed that the oxidation of base bitumen dominated the properties of HVMB. The
above studies only simulated the aging behavior of HVMB in a specific thermal oxygen
environment because of the specific parameters of standard PAV tests (100 ◦C and 2.1 MPa).
Actually, due to the difference of climate, HVMB used in different regions is affected
differently by the thermal oxygen environment. Moreover, Hu et al. [17] found that the
concentration of reactive oxygen species has a significant effect on the aging of HVMB.
However, there are no systematic studies that have investigated the effects of temperature
and pressure on the long-term aging behavior of HVMB. Therefore, it is necessary to pay
attention to the effects of thermal oxygen conditions on the long-term aging behavior
of HVMB.

Considering that current research generally ignores the effect of a thermal oxygen
environment on the aging of HVMB, the purpose of this study is to investigate the long-term
aging behavior of HVMB under various thermal oxygen environments. Specifically, two
kinds of HVMB and one kind of base bitumen were aged through changing the parameters
of PAV tests, including pressure, temperature, and time. Afterwards, temperature sweep
(TS) tests and multiple-stress creep recovery (MSCR) tests were conducted to explore the
rheological properties of HMVB before and after aging in multi-temperature domains.
Furthermore, gel-permeation-chromatography (GPC) tests were carried out to systemically
explain the chemo-rheological evolution characteristics of HVMB with aging. Finally, the
effect of various factors on the aging of HVMB was systematically analyzed. The flow chart
of the present study is shown in Figure 1.
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Figure 1. The flow chart of the present study.

2. Materials and Methods
2.1. Materials

Two kinds of commercial HVMB produced by two local Chinese companies were
adopted in this study. Moreover, one base bitumen was selected as the experimental control
group because HVMB is prepared by base bitumen and high-viscosity modifiers. The basic
properties of bitumen are listed in Table 1.

Table 1. Basic properties of bitumen.

Property HVMB-A HVMB-B Base Bitumen Test Method

Penetration (25 ◦C, 100 g, 5 s, 0.1 mm) 35 49 67 ASTM D5

Softening point (◦C) 92 87 50 ASTM D36

Dynamic viscosity (60 ◦C, Pa·s) >400,000 >50,000 - ASTM D2171

2.2. Aging Methods

Given that a previous study found that bitumen samples aged by PAV for 5 h were
comparable to those aged by the standard RTFO test from the standpoint of physicochemical
effects [18], HVMB was aged under 2.1 MPa and at 100 ◦C for 5 h in PAV confinement
to simulate the short-term aging. Afterwards, PAV tests were adopted to simulate the
long-term thermal oxygen aging of HVMB. For the purpose of simulating the long-term
aging of HVMB under different thermal oxygen environments, different temperatures,
pressures, and times were selected. The specific test parameter and corresponding sample
names are presented in Table 2. For example, A, 100, 2.1, and 20 in HVMB-A-100-2.1-20
represent bitumen type, aging time, aging temperature, and aging pressure, respectively.
Moreover, two kinds of HVMB and one kind of base bitumen before aging were named
HVMB-A-virgin, HVMB-B-virgin, and Base-virgin, respectively.
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Table 2. Aging parameters and corresponding sample names.

Bitumen Type
Test Parameters of Long-Term Aging

Sample ID
Temperature/◦C Pressure/MPa Time/h

HVMB-A

100 2.1 20 HVMB-A-100-2.1-20
100 2.1 40 HVMB-A-100-2.1-40
100 2.1 60 HVMB-A-100-2.1-60
100 1.8 20 HVMB-A-100-1.8-20
100 1.8 40 HVMB-A-100-1.8-40
100 1.8 60 HVMB-A-100-1.8-60
80 2.1 20 HVMB-A-80-2.1-20
80 2.1 40 HVMB-A-80-2.1-40
80 2.1 60 HVMB-A-80-2.1-60

HVMB-B

100 2.1 20 HVMB-B-100-2.1-20
100 2.1 40 HVMB-B-100-2.1-40
100 2.1 60 HVMB-B-100-2.1-60
100 1.8 20 HVMB-B-100-1.8-20
100 1.8 40 HVMB-B-100-1.8-40
100 1.8 60 HVMB-B-100-1.8-60
80 2.1 20 HVMB-B-80-2.1-20
80 2.1 40 HVMB-B-80-2.1-40
80 2.1 60 HVMB-B-80-2.1-60

Base bitumen
100 2.1 20 Base-100-2.1-20
100 2.1 40 Base-100-2.1-40

2.3. TS Tests

TS tests were performed to collect the complex modulus and phase angle of HVMB
and base bitumen before and after aging at 58 ◦C, 64 ◦C, 70 ◦C, 76 ◦C, and 82 ◦C. In order
to compare the rheological properties of aged bitumen under different thermal oxygen
environments, the same test parameters were selected for all samples. Specifically, a
sinusoidal oscillating load with a frequency of 10 rad/s ± 0.1 rad/s was applied in a
strain-controlled mode with a strain level of 10%.

2.4. MSCR Tests

The MSCR tests were performed to obtain a nonrecoverable creep compliance along
with percent recoveries of bitumen at 0.1 and 3.2 kPa with reference to AASHTO T-350 [19,20].
Specifically, this test was conducted through a constant stress creep of 1 s, followed by a
zero-stress recovery period of 9 s, with 20 cycles at 0.1 kPa and then 10 cycles at 3.2 kPa.
The testing temperatures consisted of 58 ◦C, 64 ◦C, 70 ◦C, and 76 ◦C.

2.5. GPC Tests

GPC tests were used to measure the molecular size distribution of HVMB before
and after aging. Before tests, approximately 35 mg of HVMB was dissolved in 10 mL of
tetrahydrofuran to prepare a bituminous solution. Afterwards, the prepared solution was
injected into the manual sample injector of GPC. After about 40 min of testing, the raw
distribution curve of the molecular size was exported. Considering the effect of bitumen
concentration on the collected signal response, the normalization method was used to
eliminate the effect of different sample concentrations on the results, which is helpful
to qualitatively compare the molecular weight change caused by aging [21]. Based on
the research conducted by Daly et al. [22], the GPC chromatogram of polymer-modified
bitumen can be divided into three components, including polymers, asphaltenes, and
maltenes, as shown in Figure 2.
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Figure 4b. Then, the high-temperature sensitivity coefficient of each sample before and 
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temperature sensitivity does not show a consistent monotone change. Specifically, when 
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Figure 2. The schematic of the GPC chromatogram division.

3. Results and Discussion
3.1. Complex Moduli and Phase Angles
3.1.1. Complex Moduli

The complex moduli of two kinds of HVMB and one kind of base bitumen aged under
different thermal oxygen conditions were obtained through TS tests. Figure 3 shows the
measured complex moduli at 58 ◦C. It can be seen that HVMB has the higher complex
modulus compared with base bitumen. With the extension of aging time, the complex
moduli of two kinds of HVMB increase gradually. Furthermore, under the same aging time,
the higher the temperature and pressure, the higher the aging degree of HVMB. Compared
with pressure, temperature has a more significant effect on aging. Similarly, the measured
complex modulus at 64, 70, 76, and 82 ◦C also presents a consistent law. Due to space
constraint, the specific results are no longer listed.
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Considering that the logarithmic complex modulus exhibits a good linear change
with temperature at high temperature [23], the high-temperature sensitivity of HVMB can
be evaluated by calculating the sensitivity coefficient. Specifically, the high-temperature
sensitivity coefficient is the value of the slope obtained by regression, as shown in Figure 4a.
When the absolute value of the slope is larger, the sample is more sensitive to high tempera-
ture. Based on this method, the regression equations were obtained, as shown in Figure 4b.
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Then, the high-temperature sensitivity coefficient of each sample before and after aging
was collected, as illustrated in Figure 5. It can be found that although the complex modu-
lus of HVMB increases gradually with the extension of aging time, the high-temperature
sensitivity does not show a consistent monotone change. Specifically, when the aging time
of the PAV was set to 20 h, samples aged by different thermal oxygen conditions, includ-
ing temperature and pressure, present different changes of the temperature sensitivity.
Given that the temperature sensitivity of base bitumen changed monotonously with the
progress of aging in Figure 5c, this non-monotonic change of high-temperature sensitivity
of HVMB can be attributed to the effect of thermal oxygen conditions on the degradation
of high-viscosity polymers and the aging of base bitumen.
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3.1.2. Phase Angles

At the same time as the collection of the complex moduli, the phase angles of the
samples were obtained, as shown in Figure 6. It can be found that compared with base
bitumen, two kinds of HVMB have smaller phase angles. With the increase in test tem-
perature, the phase angle of HVMB did not increase monotonously, especially for some
aged samples, which is different than the change law of phase angles of base bitumen
in Figure 6g. This occurred because the apparent viscoelasticity of HVMB is the result
of competition between base bitumen and polymers, whose temperature sensitivity is
different. Furthermore, through comparing the change of phase angles with the extension
aging time of samples aged by different pressures and temperatures, it can be found that
various samples of HVMB present different change laws of phase angles when aged by
PAV for 20 h and 40 h, while samples show a similar change law of phase angles when aged
by PAV for 60 h. This interesting phenomenon indicates that pressure and temperature
directly affect the relative rate of polymer degradation and base bitumen aging because the
relative rate determines the measured phase angle. Moreover, the similar change laws of
phase angles of various samples aged by PAV for 60 h reveal that the effect of pressure and
temperature is no longer significant when the aging time is long enough.
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3.2. Creep and Recovery Properties
3.2.1. Creep and Recovery Characteristics of Different Cycles

Given that Jnr 3.2 of SBS-modified bitumen under each cycle is obviously discrete ac-
cording to previous research [19,21], the creep and recovery characteristics of HVMB under
different cycles were analyzed through taking HVMB-A-virgin as an example. Specifically,
the strain variation of each cycle under 3.2 kPa was calculated according to the related
method [19,21], as shown in Figure 7a. It can be intuitively found that the strain change
of each cycle under 3.2 kPa of stress is not completely consistent. Furthermore, for the
purpose of quantitatively characterizing the difference of strain in each cycle, the coefficient
of variation of Jnr 3.2 in different cycles was calculated according to the order from back to
front, as shown in Figure 7b. At the initial stage of loading, the strain change of each cycle
is quite different. With the increase in the number of cyclic loadings, the difference of each
cyclic strain gradually decreases. In detail, the coefficient of variation in the last six cycles
is less than 10%. Also, other HVMB before and after aging presents similar characteristics.
Therefore, in this study, the R 3.2 and Jnr 3.2 were calculated using the strain data of the
last six cycles. However, it should be noted that compared with SBS-modified bitumen in
the other research [19], HVMB has more obvious strain instability, which can be attributed
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to the higher polymer content. Whether the loading cycle of 3.2 kPa in AASHTO T-350 for
only ten times is small needs to be further verified in the future.
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3.2.2. Creep and Recovery Properties before and after Aging

Based on the above findings, the R 3.2 and Jnr 3.2 of two kinds of HVMB and one
kind of base bitumen before and after aging were obtained at 58 ◦C, as shown in Figure 8.
Obviously, compared with base bitumen, HVMB has higher R 3.2 and lower Jnr 3.2, which
indicates that HVMB has the better ability of elastic recovery and anti-deformation. After
long-term aging, the elastic recovery of bitumen increases, while the creep deformation
decreases significantly. For HVMB-A, the extension of aging time leads to the increase in
R 3.2 and the decrease in Jnr 3.2, which is consistent with the characteristics of base bitumen.
Moreover, the increase in temperature and pressure results in the increase in elastic recovery
and decrease in creep deformation. Similarly, the Jnr 3.2 of HVMB-B decreases with the
extension of aging time, as illustrated in Figure 8e. However, the R 3.2 of HVMB-B does not
change monotonously with aging, which is different with the aging law of base bitumen in
Figure 8c. This interesting finding can be attributed to the degradation of modifiers and the
aging of base bitumen. Actually, the degradation of high-viscosity modifiers reduces the
elasticity of modified bitumen, while the aging of base bitumen increases the elasticity of
modified bitumen. Thus, because of higher R 3.2, it can be deduced that when HVMB-B
is aged by PAV for 20 h, the aging of base bitumen is more significant because of the
characteristics of base bitumen aging in Figure 8c. Then, the degradation of modifiers is
more obvious. Furthermore, it can be found that when HVMB-B is aged by PAV for 20 h,
with the decrease in pressure, creep and recovery properties show an increase in R 3.2
and decrease in Jnr 3.2, which is different from the law of creep and recovery under other
aging times. This finding indicates that for HVMB-B, the reduction of pressure inhibits the
degradation of high-viscosity modifiers.
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3.3. Molecular Size Distribution

GPC tests were selected to evaluate the molecular size distribution of HVMB-A before
and after aging. Figure 9 presents the normalized GPC chromatograms. Obviously, poly-
mer peaks continuously move to the right with aging, which verifies that high-viscosity
modifiers degrade and then convert into relatively small molecule compounds. In contrast,
maltenes transform into asphaltenes with aging, showing enhanced response between
22 and 27 min. Considering that the molecular weight of degraded modifiers partially
overlaps with that of asphaltenes [24], only the polymer phase is magnified to further
analyze the effect of thermal oxygen conditions on the degradation of high-viscosity mod-
ifiers. It can be found from Figure 10a that the degradation degree of HVMB-A aged by
PAV for 20 h under different thermal oxygen conditions is significantly different. Thus,
temperature and pressure can be considered as the key factors affecting the degradation of
high-viscosity modifiers. Specifically, increasing temperature and pressure can accelerate
the degradation of modifiers. Compared with pressure, the effect of temperature is more
significant. Furthermore, after PAV aging for 40 h, the GPC chromatograms coincide with
the changes of aging time and thermal oxygen conditions, as shown in Figure 10b,c, which
indicates that high-viscosity modifiers had been fully degraded.
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3.4. Comprehensive Analysis

The modulus of HVMB increases gradually with the extension of aging time, indicating
that HVMB is aged continuously. Given that the degradation of high-viscosity modifiers
and aging of base bitumen have the opposite effect on the change of viscoelasticity, the
collected viscoelastic properties are the results of the competition between the degradation
of high-viscosity modifiers and aging of base bitumen. This directly illustrates that the
temperature sensitivity, phase angles, R 3.2, and Jnr 3.2 of two kinds of HVMB after aging do
not show consistent regular change. Furthermore, it can be clearly found that the changes
of temperature and pressure do not affect the monotonic growth of the modulus of HVMB
but has a significant effect on the viscoelastic law before and after aging, which indicates
that thermal oxygen conditions directly affect the relative rates of modifier degradation
and bitumen aging.

Considering that the molecular distribution obtained by GPC can characterize the
degradation of modifiers, the GPC results are always used to explain the macroscopic test
result [19,25]. It can be found from Figures 5a and 10 that the different change laws of
temperature sensitivity of HVMB-A aged by PAV for 20 h under different thermal oxygen
conditions are related to the degradation degree of modifiers. After aging by PAV for
40 h, the degradation of high-viscosity modifiers gradually stops, while the aging of base
bitumen is dominant, which shows that the change of the temperature sensitivity coefficient
under different thermal oxygen conditions gradually tends to be the same. Similarly, in
Figure 6, when HVMB-A is aged by PAV for 60 h, the phase angles under different thermal
oxygen conditions tend to be the same. In contrast, the inconsistency of phase angles under
different thermal oxygen conditions before aging by PAV for 60 h can be explained by the
different degradation degree of high-viscosity modifiers.
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4. Conclusions

This present study investigates the effect of thermal oxygen conditions on the long-
term aging behavior of HVMB through DSR and GPC methods. Firstly, the long-term aging
of HVMB and base bitumen under different thermal oxygen conditions was simulated by
adjusting the parameters of PAV tests. Then, the rheological properties of HVMB and base
bitumen before and after aging were tested by TS tests and MSCR tests. Finally, GPC tests
were conducted to monitor the molecular size distribution of HVMB-A. According to the
collected results, the following conclusions can be drawn:

(1) Decreasing aging temperature and pressure can reduce the aging degree of HVMB.
Also, the aging temperature and pressure affect the change of temperature sensitivity and
viscoelastic properties, which can be attributed to the effect of the relative rate of modifier
degradation and base bitumen aging.

(2) The creep and recovery of HVMB have obvious instability under each cycle. In
the future, it is necessary to further explore the MSCR test suitable for HVMB. With the
extension of aging time, the creep and recovery properties of two kinds of HVMB are
not completely the same, but HVMB-A and HVMB-B aged by PAV for 60 h show the
characteristics of larger elastic recovery and less creep compared with virgin HVMB.

(3) The results of the GPC tests show that pressure and temperature significantly affect
the degradation rate of high-viscosity modifiers at the initial stage of long-term aging.
With the progress of long-term aging, there is no obvious degradation of modifiers when
degrading to a certain extent. These results demonstrate that at the initial stage of long-
term aging, the rheological properties of HVMB are mainly affected by the degradation of
modifiers. Afterwards, the rheological properties of aged HVMB are mainly affected by the
aging of base bitumen.
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