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Abstract: Protein-based films and coatings are highly biodegradable and represent sustainable
alternatives to petroleum-based materials. These materials possess commendable barrier properties,
effectively safeguarding against oxygen, moisture, and aroma compounds, rendering them well-
suited for various food packaging applications. Beyond their role in food packaging, coatings and
films have significant applications in the biomedical and pharmaceutical domains. Their inherent
biocompatibility and controlled release properties make them valuable for applications such as drug-
delivery systems, wound dressings, and tissue-engineering scaffolds. Moreover, the adaptability of
these films to exhibit stimuli-responsive behavior opens avenues for on-demand drug release and
sensing capabilities. Despite these promising attributes, challenges persist in terms of the mechanical
strength, water resistance, and scalability of the processing of protein-based films and coatings.
Ongoing research endeavors are dedicated to refining protein extraction methods, incorporating
reinforcing agents, and implementing strategies to optimize the overall performance of these materials.
Such efforts aim to overcome existing limitations and unlock the full potential of protein-based films
and coatings in diverse applications, contributing to the advancement of sustainable and versatile
biomaterials.

Keywords: barrier properties; food packaging; coatings; films

1. Introduction

Films and coatings prepared from protein are gaining keen interest from researchers
because of their easy handling, utilization in packing, usefulness in the shelf-life enhance-
ment of fruits, and advantages over synthetic films/coatings [1]. The broad spectrum of
uses of protein-based films and coatings make them a good choice for commercial-scale
operations. Films and coatings prepared using protein could also be utilized as a carrier
to deliver antioxidant- and antimicrobial-rich formulations [2]. Protein is one of the im-
portant macromolecules that exist in natural resources in two different forms (globular or
fibrous). Globular protein has good solubility in water as well as aqueous solutions of salts
and acid bases. Fibrous protein is considered as water insoluble and plays a vital role in
providing structural support. Both forms of protein are important for sustaining the rou-
tine functioning within the body of living organisms. The physical and chemical features
of protein depend on the concentration of amino acid residues and their amendment in
polymer chains [3]. Collagen (fibrous) is widely being utilized in the synthesis of edible
films [4]. The characteristic features of films prepared from protein of different sources
(mung bean, corn zein, gelatin, wheat gluten, whey protein, soy, and gelatin) have been
well documented [5–8]. Protein-based films prepared from different sources are presented
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in Tables 1 and 2. Food packaging trends are shifting from traditional packing (metal, glass,
polymers, and paper) to edible or biodegradable material. Researchers are now focusing on
the enhancement of the shelf-life of eatable materials using nutrient components isolated
from either other foods or food residue [9]. However, the tear and tensile strength is one of
determinant factors which should be kept in mind before preparing such coatings or films.
Utilizing the biodegradable coatings/films for packing and shelf-life enhancement open
up a new era, as its use does not cause any serious ecological issues. The application of
protein-based coatings/films in different sectors generated our interest to write this review
paper. In this review, the authors have tried their best to cover the different aspects, like the
application and the role of protein-based films/coatings in different sectors. This review
paper helps to fill the remaining gap related to protein-based coatings/films in-between
the existing knowledge on this topic.

Table 1. Properties of protein-based films prepared using different resources.

Type of Film Ultimate Strength
(MPa)

Thickness
(µm) Water Content (%) Water Vapor

Permeability References

Silk protein-based film 0.4–19 -- -- -- [10]

Whey protein–kefiran
composite films 3.16–3.95 129.9–153.3 24.44–28.80 -- [11]

Whey protein–cellulose
nanocrystal packaging films -- 166.05–173.2 14.84–18.05 2.82–3.18

(g·s−1·m−1·Pa−1) [12]

Whey protein-based edible film 0.7–1.8 100–160 -- 6.2–12.8
(g·mm/d·m2·kPa) [13]

Soy protein isolate/sodium
alginate edible films 3.52–7.12 -- -- 3.55–5.15

(g·mm/(m2·h·kPa)) [14]

Soy protein isolate film 7.09–7.88 -- -- 0.86–1.19
(×10−10 g·m−1·s−1·Pa−1) [15]

Soy protein-isolate-based film 2.01–4.4 150–180 11.4–14.5 -- [16]

Soybean protein isolate films -- 126–232 17.93–20.11 0.60–0.76
(g·mm h−1 m−2 kPa−1) [17]

Faba bean protein films 4.8–9.3 258.7–372.5 13.7–15.5 -- [18]

Graphene oxide/cinnamon
bark oil nanocomposite
packaging films

8–23 19–29 0.06–0.10 1.3–2.9
(×10−10 g m−1 s−1 Pa−1) [19]

Wheat gluten protein films -- 47.89–69.37 1.73–2.13 7.16–17.07
((g·mm)/(m2·d·kPa)) [20]

Edible films from the protein of
a brewer’s spent grain -- -- 17.7–29.69

3.03–4.58
(g·m/m2·s·Pa)

× 10−10
[21]

Almond protein isolate films 5.55–12.77 104–126 -- 165–166.1
(×10 g m−1 s−1 Pa−1) [22]

Composite films based on
egg-white protein -- -- 9.38–13.95 -- [23]

Table 2. Gelatin-based films for various purposes.

Source Purpose References

Gelatin Utilizing gelatin as a bioactive nanodelivery system for applications in functional foods [24]

Gelatin-based coating A gelatin-based coating film reinforced with multifunctional carbon dots for the preservation of
strawberries [25]

Acylated pectin/gelatin-based films
Characterization of acylated pectin/gelatin-based films containing alkylated starch crystals:
Assessment of antioxidant and antibacterial activities, and examination of coating preservation
effects on golden pomfret

[26]

Fish gelatin Preparation, characterization, and application of emulsifier-free fish gelatin-based films exhibiting
outstanding antioxidative and antibacterial activity for coating preservation of fish fillets [27]



Coatings 2024, 14, 32 3 of 24

Table 2. Cont.

Source Purpose References

Gelatin/agarose-active coatings Formulation of gelatin/agarose active coatings incorporating Ocimum gratissimum L. essential oil to
improve the storability of ‘Booth 7’ avocados [28]

Fish gelatin A novel edible coating comprising fish gelatin infused with açaí oil to extend the postharvest
shelf-life of tomatoes [29]

Gelatin–TiO2–Al2O3 nanocomposite Impact of gelatin-TiO2-Al2O3 nanocomposite coatings on improving the wear and corrosion
resistance of SKD11 steel [30]

Fish gelatin Creation of electrospun fish gelatin film incorporating lauroyl arginate ethyl and its utilization in
the preservation of large yellow croaker (Pseudosciaena crocea) [31]

Gelatin Environmentally promising food packaging utilizing a photodynamic-responsive gelatin-based
coating with high-utilization curcumin-loaded bilayer nanoencapsulation [32]

Furcellaran–gelatin Formulation of active double-layer gel coatings using furcellaran-gelatin and aqueous butterfly pea
(Clitoria ternatea) flower extract to extend the shelf-life of salmon (Salmo salar) [33]

Nanocomposite gelatin Creation of a nanocomposite gelatin-based film using Pickering emulsion containing chitin
nanoparticles [34]

Gelatin Advancements in gelatin-matrix composite films: The incorporation of vitamin C adducts
improves the optical characteristics of gelatin films [35]

Gelatin-coated ZnNPs Coating of biodegradable biopolymer films with organic gelatin-encapsulated ZnNPs [36]

Fish gelatin Utilization of fish gelatin films containing cinnamaldehyde and its sulfobutyl ether-β-cyclodextrin
inclusion complex, with application in fish preservation [37]

Cellulose–gelatin Innovative cross-linking of nontoxic biopolymers for cellulose-gelatin films derived from waste
avocado seeds [38]

Chicken gelatin Optimization and characterization of biodegradable films made from chicken gelatin crosslinked
with oxidized phenolic compounds [39]

Gelatin–sodium alginate Eco-friendly packaging for extending the shelf-life of raw minced beef using a gelatin-sodium
alginate film incorporated with date pits extract [40]

Gelatin-based hydrogel Customizing the surface and rheological properties of hydrogel films based on gelatin through
indirect cold plasma treatment for engineering applications [41]

Chitosan–gelatin
A holistic approach to edible coating with chitosan-gelatin incorporating
β-cyclodextrin/lemongrass essential oil inclusion complex—Characterization and application in
the food industry

[42]

Cellulose/gelatin-carboxymethyl
chitosan

Bilayer films of ethyl cellulose/gelatin-carboxymethyl chitosan, enriched with polyphenols from
Euryale ferox seed shells, for the preservation of cooked meat [43]

Gelatin Influence of various nanocellulose types on the structure and characteristics of gelatin films [44]

Gelatin/sodium carboxymethyl cellulose The direct incorporation of vanillin enhanced the physicochemical properties and antibacterial
activities of gelatin/sodium carboxymethyl cellulose composite films [45]

Carboxymethyl chitosan–gelatin A novel transparent film wound dressing composed of carboxymethyl
chitosan-gelatin-mesoporous silica nanoparticles incorporating Myrtus communis L. extract [46]

Chitosan–gelatin Influence of an edible coating comprising chitosan-gelatin with nano-encapsulated clove ethanol
extract on the cold storage of chilled pork [47]

Polyurethane/gelatin film Antibacterial films for strawberry packaging using waterborne polyurethane/gelatin based on
castor oil [48]

Gelatin–sodium caseinate Creation of a high-oxygen-barrier film comprising gelatin and sodium caseinate, enriched with
elderberry (Sambucus nigra L.) extract, and assessment of its antioxidant capacity on pork [49]

Chitosan–fish skin gelatine Impact of edible coatings made from chitosan and fish skin gelatin containing black tea extract on
the quality of minimally processed papaya during refrigerated storage [50]

Chitosan–gelatin Impact of blending and layer-by-layer assembly techniques on chitosan–gelatin composite films
enhanced with curcumin nanoemulsion [51]

Gelatin Formulation and characterization of an active packaging film based on gelatin loaded with eugenol
nanoparticles, with application in the preservation of chicken [52]

Gelatin–serum Gelatin-serum plasma film infused with curcumin to enhance antioxidant and antibacterial
properties for application in fresh pork packaging [53]

Gelatin Innovative “all-in-one” multifunctional gelatin-based film designed for the preservation and
monitoring of beef freshness [54]

Gelatin/chitosan-based film Preservative impact of films based on gelatin and chitosan infused with lemon essential oil on the
storage of grass carp (Ctenopharyngodon idellus) fillets [55]

Alginate–gelatin Prolonging the shelf-life of cheese through the use of eco-friendly sodium alginate-gelatin films
reinforced with nanoclay [56]

Gelatin Cross-linked gelatin film enhanced with green carbon quantum dots for bioactive food packaging [57]

Starch/gelatin Impact of various natural wax types on the physicochemical properties of starch/gelatin edible
films produced through extrusion blowing [58]

Gelatin Analysis of the thermal behavior and structural properties of a commercially produced high-solids
confectionery gel containing gelatin [59]
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2. Historical Development

Films/coatings are being prepared to create a barrier between the fruit surface and the
environment so that they can protect the fruits from damage due to moisture loss [60,61].
Such fruitful formations to protect the edible materials are recorded in Japan, where 15th-
century films/coatings were prepared to preserve the food. These films were prepared
using soymilk. Protein-based edible films and coatings have undergone significant his-
torical development, with advancements made over several decades. The exploration
of proteins as materials for food packaging began in the 1960s, as researchers sought
biodegradable alternatives to traditional plastic packaging. Proteins were identified for
their abundance, biodegradability, and food safety. During the 1970s, casein, a protein
derived from milk, was one of the earliest protein sources used to create edible films.
Casein films exhibited favorable mechanical properties and barrier characteristics, making
them suitable for packaging dairy products, like cheese and butter [62,63]. In the 1980s,
soy protein isolates gained attention as a viable option for edible coatings and films. Soy
protein films showed improved flexibility and mechanical strength. They were employed
in extending the shelf-life of fruits, vegetables, and meat products. In the 1990s, collagen,
a protein found in animal tissues, was explored for its film-forming purposes. Collagen
films displayed excellent transparency and gas barrier properties, making them suitable for
packaging meats and seafood. Throughout the 2000s, researchers focused on enhancing
the processing techniques for protein-based films and coatings. Methods such as solvent
casting, extrusion, and casting with edible plasticizers were refined to achieve improved
film properties, uniformity, and manufacturing efficiency. Recent advancements have
focused on developing protein-based films and coatings with additional functionalities.
These include incorporating antimicrobial agents, antioxidants, and bioactive compounds
to enhance the food safety and prolong the shelf-life. These innovations have opened up
possibilities for intelligent packaging solutions with enhanced functionality. Researchers
have also explored alternative protein sources for film-forming materials. This includes
proteins derived from agricultural byproducts, like wheat gluten, corn zein, and rice bran
proteins. These alternative sources offer the potential for the sustainable and cost-effective
production of edible films. Protein-based edible films and coatings have found commercial
applications in various food industries. They are utilized for packaging a wide range of
products, including baked goods, snacks, confectionery, and fresh produce. Additionally,
they act as edible barriers to control moisture, oxygen, and flavor transfer in food systems.

Understanding gelatin-based coatings and films involves delving into the historical
development and evolution of materials derived from gelatin across diverse applications.
Derived from animal collagen, gelatin has found utility in the food industry, in pharmaceu-
ticals, and in other domains. Gelatin boasts a rich history, with indications of its utilization
in food and medicinal contexts [7,64]. Gelatin’s prevalence endured in pharmaceutical
formulations, extending to coatings for tablets and capsules. The late 20th century marked a
significant uptick in the utilization of gelatin in coatings and films. These applications were
explored in the realm of controlled-release drug-delivery systems, where gelatin coatings
allowed for the gradual release of drugs over time [65–68]. Simultaneously, gelatin-based
films gained traction in the food packaging industry due to their biodegradability and
effective barrier properties [6,69,70]. Researchers are actively investigating methods to
modify gelatin through chemical or physical processes, tailoring its properties for specific
applications. The biodegradability and comparatively low environmental impact of gelatin
have heightened its appeal in sustainable packaging solutions. Ongoing research endeavors
aim to broaden the scope of applications for gelatin-based coatings and films, exploring
innovative formulations and processing techniques. The sustainability and biocompatibility
of gelatin position it as a promising material for future advancements in areas such as food
packaging, drug delivery, and the development of biodegradable plastics [35,71–74]. As
the demand for sustainable packaging continues to rise, the development of protein-based
edible films and coatings is an area of ongoing research [1,75]. Efforts aim to improve their
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mechanical properties, barrier characteristics, and functionality to meet the evolving needs
of the food packaging industry.

3. Improvement of Protein-Based Films and Coatings

Thin layers of edible or nonedible proteins can be used as protein-based films or coat-
ings on food or other surfaces. There may be certain drawbacks of biodegradable materials
(coating/films), such as the low mechanical strength and water barrier qualities [76,77]. The
qualities of coatings/films based on proteins can be enhanced using a variety of formation
techniques, as shown in Figure 1 and Table 3.
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Figure 1. Representation of protein film/coating modification.

Table 3. Prevalent techniques of protein modification for film and coating applications.

Protein Method of Film
Formation Modification/Additive Observation Reference

Canola meal-derived
protein isolates Solvent casting

Using fillers (oleic
acid(OA)-modified (NCC)
(OA-NCC))

OA-NCC enhanced the canola protein nanocomposite film
tensile strength by 3%.
The OA-NCC 7% nanocomposite films increased the break
elongation by 130%.
The protein and OA-NCC cohesion increased the thermal
stability and water barrier properties.

[78]

Soy protein isolate -
Free-radical polymerization
(temperature, 60 ◦C; time, 2
h; initiator, AIBN)

The multifunctional soy protein (SP)-based adhesive had a
strong bonding, with a good coating and pressing strength
for the wet veneer. The pressing strength was 0.45–0.85 MPa,
the bond strength was 0.35–0.65 MPa, the water contact angle
was 105θ, and the oil contact angle was 115θ.

[79]

Whey protein concentrate
(WPC) and
carboxymethyl cellulose
(CMC)

Solvent casting method

Modified by
transglutaminase (TG)
(concentration—0.5, 1, 1.5%;
pH—−7; casting
temperature—25 ◦C)

CMC as a protein network filler increased the WPC film
characteristics, while TG improved the mechanical qualities.
Compared to the WPC film, the composite (1:1) film with 10
U/g protein of TG had a maximum tensile strength of
13.34 MPa.

[76]

Crambe protein isolates
(CPI) Compression molding pH modification (pH of

4–10)

Chemical modification of CPI increased the cross-linking by
20%, increased the tensile strength by 15%, and decreased the
water vapor permeability by 10%.

[80]

Myofibrillar protein Casting method
Changing the strength of
the interaction between a
protein and a filler material

Superior mechanical and water barrier properties using
nanocrystalline cellulose, which improved the mechanical
strength (elongation at break: 94.43% and tensile strength:
6.68 MPa) and the water vapor barrier
(10.01 × 10−9 g m−1 s−1 Pa−1).

[81]

Quinoa protein Casting method pH modification Antibacterial and antioxidant properties of the film decreased
with improved physicochemical and structural properties. [82]

Soy protein isolates - Conformation modification
Strengthened the hydrophobic interaction, which created a
strong network structure and increased the SPI-based
film-storage stability and tensile strength.

[83]
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3.1. Chemical Treatment

Cross-linking is an extremely effective technique for enhancing a film’s mechanical
strength, cohesiveness, water resistance, and water barrier qualities [84]. Several protein
functional groups can be cross-linked. Protein networks can interact with many different
kinds of active substances [85]. Functional groups use their reactive side groups as a means
of accomplishing this. The functional qualities of the films can be improved by altering
this by chemical, physical, or enzymatic cross-linking [86]. Theoretically, a longer chain
structure with reduced permeability and a higher tensile strength should result from the
increased protein interaction after the chemical treatment [87]. The soy protein isolate’s
tensile strength, oxygen permeability, and water vapor permeability were not affected
by the alkaline treatment, but the films became more clear/uniform and had fewer air
bubbles [88]. Aldehydes, such as glutaraldehyde, glyoxal, and formaldehyde, along with
other naturally occurring cross-linking chemicals, have been utilized as chemical agents to
covalently cross-link proteins [85]. Formaldehyde serves as a valuable cross-linking agent
with a broad reaction specificity, effectively utilized in protein films. It interacts with the side
chains of cysteine, tyrosine, histidine, tryptophan, and arginine, along with the amine group
of lysine. Formaldehyde is a compound with a single functional group, although it can
undergo bifunctional reactions and cross-linking as a consequence. Glutaraldehyde reacts
with lysine, cysteine, histidine, and tyrosine, but it is more selective than formaldehyde.
Glyoxal uses the side chain groups of arginine and lysine at an alkaline pH to cross-link the
proteins [84,88].

Essentially, the interaction between formaldehyde and proteins comprises two steps:
the initial formation of the methylol molecule, followed by the subsequent creation of
methylene bridges. These bridges serve as cross-links between protein chains. A study re-
vealed the impact of aldehyde cross-linking on the characteristics of films rich in gluten [89].
They found that the incorporation of cross-linking agents, like formaldehyde, glutaralde-
hyde, and glyoxal, decreased the water vapor permeability values of films rich in glutenin
by approximately 30%. Formaldehyde produced the highest tensile strength values, fol-
lowed by glutaraldehyde and glyoxal [90].

3.2. Enzyme-Based Treatment

Edible films derived from proteins demonstrate excellent barrier properties against
gases, organic vapors, and oils. They are more environmentally friendly because they can
be composted and biodegraded. They can be safely used in food packaging because they
are edible and nontoxic. They can be altered to have a wide range of useful characteristics,
including UV-blocking, antibacterial, and antioxidant capabilities. However, protein films’
limited use as a packing material is due to their poor mechanical properties and high
water permeability [91]. Numerous studies have focused on improving the functionality of
protein-based edible films. Through the cross-linking of polymer chains, it becomes feasible
to modify the polymer network and enhance the overall performance of these films [82]. En-
zymatic cross-linking techniques are one efficient way to enhance the mechanical strength
and barrier characteristics of protein-based edible films. Enzymes, such as lipoxygenase,
lysyl oxidase, polyphenol oxidase, transglutaminase, and peroxidase, have been employed
to cross-link proteins [76]. However, a specific enzyme capable of catalyzing covalent cross-
linking processes between proteins, resulting in the formation of high-molecular-weight
(MW) biopolymers, is known as transglutaminase. A glutamine residue’s gamma-glutamyl
amide link is broken by the TGase enzyme, creating a gamma-glutamyl thioester interme-
diate. An isopeptide bond is created when the gamma-glutamyl thioester intermediate
combines with the epsilon amino group of a lysine residue on another protein [92].

The ε-amino groups of lysine residues (acyl acceptor) and λ-carboxy amide groups of
glutamine residues (acyl donor) catalyze acyl transfer reactions [93]. The transglutaminase
polymerization of casein, soy proteins, and gelatin, among other protein sources, has been
documented [94,95]. Experimental conditions and the sources of protein were found to
affect the gel strength differently. The order and strength of the cross-links created, as



Coatings 2024, 14, 32 7 of 24

well as new covalent linkage degree, could obstruct the “physical” cross-linkages that
occur during the renaturation and the triple helix during gel formation, which determined
the improvement in the protein gel strength subjected to transglutaminase activity [96].
Transglutaminase can successfully introduce covalent bonds into films made from gluten
that have been slightly aminated. The formation of covalent bonds resulted in the synthesis
of high-molecular-weight polymers, potentially contributing to the heightened insolubility
and reduced hydrophobicity. Mechanical characteristics promulgated by the application of
transglutaminase resulted in the formation of covalent bonds, which improved the film’s
strength, durability, and stretchability [97].

3.3. Irradiation Treatment

The utilization of radiation for inducing cross-linking was found to be a valuable tech-
nique in improving the barrier and mechanical properties of polysaccharides and edible
films [98]. Radiation generally modifies the conformation of proteins, oxidizes amino acids,
breaks covalent bonds, and produces free radicals within the protein. Electrostatic and
hydrophobic interactions, the creation of disulfide bonds, and interprotein cross-linking
reactions can all turn proteins into higher-molecular-weight aggregates. Radiation has
the potential to harm DNA, and one way it achieves this is by producing free radicals.
Extremely reactive chemicals, known as free radicals, have the ability to damage other
molecules, including proteins. Free radicals can cause proteins to unfurl and reveal their
intrinsic disulfide links when they attack them. Higher-molecular-weight aggregates can
then be formed by the reaction of these disulfide bonds with one another. Additionally,
radiation can directly cross-link proteins. Numerous processes, such as the creation of
noncovalent bonds like hydrogen bonds and hydrophobic interactions, as well as the de-
velopment of covalent bonds between amino acid side chains, can cause this [99]. Exposing
solutions that form films to radiation can modify the molecular characteristics of proteins
through the generation of hydroxyl and superoxide anion radicals [87,100]. The creation of
covalent cross-linkages in the protein solution following irradiation could account for the
observed alterations in the protein films. At lower doses, there was the minimal formation
of high-molecular-weight aggregates, but a noticeable increase was observed at higher
doses. Radiation treatments, including gamma irradiation, have been employed to modify
proteins with the intention of improving protein films [101]. To increase the milk protein
films’ chemical stability and water vapor permeability, gamma irradiation cross-linking can
be employed. The outcomes demonstrated that resistance towards enzymatic and microbial
biodegradation was enhanced and water vapor permeability was significantly (p < 0.05)
decreased upon gamma irradiation (200 Gy) [102]. Additionally, there was a noticeable
rise in the amount of high-molecular-weight proteins in the film-forming solution. Two
theories could account for the impact on proteins by gamma irradiation: (i) more molecular
residues engaged in the interactions between molecules; (ii) the development of covalent
cross-links between and/or within molecules in the film-forming solutions [103].

3.4. Modification Using Hydrophobic Material

Protein films typically possess good mechanical qualities. However, protein films
are less effective moisture barriers due to their hydrophilic nature [104]. Lipid films, on
the other hand, function well as moisture barriers, but have a waxy taste, are typically
opaque, and are relatively inflexible and unstable. A multicomponent system that combines
lipids to act as a moisture barrier and proteins to create a continuous, cohesive network
improves the performance of the films [105]. Lipids have the capacity to disperse within
the hydrocolloid matrix, resulting in the formation of emulsified films, or they can create a
layer over it, leading to the development of bilayer films. Emulsified films have garnered
more attention compared to bilayer films. Two models have been proposed to explain the
transfer mechanism through emulsified films [84]. In the “microvoid model,” the mass
transfer of gases and vapors occurs through microvoids that emerge during emulsion
drying. These microvoids form between the microparticles of the hydrophobic material
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and the hydrocolloid matrix [5]. Another model, the “micro pathway model,” posits an
alternative explanation. In this model, mass transfer occurs through the high polymer
matrix itself. This phenomenon arises because proteins often offer minimal resistance to
the passage of gases and moisture, and they are frequently highly compatible with these
elements. The addition of lipids to protein films has the potential to introduce flexible
domains within the film and/or disrupt interactions between polymer chains. Additionally,
lipids may influence the mechanical properties of protein films due to their limited cohesive
structural integrity. The incorporation of beeswax (5%–10%) significantly enhanced the
moisture barrier of films made from wheat gluten (70%) [2]. The combination of wheat
gluten protein and diacetyl tartaric ester monoglycerides not only improved tensile strength,
but also maintained clarity and reduced water vapor permeability. In a laminated whey
protein–lipid film, the water vapor permeability decreased by a factor of 70 compared
to the whey protein film. Giosafatto et al. [94] and Wu et al. [95] engineered composite
films, encompassing laminate and emulsion films, by combining whey protein isolate and
lipids to augment the resistance against water vapor. The emulsion films exhibited a water
vapor permeability that was merely half of that observed in the isolated components. The
lipids functioned as an apparent plasticizer, thereby improving the fracture resistance of
the emulsion films [82]. Brazilian elemi, a highly hydrophobic resinous oil, was blended
with stearic and palmitic acids and incorporated into a gelatin film. Triacetin served as the
plasticizer in all the resulting films, and their physicochemical properties were evaluated.
However, the introduction of lipids led to an increase in the opacity and soluble matter,
accompanied by a decrease in the mechanical resistance [90].

4. Physiochemical Properties

The physical and chemical characteristics of protein-based edible films and coatings
are closely associated with their plasticization properties, mechanical features, thickness,
moisture content, water vapor permeability, sensory attributes, and environmental compat-
ibility. In a study conducted by Bourtoom [106] on mung bean protein films, parameters
such as the heating temperature and pH were identified as having the most significant
impact on the film’s qualities, with a correlation to the heating time. The study revealed
that, at a pH of 9.5 and a temperature of 75 ◦C, the tensile strength reached its highest
(5.70–6.51 MPa), while the elongation at break was at its lowest (32.06%–40.08%). Under
these conditions, the protein content ranged from 19.26% to 27.00%, the film solubility
was between 37.53% and 39.43%, and the water vapor permeability ranged from 11.37 to
16.91 g· mm/m2 day kPa, all at their lowest levels. As the heat temperature and pH of the
film solution increased, the color became more yellow and darker [106].

The moisture content of the packaging plays a pivotal role in both extending the
shelf-life of a product and determining its water permeability. This is also influenced by the
active components within the film or coating. For instance, the residual moisture level after
the drying process affects the rate at which probiotics maintain viability during prolonged
storage and aids in the dissolution of edible films in the mouth [107]. The moisture content
of edible films significantly affects their physical, mechanical, and barrier properties. Edible
films are thin layers of edible materials utilized to wrap or coat food products, providing
protection, preservation, and sometimes enhancing the sensory attributes. The effect of
the moisture content on the properties of edible films can vary depending on the specific
composition of the film and substrate components. The moisture content can affect the
tensile strength and elasticity of the film. In some cases, an increase in the moisture content
may lead to a decrease in the tensile strength and an increase in the elasticity, making the
film more pliable. Increased moisture content may lead to a higher WVP, reducing the
film’s ability to act as an effective barrier against water vapor. The moisture content affects
the film’s sorption capacity, impacting its ability to maintain the quality and stability of the
enclosed food product. Excessive moisture content may create a favorable environment for
microbial growth, potentially reducing the shelf-life of the food product. Scientific reports
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also suggest changes in specific parameters per the protein type used, formulation, and
experimental conditions [10–23].

4.1. Mechanical Characteristics

Ensuring the mechanical strength and extensibility of protein-based films or coatings
is essential for preserving the shelf-life of food products. Processing, packing, and storage
are the first tests for package resistance and food protection [108,109]. The mechanical
properties of films or coatings are affected by structural imperfections, modifications in key
protein-based packaging components, the dispersion and density of intra- and intermolec-
ular interactions among polymer chains, and the type and number of plasticizers [110].

Glycerol, as a plasticizer, plays a crucial role in influencing the mechanical properties of
protein-based food-protection films. It reduces intermolecular tensions within the polymer,
leading to a decrease in the tensile strength and an increase in the elongation at break [111].
A hole and the presence of a cavity can reduce the flexibility of a film or coating. To
safeguard food and withstand production, handling, and storage stress, protein-based
containers must have high mechanical qualities. According to Gialamas et al. [112], the
reduced mass of probiotics had minimal impact on the tensile strength, the elongation at
break, and the modulus of elasticity of the protein-based edible films. However, due to their
mechanical resilience, cellulose-based edible films are more susceptible to the inclusion of
probiotic cells.

Edible films were manufactured using a screw extruder, combining glycerol-plasticized
thermoplastic pea starch (TPS) with either microcrystalline cellulose (MC) or carboxymethyl
cellulose (CMC). The biodegradable polysaccharide underwent analysis, revealing an
increased glass transition temperature and coefficient of elasticity. The incorporation of
microcrystalline cellulose enhanced thermostability, whereas carboxymethyl cellulose had
the opposite effect. The combination of MC and CMC resulted in an increased elongation
at break at a 13% water content and a higher tensile stress. These changes were attributed
to the notable relationship between starch and cellulose derivatives, as elucidated by
Ma et al. [113].

4.2. Thickness

The thickness, water vapor permeability, transparency, and mechanical properties of
protein-based films are interconnected. The thickness of a protein-based film is influenced
by factors such as the preparation method, operational parameters (e.g., pH), and drying
conditions (e.g., temperature) [114]. Soukoulis et al. [115] observed that the addition of L.
rhamnosus GG cells to probiotic-containing edible films did not alter the thickness. How-
ever, in contrast, Soukoulis et al. [115] reported that probiotics in film-forming solutions
affected the film’s thickness. Another study incorporating L. casei into whey-based films
demonstrated a direct impact on the film thickness [116]. There is variability in the findings,
as Pereira et al. noted no change in the film thickness when introducing B. animalis or L. casei
to the whey edible films [117]. This characteristic appears to have no discernible effect
on the optical properties or water solubility. In the case of fish myofibrillar-protein-based
packaging, the relaxation coefficient and film thickness did not influence the elongation at
the break, but they did affect the break resistance [118].

4.3. Water Vapor Permeability

Water vapor permeability (WVP) is influenced by several factors, including the poly-
mer chain mobility, film thickness, and overall film integrity. However, the literature
predominantly focuses on the type and quantity of the plasticizer as the most commonly
addressed factors. The notable advantage of heightened water vapor permeability is the
increased solubility of films derived from proteins. This attribute is directly linked to
an improved release of bioactive substances from modified or active packets that can be
integrated into the protein-based film [19,119].
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4.4. Biodegradability

Protein blends give biodegradable films better physical and mechanical qualities than
when used alone. Adding gelatin to soy protein films improves their strength and flexi-
bility, because gelatin’s linear structure forms a soft, flexible, and elastic gel that provides
a less-organized matrix for the complex mixture of mainly globular soy proteins [120].
Gelatin molecules improved the protein chain hydrogen bonding and electrostatic inter-
actions in chicken-feather protein films. Higher gelatin concentrations reduced the film
extensibility, such that laminate whey protein films with zein films are used to increase their
characteristics. Lamination causes polymer melt-and-flow, creating a homogenous film
matrix that increases the tensile characteristics [121]. The development of next-generation
polymers necessitates sourcing from renewable materials and a capacity to naturally break
down into inorganic molecules. Due to their favorable thermal and mechanical proper-
ties, biomass-generation potential, and biodegradability, recombinant structural proteins
present promising alternatives to engineered plastics. In this study, the researcher assessed
the biodegradability, thermal behavior, and mechanical properties of the BP1(recombinant
structural protein). The protein was successfully fashioned into sheets using a manual hot
press at 150 ◦C and 83 MPa. It is noteworthy that thermal deterioration commences beyond
250 ◦C, and the glass transition temperature is at 185 ◦C.

The flexural strength and modulus of BP1 were measured at 115 ± 6 MPa and
7.38 ± 0.03 GPa, respectively, surpassing the qualities of commercial biodegradable poly-
mers. The biodegradability of BP1 underwent thorough examination, revealing efficient hy-
drolysis by isolated bacterial strains in dispersion. Furthermore, three identified proteases
effectively hydrolyzed BP1 in its solid state. Mineralization was evaluated through biochem-
ical oxygen demand (BOD)–biodegradation tests with soil inocula. The BOD biodegrad-
ability of BP1 reached 70.2 ± 6.0 after 33 days, as reported by Tachibana et al. [122].

5. Applications of Protein-Based Films and Coatings

Protein-based films and coatings have gained significant attention in recent years as
sustainable alternatives to conventional plastic packaging materials. Derived from protein
sources, like casein, soy, collagen, and agricultural and other byproducts, these biomaterials
offer a wide range of applications across different industries (Figures 2 and 3).
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5.1. Role in Food Industries

Food packaging plays a crucial role in preserving and protecting the products con-
sumed during our daily routine time. It acts as a bridge between manufacturers and
consumers, ensuring the safe delivery of goods. Consumers appreciate packaging that is
easy to handle, open, and reseal. Effortless opening mechanisms that eliminate the need for
scissors or excessive force are highly valued. The food packaging industry has responded
by adopting more ecofriendly practices. Packaging materials derived from renewable
resources, such as biodegradable plastics and plant-based materials, are gaining popularity.
Additionally, there is a focus on reducing packaging waste by employing minimalistic
designs and optimizing material usage. The availability of recyclable and compostable
packaging options provides consumers with environmentally responsible choices. These
sustainable packaging solutions benefit the planet and resonate with ecoconscious con-
sumers. Packaging must effectively protect the product from contamination, spoilage, and
damage during transit. Careful selection of packaging materials ensures they are suitable
for specific food products, maintaining their quality and safety. Clear labeling, including
accurate information about ingredients, nutritional values, and allergen warnings, is es-
sential for consumer transparency and safety. Functional packaging also considers the
needs of diverse consumers, such as incorporating features like easy-to-grip handles or
large font sizes for readability. Food packaging has evolved to meet the changing needs
and expectations of consumers. Industry’s emphasis on ecofriendly practices is highly
encouraging, with a move toward more sustainable packaging solutions.

Protein-based films have emerged as an environmentally friendly alternative to tra-
ditional plastic packaging [123]. These films offer biodegradability, functionality, and
versatility. Each protein source possesses unique characteristics that impacts the film prop-
erties, like the strength, barrier performance, and film-forming ability. To enhance the
film properties and functionality, modifications and additives can be incorporated during
preparation [124]. These may include plasticizers for improved flexibility, cross-linking
agents for enhanced mechanical strength, and bioactive compounds for antimicrobial or
antioxidant properties. Such modifications expand the potential applications of protein-
based films, including controlled-release systems and active packaging. Protein-based films
undergo comprehensive characterization to assess their physical, mechanical, and barrier
properties. Parameters, like tensile strength, elongation at break, water vapor permeability,
and transparency, are evaluated to ensure the compliance with industry requirements.

Coatings and films have found extensive use in the food packaging industry. They
offer several advantages, including biodegradability, barrier properties, and preservation
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capabilities. These films act as edible barriers that protect food products from moisture loss,
oxygen exposure, and microbial contamination. They are particularly useful for extending
the shelf-life of perishable items, such as fruits, vegetables, meats, and dairy products.
Additionally, protein-based coatings can enhance the appearance, texture, and preservation
of food items. Protein-based films and coatings act as protective barriers, shielding food
products from external factors that can compromise quality and safety. They could also
be utilized as a physical barrier against oxygen, moisture, and microbial contamination,
helping to increase the shelf-life of perishable food materials [9]. These films help maintain
the freshness, texture, flavor, and nutritional value of packaged foods, reducing food
waste and improving the overall product quality. Protein-based films and coatings exhibit
excellent barrier properties, effectively controlling the exchange of gases, vapors, and
aromas between the food and its surrounding environment. They help prevent moisture
loss, inhibit oxygen permeation, and reduce the transfer of unwanted odors or flavors.
These barrier properties contribute to the preservation of food products, maintaining their
sensory attributes and ensuring consumer satisfaction.

5.2. Protein-Based Films/Coatings in Pharma Sector

Protein-based films and coatings exhibit significant potential in the biomedical and phar-
maceutical sectors. Their biocompatibility and biodegradability make them well-suited for
drug-delivery systems, facilitating the controlled release of therapeutic agents [1,84,125,126].
Applications of these films extend to areas such as wound healing, tissue engineering, and
regenerative medicine. They offer the potential to improve the biocompatibility and stability of
medical devices and implants when used as coatings. Protein-based films and coatings have
emerged as promising carriers for controlled drug delivery [127,128]. They can encapsulate and
protect drugs, enabling precise release kinetics and targeted delivery to specific sites in the body.
The biocompatibility and biodegradability of protein materials make them ideal for this applica-
tion, reducing the potential toxicity and minimizing the adverse effects. Coatings and films play
a crucial role in wound-healing and tissue-engineering applications. They can serve as scaffolds
or substrates to support cell adhesion, proliferation, and tissue regeneration. Protein coatings
and their encapsulated forms provide a favorable environment for cell attachment, migration,
and differentiation, facilitating the healing process [129–131]. These films can also be tailored to
mimic the extracellular matrix, promoting tissue integration and enhancing the overall success of
tissue-engineering strategies. Protein-based films and coatings exhibit excellent biocompatibility,
making them well-suited for biomedical and pharmaceutical applications. They have a low risk
of immune response or rejection when in contact with biological systems. Moreover, protein
materials are biodegradable, gradually breaking down and being metabolized by the body over
time. This property eliminates the need for surgical removal or implant replacement, reducing
patient discomfort and healthcare costs.

Coatings could also be used for medical devices and implants to improve their surface
properties and biointegration [132,133]. These coatings improve the biocompatibility of
devices, thereby reducing the risk of adverse reactions and fostering tissue integration. They
can provide a barrier between the device and the surrounding tissues, preventing adverse
effects, such as inflammation or infection. Protein coatings can also be functionalized to
immobilize bioactive molecules, such as growth factors or antimicrobial agents, to enhance
the device performance and patient outcomes. Films and coatings have been utilized in
the development of diagnostic devices and biosensors. These films can immobilize specific
antibodies, enzymes, or receptors, allowing for the highly sensitive and selective detection
of biomarkers or analytes. The protein coating provides a stable and controlled environment
for the recognition elements, ensuring accurate and reliable detection. Protein films also
offer excellent signal amplification and signal-to-noise ratios, improving the sensitivity
and performance of diagnostic devices. These coatings and films have the potential to
encapsulate and stabilize bioactive molecules, such as enzymes, antibodies, or growth
factors. This property is particularly valuable for the preservation and controlled release
of sensitive biomolecules. Protein films can protect these molecules from degradation,
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maintain their activity, and control their release kinetics. This enables the development
of advanced therapeutic and diagnostic systems with improved stability, efficacy, and
shelf-life.

5.3. Personal Care Products

Protein-based films and coatings find applications in personal care products, including
cosmetics and toiletries. They are used as encapsulation systems for active ingredients,
providing controlled release and improving stability. These films enhance the texture,
appearance, and water resistance of cosmetic products, such as lotions, creams, and makeup.
Protein coatings can also be utilized to improve the performance and longevity of personal
care products. Protein-based films are used for encapsulating active ingredients in personal
care products, such as lotions, creams, and serums. These films provide a protective
barrier around the active ingredients, preventing their degradation and enhancing their
stability. The encapsulated ingredients are released gradually upon application, allowing
for controlled release and prolonged efficacy [134,135]. Protein films enable the delivery
of key functional compounds, such as antioxidants, vitamins, moisturizers, and antiaging
agents, improving the performance and effectiveness of personal care products. Protein-
based films can improve the texture and appearance of personal care products. They
contribute to the smooth, creamy consistency of creams and lotions, enhancing the sensory
experience during application. Protein films can also provide a glossy or matte finish,
depending on the desired aesthetic effect. These films improve the overall sensory appeal
and consumer experience of personal care products, making them more visually appealing
and pleasant to use. Protein-based films are derived from natural sources, making them a
desirable option for personal care products marketed as natural or organic. These films are
biocompatible, meaning they are well-tolerated by the skin and have a low risk of causing
irritation or allergies. Protein-based films provide an alternative to synthetic or chemical-
based ingredients, appealing to consumers who prefer more natural formulations. They
offer a sustainable and ecofriendly option for personal care products. Films, coatings, or
encapsulated forms can be employed for the controlled release of fragrances in personal care
products [136–138]. By encapsulating fragrance compounds, these films enable a gradual
release of scents, ensuring a longer-lasting effect. Protein films help to maintain the integrity
and intensity of fragrances, preventing their rapid evaporation or degradation. This
controlled release mechanism enhances the sensory experience of personal care products,
providing a pleasing and longer-lasting fragrance.

5.4. Environmental Applications

Coatings and films have potential applications in environmental settings [139–142].
They can be used for soil erosion control, forming a protective barrier on the soil surface
to prevent erosion. These films also serve as biodegradable mulch films, reducing weed
growth, conserving soil moisture, and enhancing crop yields. Additionally, protein-based
coatings can be employed for corrosion protection and the bioremediation of environmental
pollutants.

5.5. Biodegradability and Sustainability

One of the key advantages of coatings and films is their biodegradability and ecofriend-
liness [143–145]. Compared to conventional plastic packaging, which contributes to envi-
ronmental pollution, protein-based materials offer a sustainable alternative. They can be
naturally broken down by microorganisms, minimizing their environmental impact and
reducing waste accumulation. This biodegradability aligns with the increasing demand for
sustainable packaging solutions and supports a circular economy. Protein-based films and
coatings exhibit excellent versatility and compatibility with various food products [84,146].
They can be tailored to specific applications and food types, accommodating different
packaging formats and requirements. These materials can be applied to a wide range
of products, including fresh produce, meat, dairy, bakery items, snacks, and beverages.
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Protein-based films can conform to the shape of the food, providing a customized packaging
solution that maintains product integrity. Protein-based films and coatings are often edible,
which offers additional benefits in food packaging [1,125,147]. Edible films eliminate the
need for package removal before consumption, enhancing the convenience for consumers.
Moreover, they can be enriched with functional additives, such as antioxidants, antimi-
crobial agents, or nutraceuticals. This allows for the creation of active packaging systems
that extend the shelf-life, improve food safety, and offer additional health benefits [123,125].
Protein-based films and coatings can enhance the visual appeal of packaged foods. They
offer excellent transparency and clarity, allowing consumers to see the product inside. This
transparency is particularly beneficial for showcasing the quality, freshness, and attractive-
ness of food items, boosting consumer trust and purchase decisions. Protein-based films
also provide an opportunity for branding and product differentiation through customized
packaging designs.

Protein-based films are employed as biodegradable mulch films in agricultural appli-
cations. Mulch films are used to cover soil, promoting optimal growing conditions for crops
and conserving soil moisture. Conventional plastic mulch films can be difficult to remove
after use, leading to environmental issues. Protein-based mulch films, on the other hand,
naturally degrade over time, eliminating the need for removal and reducing plastic waste
in agricultural fields. Protein-based films and coatings are utilized for soil erosion control
in environmental restoration projects. These films can be applied to barren or erodible soils,
providing temporary cover and protection. The films help stabilize the soil, reducing water
runoff, erosion, and loss of valuable topsoil. Protein coatings support vegetation estab-
lishment and growth, facilitating the regeneration of native plant species and promoting
ecosystem recovery. Biocompatible films and coatings are employed in the development of
biomedical implants [148,149]. These implants can be used in tissue engineering, wound
healing, and medical device applications. Protein coatings enhance the integration of
implants with surrounding tissues, minimizing adverse reactions and improving patient
outcomes. The biodegradability of protein films eliminates the need for implant removal,
reducing the potential for additional surgeries and improving the sustainability of medical
treatments. Protein-based films and coatings have shown potential for oil spill cleanup
and remediation. These films can selectively adsorb hydrocarbons, helping to remove oil
pollutants from water surfaces. Bio-based materials can be applied to sorbent materials,
such as natural fibers or porous substrates, enhancing their oil absorption capacity and
efficiency [150,151]. Protein-based materials offer a sustainable and ecofriendly solution for
mitigating the environmental impact of oil spills.

Research endeavors worldwide are pushing the boundaries of protein-based films and
coatings across diverse universities. At the University of Massachusetts at Amherst in the
United States, there is a focus on developing protein-based films with antifouling properties
and drug-eluting capabilities for medical implants. In Saudi Arabia, the College of Applied
Medical Sciences at Prince Sattam Bin Abdulaziz University is conducting a comprehensive
review of polysaccharides, proteins, and lipid-based natural edible films for food packaging.
Meanwhile, at Kansas State University in Manhattan, Kansas, the exploration centers
on wheat gluten-based coatings and films, encompassing their preparation, properties,
and various applications. Furthering this global trend, the College of Life Sciences and
Biotechnology in Korea is actively engaged in the development of protein-based high-
oxygen-barrier films using industrial manufacturing facilities. Italy’s University of Bologna
is focusing on the characterization of composite edible films based on pectin, alginate, and
whey protein concentrate. The University of Melbourne in Australia explores the realms
of protein adsorption and coordination-based end-tethering of functional polymers on
metal–phenolic network films. These instances exemplify a worldwide network of research
endeavors, ranging from Brazil to Slovenia, with a focus on diverse applications, like
wound dressing, the recyclability of multilayer films, and the physical chemistry study of
collagen-based multilayer films. This extensive collaborative effort underscores the global
importance of protein-based films and coatings, highlighting their potential applications in
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various fields, including medicine, food packaging, and materials science. Pertinent work
in this domain is detailed in Table 4.

Table 4. The type of work being performed for films of specific purposes.

Place/Country Type of Work/Purpose Reference

University of Massachusetts at Amherst,
United States

Protein-based films for Medical Implants: Antifouling and
Drug-Eluting Antimicrobial Coatings [152]

College of Applied Medical Sciences, Prince
Sattam Bin Abdulaziz University, Al-Kharj,
Saudi Arabia

A Review of Natural Edible Films in Food Packaging:
Polysaccharide, Protein, and Lipid-Based Approaches [153]

Kansas State University, Manhattan, Kansas Coatings and Films Derived from Wheat Gluten: Preparation,
Properties, and Applications [154]

College of Life Sciences and Biotechnology,
Korea

Creating High-Oxygen Barrier Films from Proteins in an
Industrial Manufacturing Facility [155]

University of Bologna, Italy Characterization of Edible Composite Films Comprising
Pectin, Alginate, and Whey Protein Concentrate [156]

The University of Melbourne, Parkville,
Australia

Adsorption of Proteins and Coordination-Based
End-Tethering of Functional Polymers on Metal-Phenolic
Network Films

[157]

Universidade Federal do Rio Grande do Sul
(UFRGS), ZC, Brazil

Gelatin-Based Films with Clinoptilolite-Ag for Wound
Dressing Applications [158]

University of Pisa, Via Diotisalvi, Pisa
Recyclability of PET/WPI/PE Multilayer Films through
Enzymatic Detergent Removal of Whey Protein Isolate-Based
Coatings

[159]

Universidade de Lisboa, Portugal
Innovative Edible Bioactive Films with Melanin-Protein Base
for Cheeses: Antimicrobial, Mechanical, and Chemical
Characteristics

[160]

University of Brescia, Italy
Impact of Mulching Coatings Based on Hydrolyzed Protein
on Soil Properties and Productivity in a Tunnel Greenhouse
Crop System

[161]

Universidad Nacional de Colombia sede
Medellín, Colombia

Creation and Assessment of Edible Films Derived from
Cassava Starch, Whey Protein, and Beeswax [162]

Université de Strasbourg, CNRS, France Investigation into the Physical Chemistry of Multilayer Films
Based on Collagen [163]

University of Maribor, Smetanova, Slovenia Bilayer Coatings Comprising Polysaccharides for Surfaces of
Medical Devices with Biofilm-Inhibiting Properties [164]

University of Massachusetts-Amherst,
United States

Chlorinated Protein Films with Biocidal and Antifouling
Properties [165]

University of Auckland, New Zealand Utilizing Neutron Reflectometry for the Characterization of
Surface Coatings with Antimicrobial Proteins [166]

University of Potsdam,
Karl-Liebknecht-Straße, Germany

Moving Towards Protein-Repellent Surface Coatings Utilizing
Catechol-Containing Cationic Poly(2-ethyl-2-oxazoline) [167]

Qilu University of Technology (Shandong
Academy of Sciences), Jinan, China

Gelatin-Based Nanocomposite Films Loaded with Silver
Nanoparticles for Improved Mechanical Properties and
Antibacterial Activity

[168]

Technische Universität MünchenFreising,
Germany

Influence of Sodium Sulfite, Sodium Dodecyl Sulfate, and
Urea on the Molecular Interactions and Characteristics of
Films Based on Whey Protein Isolate

[169]

Headquarters at University of Minho,
Avepark, Barco, Portugal

Polysaccharide-Based Multilayered Freestanding Films with
Adhesive and Bioactive Elements Fabricated via Spin Coating [170]
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Table 4. Cont.

Place/Country Type of Work/Purpose Reference

University of Burgundy, France
Significance of Interactions between Coatings Derived from
Starch and Plum Fruit Surfaces: A Physical-Chemical
Examination

[171]

Universität Bayreuth, Universitätsstraße,
Germany

Composite Materials for Drug Delivery Utilizing Engineered
Spider Silk Proteins [172]

Ciudad Universitaria, Córdoba, Argentina Utilization of Crosslinked Soy Protein Films for Ophthalmic
Drug Delivery Applications [173]

Ludwig-Maximilians-University, Germany Preparation of Spider Silk Films as Drug Delivery Matrices
Using Water-based Methods [174]

Newcastle University, United Kingdom
Hybrid Polymer Coatings with Marine Antifouling Properties,
Formed through Layer-by-Layer Deposition of
Polysaccharides and Zwitterionic Silanes

[175]

Purdue University, West Lafayette, Indiana,
United States

TEM Grid Coatings Based on Nonfouling NTA-PEG for
Selective Capture of Histidine-Tagged Protein Targets from
Cell Lysates

[176]

University of Toronto, Canada
Water-Based Production of Low-VOC Nanostructured Block
Copolymer Films for Prospective Marine Antifouling
Coatings

[177]

Department of Health Sciences and
Technology, ETH Zurich, Zurich, 8092,
Switzerland

Amyloid Superwetting Films as Functional Coatings [178]

University of São Paulo, Brazil Characteristics of Gelatin-Based Films Containing
Chitosan-Coated Microparticles Loaded with Rutin [179]

University of Piraeus, Piraeus, Greece Optimizing Artificial Chemoreception in Bilayer Lipid
Membranes Using Protein-Based Graphene Biosensors [180]

University of Wollongong, NSW 2500,
Australia

Polypyrrole Films with Conductive and Protein-Resistant
Properties for the Delivery of Dexamethasone [181]

University of Life Sciences-SGGW
(WULS-SGGW), Poland

Moisture Sensitivity, Optical, Mechanical, and Structural
Characteristics of Edible Films Based on Whey Protein
Incorporating Rapeseed Oil

[182]

Universidad Autónoma de Querétaro,
Querétaro 76010, Mexico

Enhancing the Characteristics of Thin Films Based on
Amaranth Protein Isolate for Food Packaging Applications:
Nano-Layering through Spin-Coating and Integration of
Cellulose Nanocrystals

[183]

University of Technology (Shandong
Academy of Sciences), Jinan, China

Formulation and Physicochemical Characteristics of
Intelligent Edible Films Derived from Gelatin-Starch
Nanoparticles

[184]

Universidad Veracruzana, Av. Doctor Luis
Castelazo, Industrial Las Animas, Xalapa
Enríquez C.P. 91190, VER, Mexico

Utilizing Cocoa Nanoparticles to Enhance the
Physicochemical and Functional Attributes of Whey
Protein-Based Films for Prolonging the Shelf Life of Muffins

[185]

Protip Medical, 8 Place de l’Hôpital, 67000
Strasbourg, France

Versatile Polymeric Coatings for Implants Incorporating
Gelatin, Hyaluronic Acid Derivative, and Chain
Length-Controlled Poly(Arginine)

[186]

6. Conclusions

Protein-based films and coatings offer a sustainable and versatile solution for various
industries. Their diverse applications in food packaging, biomedical and pharmaceutical
fields, agriculture, personal care products, environmental settings, and smart packaging
demonstrate their potential to revolutionize multiple sectors. Ongoing research and devel-
opment efforts continue to enhance the properties, functionality, and application potential
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of edible coatings and films, further solidifying their position as an environmentally friendly
alternative to conventional packaging materials.
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