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Abstract: Friction stir processing (FSP) has evolved as an important technique in fabrication of
metal matrix composites. The surface properties enhancement is obtainable by insertion of desired
discontinuous particular reinforcements into base alloy using FSP. Despite having high specific
strength, more applications of Al alloys are restricted due to their poor surface properties under
various loading conditions. In this study, the main focus is on enhancing the microhardness and
wear properties of Al 7075 base alloy by means of uniform dispersion of silicon carbide and graphite
(SiC/Gr) nano particles into the base alloy using the FSP technique. The tool rotational speed (w: 500,
1000, 1500 rpm), tool traverse speed (v: 20, 30, 40 mm/min), reinforcement particles hybrid ratio
(HR: 60:40, 75:25, 90:10) and volume percentage (vol%: 4%, 8%, 12%) are used as independent
parameters. The effect of these parameters on microstructure, micro hardness and wear properties
of surface composites are studied in detail. For desired wear rate and microhardness as responses,
the aforementioned independent parameters are optimized using response surface methodology
(RSM). The significance of factors and their interactions for maximizing hardness and minimizing
wear rate and coefficient of friction (COF) were determined. Analysis of variance (ANOVA) for
responses has been carried out, and the models were found to be significant in all three responses.
The minimum wear rate of 0.01194 mg/m was obtained for parameters w 1500 rpm, v 40 mm/min,
HR 60:40, vol% 4 (Run 10). The maximum micro hardness of 300 HV obtained for parameters w
1000 rpm, v 30 mm/min, HR 75:25, vol% 12 (Run 14). The presence and uniform distribution of
SiC and Gr into the base alloy was confirmed through field-emission scanning electron microscopy
(FESEM) imaging, energy-dispersive X-ray spectroscopy (EDX) and mapping tests. The wear rate
and COF decreased significantly due to graphitized mechanically mixed layer developed at the
sliding contacts. The microhardness of resultant composites observed to be dependent on effect of the
independent parameters on extent of inherent precipitates dissolution and grain size strengthening in
the resultant materials.

Keywords: friction stir processing; hybrid surface composites; microstructure; response surface
methodology; wear properties

1. Introduction

In the engineering materials field, the fabrication of composite materials, related design and
manufacturing technology is a significant advance in the area of engineering materials. Many advanced
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engineering applications require materials with a wide range of properties that are difficult to meet
using monolithic material structures [1]. It has been noted that metal matrix composites (MMCs)
offer such tailor-made property combinations required in a wide range of engineering applications [2].
In particular, composites have enhanced significant tribological properties to meet the needs of the
important surface engineering field. With the reinforcement of ceramics particles, the surface properties
of the material are improved significantly. The large application of composites to the aerospace,
automotive, defense industry, etc. has influenced new researchers in the development and design of
manufacturing techniques [3,4]. Recently, in surface engineering the surface metal matrix composites
are also being fabricated through various methods like plasma spraying [5], cold spraying [6],
laser melting [7–10], cast sinter [11,12], etc. Also the bulk metal matrix composites are produced by
using the conventional methods like stir casting [13], powder metallurgy [14], mechanical alloying [15],
etc. These fabrication techniques have many disadvantages such as reinforcement agglomeration,
formation of detrimental phases, and interfacial reactions due to processing above melting point
temperature [16,17]. Thus to overcome these disadvantages the researchers look for the other novel
techniques. The friction stir-processing (FSP) technique overcomes many disadvantages due to
processing below the melting point temperature of base alloys. Initially, R.S. Mishra et al. proposed FSP
technique and have fabricated the Al-silicon carbide (SiC) ex-situ surface composites [18]. Then this
solid state and eco-friendly technique became more popular among researchers and led to numerous
research works on surface composites fabrication using FSP.

Aluminium alloys are replacing steel alloys in various applications due to their high specific
strength and low density [19–21]. However, Weak surface properties, such as wear resistance under
high-load conditions, limit their broader applications. Like steels, Al alloys cannot be greatly hardened
by hardening induction due to the lack of martensitic phase [22]. The production of MMCs based on
aluminium (Al) involves strengthening aluminium alloys with different particles to induce certain
specific properties and improve some of their inherent limitations. The hybrid reinforcement approach
gives space in MMCs for possible cost reduction along with multiple property optimization together.
Many researchers reported comparable or enhanced performance for hybrid MMCs over single
reinforcement MMCs even at lower processing costs. This puts hybrid reinforced composites under
the spotlight as many investigators predict the enormous promise of producing high-performance and
low-cost MMCs through this route [23].

Many authors reported a hybrid composite fabrication approach effective in enhancing broad
spectrum of material properties. The mechanical properties of pure aluminium increased substantially
by reinforcing multi-layer graphene [24] and SiC with graphene oxide nano sheets [25] through a FSP
ex-situ approach. Dixit et al. [24] have developed the pure Al-graphene nano composites with exfoliation
of graphite to graphene successfully using multi-pass FSP (8 passes). Sharma et al. [26] improved
mechanical and corrosion properties of Al 6061 alloy by reinforcing a hybrid SiC/Gr combination.
They mentioned that the hybrid combination composites showed more superior mechanical and
corrosion properties over single reinforced composites. R. Beygi et al. [27] fabricated Al-TiC/Graphite
hybrid composites using FSP with as-mixed Al-TiO2-Gr powder mixture. They found a higher hardness
and yield strength due to TiC (100 nm) produced in-situ for hybrid composites ball-milled mixture
than that of as-mixed mixture.

It is generally agreed that Al alloy cannot exhibit sufficient strength against applications that
involve rotating or reciprocating sliding contacts. Al alloys shows low sliding wear resistance when
mated against several materials [28–32]. Amongst them, Al 7075 alloy is mainly used in structural
applications of automobile and aerospace industry due to its high specific strength [33–35]. However,
it has been observed that Al 7075 alloy possesses poor surface properties under various loading
conditions. The fabrication of hybrid composites on Al alloys using FSP in order to improve their
mechanical and tribological properties is found to be an effective method used by many researchers as
discussed before. So far, attempts with the addition of hard SiC nano particles along with soft solid
lubricant Gr nano particles reinforcement with Al 7075 as a base alloy using FSP, in order to improve its
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tribological properties is not yet reported. Also, the response surface methodology (RSM) optimization
of a FSP process including reinforcement’s volume percentage, hybrid ratio, tool rotational speed and
tool traverse speed as independent variables parameters to enhance surface properties Al alloys has
not yet been reported. Thus, in this project the strategic attempt to improve Al 7075-T651 surface
tribological properties by reinforcing SiC and Gr nano particles using the FSP technique is performed
and discussed in detail. The optimization of the reinforcement hybrid ratio, volume percentage and
FSP tool rotational and traverse speed is planned using RSM-designed experiments in order to improve
the microhardness and wear properties of the base material.

2. Experimental Procedure

2.1. Materials and Properties

Aerospace-grade rolled Al 7075-T651 aluminium alloy samples with dimensions of (110 mm
× 150 mm × 6.35 mm) were used as the base metal. The chemical composition of Al 7075-T651 is
presented in the Table 1. The SiC nano powder of particle size between 200 nm–2 µm and graphite
(Gr) flakes of width up to 2 µm with thickness <40 nm are used as reinforcements. The sizes of
reinforcements are confirmed with scanning electron microscopy (SEM) imaging.

Table 1. Chemical composition of Al 7075-T651 alloy.

Component Al Zn Mg Cu Fe Si Ti Cr Mn Other

Weight% 87.1–91.4 5.1–6.1 2.1–2.9 1.2–2 0.5 0.4 0.2 0.18–0.28 0.3 0.15

2.2. Preparation of Reinforcement Hybrid Compositions and Deposition Method Materials and Properties

The reinforcement nano particles are mixed together using turbular mixer in order to obtain well
mixed different hybrid ratios. For each hybrid ratio of reinforcements, the reinforcements are run
for 5 h in the turbular mixer. The color of the mixture is found different than the SiC and Gr nano
powders. The surface blind holes method is used for pre-placing nano particles on the base alloy plates.
The schematic presentation of deposition method is illustrated in Figure 1. The holes of 2 mm diameter
and 4 mm depth are produced on the base alloy using Vertical turret milling machine. The surface
blind holes method is used for depositing the SiC/Gr. The intercavity spacing maintained are 2 mm,
4 mm and 6 mm in order to control the volume percentage of reinforcements into the base alloy.
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Figure 1. Surface blind holes deposition method.

The volume percentage of the SiC/Gr mixture into the base alloy is controlled by changing the
number of blind holes on each band of the Al 7075 base alloy plate. The inter-cavity spacing was kept
less than the diameter of the tool pin diameter to ensure continuous dispersion of SiC/Gr particles
during the process, and thus to maintain continuity of the surface composites.
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2.3. Friction Stir Processing and Testing Methodology

Initially, the reinforcement mixtures are put into the surface blind holes with proper compaction.
Then capping process has been carried by using pinless H13 steel tool of 20 mm diameter. For all
samples capping, the parameters used are: tool rotational speed of 1000 rpm and traversing speed of
30 mm/min, plunge depth of 0.3 mm, tool tilt angle (TT) of 2 degrees. The capping pass completely
closes the surface cavities and traps the reinforcement particles inside. This ensures no reinforcement
loss during the next FSP stirring action.

After completion of capping pass, single pass FSP on each sample has been carried out using a
CHINA FSW CENTRE machine (Beijing FSW Technology Co., Ltd., Beijing, China). The H13 steel tool
with straight cylindrical profile having 4.5 mm pin length, 6 mm pin diameter and 20 mm shoulder
diameter is selected for FSP. During the FSP process, other parameters i.e., TT: 2 degrees, axial load-10
KN, and initial dwelling time:10 s have been kept constant for all samples. The optimum tool plunge
depth of 5.3 mm is used for tool tilt angle of 2 degrees With this tool plunge depth, the defects like
tunnel and void have been successfully overcome. After prior preliminary tests, the limits of four
independent parameters are decided and then using RSM optimization method in Design Expert 10
software, the experiments are designed. The designed experiments in central composite full factorial
design module gives 27 runs as mentioned below in Table 2:

Table 2. Independent parameters and their levels for the designed experiments.

Parameter Level −1 Level 0 Level 1

Tool Rotational Speed (w rpm) 500 1000 1500
Tool Traverse Speed (v mm/min) 20 30 40

Reinforcement Hybrid Ratio (HR) 60:40 75:25 90:10
Reinforcement Volume Percentage (Vol %) 4 8 12

The wear tests are conducted as per ASTM-G99 standards. The wear samples of size (L: 10 mm,
W: 6 mm, T: 6 mm) are cut from the middle of each composite stir zone using wire EDM machine
(Mitsubishi, Tokyo, Japan). These samples are used as pin in the pin-on disc arrangement. The discs of
mild steel material are used in these tests. The pin-on-disc equipment used in these tests is Tribology
Trainer Module TM 260 manufactured by Gunt Humburg. All 27 samples are tested and wear loss
and coefficient of friction (COF) is measured as responses. The wear loss is measured as difference of
weight difference of the wear samples before and after the test. The weight measurements are carried
out using weight balance having least count of 0.1 mg. Each sample is run for 20 min at 150 rpm speed
and under the loading of 20 N. The coefficient of friction of each sample is measured by taking the
ratio of average craft force with the normal load.

The square-shaped samples of (20 mm × 20 mm) size cross-sectional were cut using wire
electro-discharge machine. The specimen were mounted and polished with silicon carbide paper
of increasing grit of 600, 800 and 1200. The sample was oriented 90◦ with each increment of silicon
carbide paper. Further polishing of the sample was done by applying diamond slurry, 6 µm diamond
paste and 3 µm diamond paste. Keller’s reagent was used for etching with immersion time of 30 s and
immediately clean with running water and dried. Field-emission scanning electron microscopy (FESEM,
Phenom Pro X, Eindhoven, Netherlands) analysis was used to capture microscopic images within the
SZ to study dispersion and interfaces between base alloy and reinforcements. Energy dispersive X-ray
(EDX, Phenom Pro X, Eindhoven, Netherlands) and mapping facilities of FESEM equipment was used
to further confirm and analyze the reinforcement’s presence and dispersion within the stir zone.

The flash that has been formed during the FSP was removed by using diamond file to prevent
misalignment of the specimen when the vision scope and indenter moves during Vickers microhardness
(Leco LM 247AT, St. Joseph, MI, USA) testing. The specimen were tested with 1000 gf load with
15 seconds’ dwell time. The indentation was measured on two diagonals (d1 and d2 in µm). 5 readings
each were recorded on the stir zone (SZ) and the average value is utilized for further analysis.
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3. Results and Discussion

3.1. Microstructural Characterization

In this study for microstructure analysis, the surface composites with highest (Run 24) and lowest
(Run 10) wear rate (mg/m) have been cut and analysed. Figures 2 and 3 show FESEM micrographs
containing distribution of SiC and Gr particles into the Al 7075 matrix for Run 10 and Run 24 composite
stir zones. Figures 4 and 5 show the more magnified SEM micrographs of Al 7075-SiC/Gr composites
of Run 10 and 24 samples showing the interfaces between base alloy and reinforcements. The presence
of SiC and Gr particles and their dispersion was confirmed by FESEM energy dispersive X-ray (EDX)
and mapping analysis as shown in Figures 6 and 7, respectively.
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Figure 3. FESEM micrographs at magnification of 1000 × for Al 7075-SiC/Gr composite Run 24.

From Figure 4 micrographs of Run 10, it is observed that, the SiC particles are well surrounded
by graphite flakes and the graphitized SiC particle zones are present in more numbers compared to
Run 24 composite micrographs shown in Figure 5. In case of Run 10, due to very high rotational
speed stirring action, the material movement has facilitated well dispersion of SiC/Gr powders
and has given sufficient opportunity to encapsulate the graphitic layers around the SiC particles.
The graphite flakes get expholiated into multilayer graphene due to the shear action during intense
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plasticization [24,25]. The graphite flakes have covered large area in the composites due to their large
surface area. The SiC particles get fragmented in both samples have fragmented into uneven sizes
due to the intense plasticization. The expholiated graphitic layers have acted as a bridge between the
SiC/Gr reinforcements and the base alloy, and has contributed for greater interfacial bonding. Due to
very high thermal conductivity, the hybrid ratio of Gr is restricted to maximum 40%, as the high content
of Gr than this limit has given tattering defects in the composite band [24].
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The graphitized SiC particles in Run 10 are observed to have good interfacial bonding than the
Run 24 composite sample. The extent of graphite layers encapsulating the SiC particles is more in case
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of Run 10 sample than the Run 24 sample due to more intense stirring action. In both the samples,
the hybrid ratio of 60:40 is used, but the intense plasticization due to high rotational speed in case of
Run 10 has facilitated to overcome the flow stress of the base alloy prominently and thus the particles’
interaction and mobilization inside the matrix have been increased. The greater volume percentage
(12%) of SiC/Gr powder with lower rotational speed (500 rpm) in Run 24 has restricted the particle
movement and dispersion during the stirring action. On the other hand, the low volume percentage of
the SiC/Gr powder with high rotational speed (1500 rpm) has facilitated significant particle movement
and dispersion in the matrix.
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The very thin graphite flakes have covered the more surface area inside the Al 7075-SiC/Gr
composites as shown in Figure 7. Where as the SiC particles have been fragmented and distributed
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in the composites. The composite surfaces were different in appearance depending on the machine
parameters and reinforcement dispersion. The SiC/Gr reinforcement particles dispersion inside the
matrix has affected resultant grain size obtained inside the composites. The grain growth in processed
composites is mainly controlled by the pinning effect due to presence of reinforcements. Thus due
to encapsulation of reinforcements during intense plasticization the more refined grains structure is
obtained in the resultant surface composites.

3.2. Wear Properties

The wear rate (mg/m) and average coefficient of friction for each sample has been measured and
tabulated in Table 3. For all the Al 7075-SiC/Gr samples, the wear resistance has increased compared to
the base alloy. Then wear rate as a response has been analyzed using analysis of variance (ANOVA).
The ANOVA analysis results are given in Tables 4 and 5 below and the model for wear rate as a
response is observed to be significant. The influence of independent variables with respect to wear
rate are observed and discussed in below sections.

Table 3. Microhardness and wear properties of Al 7075-SiC/Gr hybrid surface composites.

Run

Tool
Rotational
Speed (W)

rpm

Tool
Traverse

Speed
(V) mm/min

Hybrid
Ratio
(HR)

Volume
Percent
(Vol %)

Wear Rate
(mg/m)

Average
Coefficient
of Friction

(COF)

Micro
Hardness

(HV)

1 500 20 90 12 0.03185 0.87 120.25
2 1500 20 90 12 0.03583 0.97 105.90
3 1500 20 60 12 0.04778 0.93 85.00
4 1000 30 90 8 0.01433 0.94 190.00
5 1000 20 75 8 0.03185 0.96 128.43
6 500 40 90 4 0.02627 0.87 118.65
7 500 20 90 4 0.02468 0.95 139.32
8 1500 30 75 8 0.01831 0.90 96.75
9 500 40 60 4 0.02707 0.92 116.83

10 1500 40 60 4 0.01194 0.91 114.5
11 500 40 90 12 0.02468 0.91 144.3
12 1000 30 75 8 0.01911 0.93 209.00
13 1500 40 90 12 0.03503 0.95 224.33
14 1000 30 75 12 0.02866 0.88 300.00
15 500 40 60 12 0.03583 0.97 233.8
16 1000 30 60 8 0.02389 0.98 189.24
17 1000 30 75 8 0.01991 0.93 185.0
18 1500 20 60 4 0.01672 0.93 91.4
19 500 20 60 4 0.03264 0.94 187.4
20 1500 40 90 4 0.02787 0.85 197.5
21 1000 30 75 8 0.01991 0.93 195.32
22 500 30 75 8 0.0239 0.87 132.3
23 1500 20 90 4 0.01592 0.97 128.35
24 500 20 60 12 0.05175 0.89 144.7
25 1500 40 60 12 0.03981 0.98 256.85
26 1000 40 75 8 0.02707 0.93 170.96
27 1000 30 75 4 0.01752 0.85 290.34

The contour diagram from Figures 8–10 show the ranges of four variables for the different intervals
of wear rates of the hybrid surface composite samples. The minimum wear rate of 0.01194 mg/m is
observed for Run 10 (w 1500 rpm, v 40 mm/min, HR 60:40, vol% 4) composite. Whereas highest wear
rate of 0.05175 mg/m is obtained for Run 24 (w 500 rpm, v 20 mm/min, HR 60:40, vol% 12) composite
specimen. The coefficient of friction values obtained varies between ranges of 0.85 to 0.98. From the
ANOVA analysis, it has been observed that all four independent parameters are found significant.
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Table 4. Analysis of variance (ANOVA) model validation of wear rate.

Source Sum of Squares df Mean Square F Value p-Value Prob > F

Model 2.442 × 10−3 14 1.744 × 10−4 48.14 <0.0001
A 4.822 × 10−5 1 4.822 × 10−5 13.31 0.0033
B 6.216 × 10−5 1 6.216 × 10−5 17.15 0.0014
C 1.443 × 10−4 1 1.443 × 10−4 39.83 <0.0001
D 9.474 × 10−4 1 9.474 × 10−4 261.44 <0.0001

AB 4.055 × 10−5 1 4.055 × 10−5 11.19 0.0058
AC 9.125 × 10−5 1 9.125 × 10−5 25.18 0.0003
AD 1.726 × 10−4 1 1.726 × 10−4 47.63 <0.0001
BC 9.905 × 10−5 1 9.905 × 10−5 27.33 0.0002
BD 7.678 × 10−5 1 7.678 × 10−5 21.19 0.0006
CD 1.833 × 10−4 1 1.833 × 10−4 50.57 <0.0001
B2 1.985 × 10−4 1 1.985 × 10−4 54.77 <0.0001

Residual 4.349 × 10−5 12 3.624 × 10−6

Lack of Fit 4.306 × 10−5 10 4.306 × 10−6 20.18 0.0481
Pure Error 4.267 × 10−7 2 2.133 × 10−7

Cor Total 2.486 × 10−3 26

Table 5. Validation of model terms for wear rate.

Standard Deviation (Std. Dev.) 1.904 × 10−3 R-Squared 0.9825

Mean 0.027 Adj R-Squared 0.9621
Coefficient of Variation (C.V.) % 7.04 Pred R-Squared 0.8866

From the analysis of plots of independent parameters against wear rate, the influence of each
parameter on it is observed and important observations are as follows: (a) The desirable range of
rotational speed is (1160–1500 rpm). The increase in tool rotational speed has shown decrease in wear
rate due to more uniform distribution of SiC/Gr nano particles and thus results in strengthening of the
composites by grain size strengthening and Orowan strengthening mechanism. The higher rotational
speed facilitates the greater extent of intense plasticization, which provides more reinforcement
movements. The Gr flakes expholiated into multi-layered graphene and encapsulates around SiC
particles and have contributed to more interfacial bonding. (b) the tool traverse speed has shown lower
wear rates at the middle range 27–33 mm/min speeds. This is due to the effect of stirring action on
reinforcement distribution and secondly on precipitations resizing and dispersion of the base alloy.
The minimum traverse speed may have contributed to the heterogeneous distribution of reinforcements
and agglomeration of powders will results into weak interfacial bonding and reinforcements piling
out during wear tests. Therefore, in this study the traverse speed of around 30 mm/min has shown
the minimum wear rate, at which balanced effect on distribution of reinforcement and precipitation
dissolution would have occurred.

In the case of reinforcement related to two parameters, the effects are discussed as follows: (c) The
hybrid ratio of SiC/Gr particles has shown effect on wear rate in such a way that the wear rate of the
hybrid composites predicted minimum at the ranges in 50:50 to 60:40 ratios. The wear rate observed
minimum at the Run 10 sample with HR of 60:40. The hard ceramic SiC particles will act as load-bearing
elements and resists the wearing action due to their higher inherent hardness properties. On the other
hand the Gr flakes on the surface of the wear tests samples has developed the mechanically mixed
lubricating layer between the disc and pin. This Gr tribofilm once generated has reduced the wear
rate due less friction and more gliding action during dry sliding actions. (d) Volume percentage of
SiC/Gr reinforcement as a parameter has decided the desirable range for the optimum wear properties.
From the analysis, it is predicted that the vol% between 3 and 6 will give lower wear rates. From the
tests carried out, Run 10 with 4 vol% has shown minimum wear rate for the Al 7075-SiC/Gr surface
composites. The volume percentage of reinforcements affects on grain size distribution, agglomeration
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of powders, the required stirring action to overcome the flow stress of base alloy, finally the extent of
interaction between reinforcements and interfacial bonding with the base alloy. The optimal amount of
powder for the given stirring action has not only availed the homogenous distribution of reinforcements
but also the significant strengthening by means of good interfacial bonding.
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The wear tracks on the pins of base alloy, Run 10 composite and Run 24 composite are as shown
in Figure 11. The clear difference is observed on the wear tracks of these materials, the composite’s
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surface morphology indicates presence of mechanically mixed tribo film over the surface in bright color
due to reinforced SiC/Gr particles. The worn out surface of Al 7075 base alloy shows heterogeneous
and adhesive wear mechanism, which is due to absence of any hard particles at the surface. Also,
severe plastic deformations without any delamination, cracks of the base alloy indicate the adhesive
wear mechanism. On the composite’s worn out surfaces, the presence of hard graphitized SiC particles
results in both abrasive and adhesive wear mechanism. Initially, due to adhesion, the wear loss
occurred, further due to presence of graphitized SiC particles the resistance to wear increases and thus
dimples, delaminations and cracks are observed on the surfaces.
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Amongst the surface composites, the composites with high-volume percentage of reinforcements
shows the pulling out of reinforcing particles due to loose interfacial bonding with the base alloy.
The Run 24 wear track shows such particles pulling out due to agglomeration of powder and loose
interfacial bonding with the base alloy, and thus resulted in higher wear rate. The wear mechanism has
changed from adhesion to abrasion due to the presence of these hard reinforcement particle pulling out
process. In case of Run 10 composite sample, the due to homogenous distribution and good interfacial
bonding with the base alloy, the graphitized SiC reinforcement not only resists the wear prior to high
hardness but also develops lubricative tribofilm due to graphitic flakes between mating surfaces. Thus,
the wear rate was lower for Run 10 composite sample than the Run 24 sample.

The wear track of Run 10 composite has been analysed for confirming the presence of reinforcement
SiC/Gr particles and mating steel disc particles. The FESEM-EDX analysis for such confirmation is
shown in Figure 12 given below. The dark spots on the wear track confirms in terms of graphitized
SiC particles as shown in spectrum 77 in the Figure 12. The highest carbon (C) presence confirms that
those are the regions with SiC/Gr reinforcements.

The moderate dark uniform area confirms the presence of thin graphitic tribofilm since the
spectrum 78 shows the C presence next to the base Al alloy as shown in Figure 12. Finally the spectrum
79 covers whole area of track under the scope and finalized prominent presence of SiC/Gr reinforcement
and traces of steel disc particles as ferrous (Fe) element.
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3.3. Microhardness

The Vickers’s microhardness tests are conducted on all the composite samples and the results are
listed as shown in Table 3. The microhardness values are found some composites more and others less
than the base alloy (140 HV). The base alloy used in this study is Al 7075-T651 and which has been
heat treated. The FSP has contributed to the reduction of hardness for some composite samples due to
dissolution of precipitates during highly intense super plastic deformation. Thus the ranges of tool
rotational speed and tool traverse speed are important parameters deciding the extent of deformation.
The maximum microhardness of 300 HV is found for Run 14 composite whereas minimum of 85 HV is
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found for Run 3 surface composite. The increase in hardness is attributed to grain size strengthening due
to restriction of grain growth by reinforcements pinning effects. So the microhardness has been mainly
controlled in these composites by means of two mechanisms i.e., retaining of inherent precipitates
within base alloy and uniform grain size strengthening due to the pinning effect. The increase in
dislocation densities due to mismatch of thermal coefficients of reinforcements and base alloy also has
contributed to enhancement in microhardness of resultant composites. Xiaofei Ju et al. [36] mentioned
that the heat treatment (T6) on the FSPed composites retained the full precipitates solution in the base
alloy along with same grain structure of composites. The ANOVA of microhardness as a response is
given in Tables 6 and 7 below, the model is found to be significant.

Table 6. ANOVA analysis table of Microhardness.

Source Sum of Squares df Mean Square F Value p-Value Prob > F

Model 86638.73 14 6188.48 17.57 < 0.0001
A 79.04 1 79.04 0.22 0.6442
B 11099.01 1 11099.01 31.51 0.0001
C 145.21 1 145.21 0.41 0.5329
D 2969.12 1 2969.12 8.43 0.0132

AB 8127.92 1 8127.92 23.08 0.0004
AC 4507.11 1 4507.11 12.80 0.0038
AD 221.12 1 221.12 0.63 0.4435
BC 31.70 1 31.70 0.090 0.7693
BD 10121.37 1 10121.37 28.74 0.0002
CD 2481.53 1 2481.53 7.05 0.0210
A2 18500.13 1 18500.13 52.53 < 0.0001
B2 6243.59 1 6243.59 17.73 0.0012
C2 224.70 1 224.70 0.64 0.4400
D2 23712.92 1 23712.92 67.33 < 0.0001

Residual 4226.40 12 352.20
Lack of Fit 3935.73 10 393.57 2.71 0.2997
Pure Error 290.67 2 145.33
Cor Total 90865.13 26

Table 7. Validation of model terms of microhardness.

Standard Deviation (Std. Dev.) 18.77 R-Squared 0.9535

Mean 166.48 Adj R-Squared 0.8992
Coefficient of Variation (C.V.) % 11.27 Pred R-Squared 0.6583

PRESS 31052.22 Adeq Precision 16.083
−2 Log Likelihood 213.06 BIC 262.50

AICc 286.70

The desirable ranges of independent parameters for maximizing the microhardness of composites
is observed through following plots shown in Figures 13 and 14. From the plots it is confirmed
that, for this heat treated base alloy both retaining of precipitations and grain size strengthening by
more uniform reinforcements dispersion phenomenon are important in order to control the resultant
microhardness. The retaining of precipitate solution depends on extent of stirring action. Thus high
rotational speed at lower traverse speed has led to dissolution of precipitates solution. However,
for same machine parameters condition, the SiC/Gr powder distribution will be high. In balancing
conditions, the medium range of tool rotational speed (800–1120 rpm) and tool traverse speed around
(30 mm/min) has given more microhardness properties for the resultant composites.
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In case of reinforcements volume percentage and hybrid ratio, it is observed from Figure 15 that
the higher volume percentage (10–12%) and hybrid ratio between (60:40–70:30) has shown higher
micro-hardness for the surface composites. Higher volume percentage of reinforcements have restricted
grain growth in more extent due to which the more refined grain structure has to be obtained. The SiC
particles are harder than the base alloy, so as its content increase resulted in higher microhardness of
the composites. Although graphite flakes are softer than the base alloy, they have acted as a bridge
between load-bearing SiC particles and base alloy to enhance the interfacial bonding. Thus these
graphite expholiation into multi layered graphene has supported in enhancing the microhardness of
the resultant material.
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Thus from the study, it is concluded that microhardness of Al 7075-SiC/Gr composites are
controlled by all independent parameters in regard to their effect on resultant grain size distribution
and retaining of inherent precipitates as mentioned in the above discussion.

4. Conclusions

The Al 7075-SiC/Gr hybrid surface composites are successfully fabricated using the FSP technique
in the current work. Mainly, four FSP process parameters, i.e., tool rotational speed, tool traverse
speed, reinforcement hybrid ratio and reinforcement volume percentage are optimized by performing
designed experiments (DOE) using RSM central composite design (CCD) module in order to enhance
microhardness and wear properties. The models for three responses, Microhardness, wear rate and
coefficient of friction are found to be significant in the ANOVA analysis. The response variations are
correlated with microstructural observations and important remarks are as given below:

• The optimum ranges of parameters observed for minimum wear rate are: w (1160–1500 rpm),
v (27–33 mm/min), HR (50:50–60:40), vol% (3–6%).

• The optimal ranges of parameters observed for maximum microhardness are: w (800–1120 rpm),
v (27–33 mm/min), HR (60:40–70:30) and vol% (10–12%).

• The wear rate has decreased significantly in Al 7075-SiC/Gr hybrid composites due to graphitized
mechanically mixed tribofilm developed at the sliding contact zones.

• The wear rate increased due to powder agglomeration and the wear mechanism changed from
adhesion to abrasion in the samples fabricated with low stirring action and high volume percentage
of reinforcements.

• The microhardness of resultant composites observed to be dependent of effect of independent
parameters on extent of precipitates dissolution and grain size strengthening in the resultant
material. The enhancement in microhardness is attributed to the uniform dispersion of fragmented
SiC along with expholiated graphite layers which restricts the dislocation motion and induces
grain size strengthening.
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