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Abstract: In this paper, the authors introduce an upper bound of the longitudinal elastic modulus
of unidirectional fibrous composites to strength of materials approach, provided that the fibre is
much stiffer than the matrix. In the mathematical derivations resulting in this bound, the concept
of boundary interphase between filler and matrix was also taken into consideration. The novel
element of this work is that the authors have not taken into account any particular variation law to
approach the stiffness of this intermediate phase. The theoretical predictions were compared with
those obtained from some accurate analytical models as well as with experimental data found in the
literature, and a satisfactory accordance was observed.
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1. Introduction

The variational energy principles of classical elasticity theory have been widely used to
designate upper and lower bounds on the stiffness of unidirectional fibre-reinforced composites
in the longitudinal and transverse direction of fibres respectively. For instance, Paul [1] applied the
principles of minimum energy and minimum complementary energy to determine the bounds on the
elastic modulus of a macroscopically isotropic, two-phase composite with arbitrary phase geometry.
Yet, Hill [2] achieved to derive the same bounds via an alternative formalistic approach. Besides,
Hashin and Rosen [3] restricted Paul’s bounds in order to obtain a more useful estimation of moduli for
isotropic heterogeneous composites. However, approaches on the basis of energy principles generally
result in bounds which may not be adequate in engineering practice. A thorough and effective critique
on theories predicting thermal and elastic properties of fibrous composite materials was performed by
Chamis and Sendeckyj [4]. Concurrently, a detailed survey, the aim of which was to review the analysis
of composites from the applied mechanics and engineering viewpoint, was performed previously [5].

On the other hand, a large amount of models towards the prediction of elastic properties of
composites have the following common characteristic: The fibre–matrix boundary interface is assumed
to be a perfect mathematical surface. Nonetheless, in reality the situation is much different mainly due
to the roughness of the filler. Thus, around an inclusion embedded in a matrix a rather complicated
condition takes place, which is characterized by regions of imperfect bonding, permanent stresses
resulting from shrinkage, and high-stress gradients or even stress singularities, due to inclusion shape,
voids, microcracks, etc. In addition, the interaction between filler and matrix is generally an extremely
complex situation and evidently not just a simple mechanical effect. Indeed, the presence of filler
constraints the segmental and molecular mobility of the polymeric matrix, as absorption interaction
in polymer surface layers into inclusions appears. It is then obvious that, under such circumstances,
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the quality of adhesion is difficult to be quantified and thus a more detailed study by supposing the
existence of an intermediate phase between matrix and filler is necessary.

Indeed, the existence of a boundary interphase was experimentally verified by Lipatov [6]
who measured its thickness both for fibrous and particulate composites by means of Differential
Scanning Calorimetry (DSC) experiments. In this considerable work, it was also proved that the size
of these heat capacity jumps for unfilled and filled polymers is related to interphase thickness via
empirical relationships.

Amongst several analytical models appeared in the literature, some of them take into consideration
the existence of this natural intermediate phase, developed during the preparation of the composite
material which plays the central role on its overall mechanical behaviour, as it characterises
the effectiveness of the bonding between phases and thus defines an adhesion factor of the
composite material.

In a simplified approach which was adopted in previous papers [7,8], this natural intermediate
phase was assumed to be a homogeneous and isotropic material, whereas in another groups of
studies [9–11] more advanced and prominent models were introduced, the main feature of which was
the fibre to be occupied by a series of successive coaxial cylinders, each of which has a different stiffness
in a step-function variation in terms of polar radius. Further, a valuable experimental study towards
the estimation of mechanical and thermal properties of unidirectional fibrous composite materials
was carried out by Clements and Moore [12] whereas a theoretical and experimental investigation of
mechanical properties of polymeric particulate and unidirectional fibrous composites by the interphase
concept was performed in a previous paper [13]. In the meanwhile, an alternative standpoint on
the boundary interphase stiffness concerning both particulate and fibrous composites is the two
and three-term unfolding models introduced by Theocaris [14] which are based on the fact that the
intermediate “phase” (termed mesophase annulus) constitutes a transition zone between fibres usually
with high stiffness and matrix usually with rather low stiffness. In this framework, the variable
mesophase modulus is expressed with in terms of the polar radius of an amended form of Hashin–Rosen
cylinder assemblage model by relations of negative powers of the radius, which are compatible with
their limits i.e., the moduli of fibre and matrix respectively. In addition, Sideridis et al. [15] introduced
strength of materials and elasticity approaches to estimate the elastic constants of unidirectional fibrous
composites, by taking into consideration the concept of boundary interphase. In this work, referring to
longitudinal modulus the strength materials approach resulted in a modified form of standard mixtures
law, whilst classical elasticity approach yielded an upper bound of this property. Also, the mode of
variation of the variable interphase elastic properties was an n-th degree polynomial function in terms
of interphase radius was initially considered, and for n = 2 it yielded a parabolic law. Nevertheless,
given that the interphase layer is actually a natural phase (in particular a somewhat deteriorated
polymeric matrix), and not an artificial one, in trying to cover the overall spectrum of the variation
of its thermal and/or mechanical properties several laws have been adopted, e.g., linear, parabolic,
hyperbolic, logarithmic, and exponential law [16]. In the past years, many valuable research works
have been carried out for the evaluation of elastic constants of unidirectional fibrous composites and
for the investigation of the effect of several influential factors such as filler–matrix interaction, vicinity,
adhesion efficiency, and fibre arrangement etc. In a previous study [17] a prediction of the mechanical
properties and a micro-scale simulation of fibrous composite materials via the bridging micromechanics
model was carried out, whilst for a detailed study on the effective properties of fibrous composite media
of periodic structure, one may refer to a previous paper [18]. Also, the effect of size and stacking of glass
fibres on the mechanical properties of the fibre-reinforced-mortars was investigated previously [19].
Besides, in a past paper [20] the influence of the statistical nature of fibre strength on the predictability
of tensile properties of polymer composites reinforced with natural filler was studied by means of
comparison between the well-known linear and power-law Weibull models.

In addition, for a detailed investigation on the effective elastic properties of continuous fibre
reinforced composites, with the concurrent consideration of the boundary interphase concept, one may
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refer to a previous paper [21]. Finally, in a past paper [22], by the use of a novel homogenization
technique on the basis of Finite Element Analysis, a thorough study on the influence of interphase
zone on unidirectional fibrous composites was carried out.

In the current work, the authors derived an upper bound of the longitudinal elastic modulus of
unidirectional fibrous composites reinforced with continuous fibres according to strength of materials
approach, provided that the fibre is much stiffer than the matrix a fact that generally concerns polymeric
composites. To estimate this bound the concept of an inhomogeneous interphase layer developed
between fibre and matrix having variable properties was also taken into consideration. The novelty
of the present investigation is that the authors have not considered any particular variation law to
approach the interphase stiffness.

2. Towards the Determination of an Upper Bound for Longitudinal Modulus of the Composite

It is known that the use of the standard and inverse rule of mixtures to calculate the longitudinal
and transverse modulus respectively for a two-phase composite reinforced with unidirectional
continuous fibres is based on the strength of materials approach and requires the following conditions
to be fulfilled:

1. The fibre arrangement inside the matrix is uniform.
2. The adhesion efficiency is perfect.
3. Matrix is free of voids.
4. The applied loads are either parallel or perpendicular to the fibre direction.
5. The entire material is initially in a stress free condition, a fact that implies that no residual

stresses occur.
6. Fibre and matrix behave as linearly elastic isotropic materials.

In a previous paper [15] the concept of boundary interphase was applied in the framework
of a coaxial three-layer cylinder model that constitutes a modified form of Hashin–Rosen cylinder
assemblage model. Its cross-sectional area is exhibited in Figure 1.

Figure 1. Cross-sectional area and the three phase cylinder model.
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If we denote by rf; ri; rm the outer radii of the fibre, the interphase and the matrix circular sections
respectively, then the volume fractions Uf; Ui; Um are given as

U f =
r2

f

r2
m

(1a)

Ui =
r2

i − r2
f

r2
m

(1b)

Um =
r2

m − r2
i

r2
m

(1c)

Apparently, as the filler volume fraction is increased the proportion of macromolecules
characterized by a reduced mobility is also increased. This fact is synonymous with an augmentation
in interphase concentration by volume. Lipatov [6] has shown that, if calorimetric measurements are
performed in the neighbourhood of the glass transition zone of the composite, energy jumps will be
observed. These jumps are too sensitive to the amount of filler added to the matrix and can be used
to evaluate the boundary layers developed around the inclusions. This fact supports the empirical
conclusion presented in a past paper [6], according to which the extent of the interphase expressed
by its thickness ∆r motivates the variation of the amplitudes of heat capacity jumps appearing at the
glass transition zones of the matrix material and the composite with various filler-volume fractions.
Moreover, the size of heat capacity jumps for unfilled and filled materials is directly related to ∆r by
an empirical relationship given in Ref. [6].

This expression defines the thickness ∆r corresponding to the interphase and is written out below(
r f + ∆r

r f

)2

− 1 =
λ

1−U f
(2a)

where the coefficient λ is given by

λ = 1−
∆C f

p

∆C0
p

(2b)

Here, the numerator and the denominator of the fraction appearing in the right member of
Equation (2b) are the sudden changes of the heat capacity for the filled and unfilled polymer
respectively. It has been proved [23,24] that for unidirectional fibrous composites filled either with
continuous or with short fibres the fibre and interphase concentrations by volume are related to each
other through a two-degree parabolic function in the general form y = a · x2, where the independent
variable is the fibre content. We shall write out this relationship later on. Now, on the basis of the
experimental data of a previous study, Figure 2 illustrates the variation of dimensionless parameter λ

and interphase volume fraction versus fibre content.
Here, one may observe that the parameter λ decreases in a linear manner with respect to U f .
Next, to evaluate the volume fraction of the interphase layer, let us formulate Equation (1b) as

follows:

Ui =
(r f + ∆r)2 − r2

f

r2
m

⇔Ui =
2r f ∆r + (∆r)2

r2
m

(3a)

Since (∆r)2 << r2
m it implies that

(∆r)2

r2
m

∼= 0 (3b)

and therefore

Ui =
2r f ∆r

r2
m

(3c)
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Equation (3c) can be combined with (1a) to yield

Ui =
2U f ∆r

r f
(4)

Figure 2. Variation of interphase content and parameter λ versus filler content.

In addition, according to Strength of Materials approach, the longitudinal elastic modulus EL for
a fibrous composite material reinforced with unidirectional continuous fibres can be obtained from the
following modified form of standard mixtures law, initially introduced previously.

EL = E f U f + EmUm + EiUi (5)

Actually, the above relationship constitutes a “refined” expression of standard mixtures law for
the apparent Young’s modulus in the direction of fibres.

Here, we emphasize that fibre, matrix and interphase which is somewhat an altered matrix,
are isotropic.

Now, as we have stated beforehand, in the current investigation we shall not take into
consideration any specific variation law to predict the interphase stiffness. On the contrary,
the mathematical derivations resulting in an upper bound of the composite longitudinal modulus are
based only on the assumption that the following inequality holds

Em + Ei < E f (6)

Since the matrix is polymeric, this consideration does not generally violate the generality.
Moreover, the following inequality is evident

Em ≤ Ei < E f (7)
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Thus we can write out 
Em ≤ Ei
∧

Ei < E f

⇔ (8a)


4
(

Em
2

)2
≤ E2

i

∧
4E2

i < 4EiE f

(8b)

and therefore

4
(

Em

2

)2
+ 4E2

i < E2
i + 4EiE f ⇒ E2

i <
4
3

[
EiE f −

(
Em

2

)2
]
⇔ E2

i <
4
3

EiE f −
E2

m
3

(9)

In addition, on the basis of inequalities (6) and (7) one may deduce that the following inequalities
also hold (

E f − Ei

)
≤ E f +

(
E f − Em

)
(10a)(

E f − Em

)
≤
(

E f − Ei

)
+ E f (10b)

E f ≤
(

E f − Em

)
+
(

E f − Ei

)
(10c)

Besides, according to Figure 1 the following inequality is plausible

r f < ri < rm

and therefore
r2

f < r2
i < r2

m (11a)

or equivalently
r2

f

r2
m

<
r2

i
r2

m
< 1 (11b)

Inequality (11b) by the aid of Equations (1a)–(1c) yields

U f < Ui + U f < 1 (11c)

Now, for facility reasons let us set
1 = x (12a)

Ui + U f = y (12b)

U f = z (12c)

where the auxiliary variables x; y; z such that x > y > z lie in the interval [0, 1].
In continuing, let us introduce the following continuous single-valued function in terms of the

argument z: f : R→ R+ , defined by the formula f (z) =
[
(E f − Ei)(x− y)− E f (y− z)

]
2.

Here, on the basis of Equations (12a)–(12c), one may observe that this formula contains all
involved terms of the fibrous composite system (moduli and volume fractions of three phases) given
that U f + Ui + Um = 1. In addition, we elucidate that the variable z (i.e., U f ) is the only independent
one, since as we have already reported it has been shown [23,24] that for unidirectional fibrous
composites reinforced either with long or with short fibres the fibre and interphase contents are linked
with each other by a two-degree parabolic function.



Fibers 2018, 6, 57 7 of 15

Evidently, according to the definition of function f , the following inequality holds identically[
(E f − Ei)(x− y)− E f (y− z)

]
2 ≥ 0 (13a)

To give a more realistic interpretation in the above relationship, one may combine it with
(12a)–(12c) to obtain[

(E f − Ei)Um − E f Ui

]
2 ≥ 0⇔

[
(E f (Um −Ui)− EiUm

]
2 ≥ 0 (13b)

Here, it was taken into account that U f + Ui + Um = 1.
This inequality shows somehow the balance between matrix and interphase, given that the latter

is somewhat an altered matrix. Indeed, if no interphase occurs there will be no deterioration of the
matrix material.

Now, on the basis on Equation (13a) it implies that

(E f − Ei)
2(x− y)2 + E2

f (y− z)2 − 2(E f − Ei)E f (x− y)(y− z) > 0⇔
(E f − Ei)

2(x− y)[(x− z)− (y− z)] + E2
f (y− z)[−(x− y)− (z− x)]− 2(E f − Ei)E f (x− y)(y− z) > 0⇔

(E f − Ei)
2(x− y)(x− z)− E2

f (x− y)(y− z)− (E f − Ei)
2(x− y)(y− z)− 2(E f − Ei)E f (x− y)(y− z) + E2

f (z− x)(z− y) > 0⇔
(E f − Ei)

2(x− y)(x− z)−
[

E2
f + (E f − Ei)

2 + 2(E f − Ei)E f

]
(x− y)(y− z) + E2

f (z− x)(z− y) > 0⇔

(E f − Ei)
2(x− y)(x− z)−

[
E f + (E f − Ei)

]
2 (x− y)(y− z) + E2

f (z− x)(z− y) > 0

(14)

Concurrently, according to inequality (10b) we infer

(E f − Em)
2 ≤

[
E f + (E f − Ei)

]
2 ⇔ −(E f − Em)

2 ≥ −
[

E f + (E f − Ei)
]

2 (15)

Then given that the terms (x− y); (y− z) agree in sign, inequality (14) can be combined with (15)
to yield

(E f − Ei)
2(x− y)(x− z)− (E f − Em)

2 (x− y)(y− z) + E2
f (z− x)(z− y) > 0⇔(

E f − Ei

)2
(x− y)(x− z) +

(
E f − Em

)2
(y− x)(y− z) + E2

f (z− x)(z− y) > 0⇔

E2
f (x− y)(x− z) + E2

i (x− y)(x− z) +
(

E f − Em

)2
(y− x)(y− z) + E2

f (z− x)(z− y) > 2E f Ei(x− y)(x− z)

(16)

Finally, since the terms (x− y); (x− z) agree in sign, inequality (16) can be combined with (9)
to yield

E2
f (x− y)(x− z) +

( 4EiE f
3 − E2

m
3

)
(x− y)(x− z) +

(
E f − Em

)2
(y− x)(y− z) + E2

f (z− x)(z− y) > 2E f Ei(x− y)(x− z)⇔

E2
f (x− y)(x− z)− E2

m
3 (x− y)(x− z) +

(
E f − Em

)2
(y− x)(y− z) + E2

f (z− x)(z− y) >
(

2− 4
3

)
(x− y)(x− z)E f Ei ⇔

Ei <
E2

f (x−y)(x−z)− E2
m
3 (x−y)(x−z)+(E f−Em)

2
(y−x)(y−z)+E2

f (z−x)(z−y)
2
3 E f (x−y)(x−z)

(17)

Since we have set 1 = x; Ui + Uf = y; Uf = z it follows that

Ei <
E2

f (1−Ui−Uf)(1−Uf)−
E2

m
3 (1−Ui−U f )(1−U f )+(E f−Em)

2
(Ui+U f−1)Ui+E2

f (1−U f )Ui
2
3 E f (1−Ui−Uf)(1−Uf)

(18)

Also, given that U f + Um + Ui = 1 inequality (18) yields

Ei <

(
E2

f −
E2

m
3

)
Um(1−U f ) + E2

f (1−U f )Ui −
(

E f − Em

)2
UmUi

2
3 E f Um(1−U f )

(19)

Here one may pinpoint that the above relationship is independent of any variation law that could
be adopted to predict how the interphase modulus varies with respect to the radius of the coaxial
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cylinder model. We emphasize that the interphase zone is a natural phase which is developed in reality
between filler and polymer matrix and is neither an artificial one, e.g., created by the immersion of the
fibres in an agent, nor a pseudophase being contrived to simulate the microstructure of the composite.

Now, one may observe that according to the proposed technique the following three intermediate
steps concerning the process of determining the stiffness of the overall composite material are bypassed:

i. Approximation of the stiffness of interphase layer by a polynomial function or any other
arbitrary continuous function with respect to the radius of the coaxial cylindrical three
layer model.

ii. Estimation of the averaging values of stiffness for the interphase zone. This procedure takes
place to accommodate the calculations, as can be observed in a past paper [15].

iii. Measurement of the thickness of interphase zone by means of Differential Scanning Calorimetry
(DSC) experiments.

Also, as we have previously pointed out, it was proved [23,24] that for unidirectional fibrous
composites reinforced either with long or with short fibres, the ordered pairs (Ui, U f ) fit in an excellent
manner a two degree parabola.

This parabola is expressed by
Ui = 0.123 ·U2

f (20)

It can therefore be noticed that the process of calculating the longitudinal modulus of the final
material has shortened considerably, when compared with the corresponding procedures presented in
past studies [11,14–16]. In this context, one may observe that by means of the introduced analytical
technique, the interphase elastic modulus has been represented directly in terms of fibre content
without having previously been expressed as a single-valued function of the polar radius of the coaxial
three phase cylinder model.

Then Equation (5) can be combined with (19) to yield an upper bound for the longitudinal
modulus of the overall material in the following explicit form

EL,UB = E f U f + EmUm +

[(
E2

f −
E2

m
3

)
Um(1−U f ) + E2

f (1−U f )Ui −
(

E f − Em

)2
UmUi

]
·Ui

2
3 E f Um(1−U f )

(21)

Thus, Equation (21) in association with the Equation (20) results in the direct calculation of an
upper bound for the longitudinal composite modulus in terms of fibre volume fraction. Besides,
one may observe that the radius r of the coaxial cylinder model (in particular the inner and outer
radius of the interphase annulus) does not appear in the previous mathematical procedure resulting in
Equation (21).

3. Results and Discussion

In Table 1 the theoretical predictions concerning the upper bound of the composite longitudinal
modulus, as obtained from Equation (21) in combination with Equation (20) appear with respect
to fibre concentration by volume which is up to 0.65. Roughly speaking, one may state that this
value generally constitutes the optimum fibre volume fraction above which the reinforcing action
of the fibres is upset [22]. For facility reasons, and to be in accordance with the experimental work
of Clements and Moore [12], we considered an epoxy composite reinforced with E-glass fibers, i.e.,
Ef = 72 GN/m2, and Em = 3.5 GN/m2 whereas the Poisson’s ratios of fibre and matrix are νf = 0.2 and
νm = 0.35, respectively. In the same table, the theoretical values obtained from Theocaris et al. [11],
according to linear, hyperbolic, and parabolic variation laws also occur. Besides, the theoretical values
yielded by two and three term unfolding models derived from Theocaris [14] are presented. Finally,
the theoretical values achieved by the expression for apparent Young’s modulus in the direction of
fibres obtained from Sideridis et al. [15], according to three variation laws are exhibited.
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Table 1. Theoretical and experimental values of longitudinal modulus with respect to fibre concentration.

Uf

EL GN/m2

Authors Theocaris et al. [11]
Linear Law

Theocaris et al. [11]
Hyperbolic Law

Theocaris et al. [11]
Parabolic Law

Sideridis et al. [15]
Linear Law

Sideridis et al. [15]
Hyperbolic Law

Sideridis et al. [15]
Parabolic Law

Two Term Unfolding
Model [14]

Three Term Unfolding
Model [14]

Clements and
Moore [12]

Sideridis
Exp. [13]

0 3.5 3.5 3.5 3.5 3.5 3.5 3.15 3.5 3.5 3.45
0.1 10.47845 10.39 10.385 10.372 10.1126 10.1089 10.0821 10.28992 10.7423438 10.3
0.2 17.71406 17.37 17.37 17.31 17.4122 17.2385 17.1024 17.42867 17.9270779 17.26
0.3 25.207991 24.43 24.43 24.3 24.8958 24.3515 24.107 23.28899 24.2137138
0.4 32.963901 31.57 31.57 31.35 32.4742 32.1485 32.104 28.26454 30.2908271
0.5 40.993581 38.8 38.79 38.45 40.171 40.1509 39.988 34.09573 36.2452983 38.14
0.6 49.339712 46.11 46.09 45.6 48.7423 48.3837 47.124 40.14736 43.3375487 38.28 45.1

0.65 53.67567 49.75 49.73 49.13 52.798 52.2038 51.0952 45.1047 48.0763212 45.24 48.5
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For a brief description of these rigorous theoretical formulae used for comparison, let us refer
to Appendix A Section. On the other hand, the experimental values obtained from Clements and
Moore [12] and Sideridis [13] are performed as well. Here, one may observe that amongst the variation
laws that were adopted by Theocaris et al. and Sideridis et al. to approach the interphase stiffness in
the formulae presented in past papers [11,15], the linear ones yield the highest predictions.

Next, Figure 3 designates the theoretical values for the upper bound of the composite longitudinal
modulus, yielded by Equation (21) associated with Equation (20) versus fibre volume fraction,
together with those obtained from Theocaris et al. (linear, parabolic and hyperbolic variation law) [11]
and Sideridis et al. (linear, parabolic and hyperbolic variation law) [15]. Moreover, the theoretical
predictions arising from Theocaris’ two and three term unfolding model [14] are performed. For a brief
description of these theoretical formulae, let us refer to Appendix A Section. Finally, the experimental
data obtained from Clements and Moore [12] and Sideridis [13] appear.

Figure 3. Variation of Longitudinal modulus against fibre volume fraction.

By focusing in Figure 2, one may observe that for low fibre contents the theoretical values of EL
arising from Equation (21) by the aid of (20) are very close to those yielded by all the other theoretical
formulae used for comparison. In addition, they are in good agreement with the experimental values
obtained from Sideridis [13]. Next, for medium fibre concentrations by volume one may point out
a deviation, especially between the values obtained from Equation (21), as well as from Sideridis’
upper bound [15] with the predictions given by Theocaris’ two and three term unfolding model. Yet, a
comparison between the values obtained from Equation (21) and those arising from Theocaris et al. [11]
yields a smaller deviation.

However, an increment of this discrepancy is noticed at high fibre contents up to 0.65. Besides,
the theoretical predictions of Equation (21) are above the experimental data obtained from Sideridis [13]
and well above those of Clements and Moore [12]. Of course one may elucidate that such discrepancies
could be generally expected given that the aim of Equation (21) and Sideridis formula [15], is to signify
an upper bound of the longitudinal modulus. Moreover, some discrepancies are also attributed to the
fact that some theoretical assumptions and conceptions cannot be fulfilled in praxis.

In the meanwhile, one may also observe that for high fibre concentrations by volume the
theoretical values yielded by Theocaris’ two and three term unfolding model [14] are in consensus
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with the experimental results obtained from Clements and Moore [12]. Finally, it can be said that
Equation (21) constitutes a slight but concrete improvement when compared with Sideridis’ upper
bound performed previously [15].

Nevertheless, a shortcoming of Equation (21), which illustrates the upper bound of longitudinal
composite moludus derived from strength of materials approach, is that the mathematical derivations
were based on the hypothesis that the fibre is much stiffer that the matrix i.e., Em + Ei < E f and
hence an analogous expression for Poisson ratio of the composite cannot be obtained according to
this reasoning. Thus the overall methodology leading to an upper bound of composite modulus
without the consideration of any variation law, cannot be used to improve a theoretical formula arising
from elasticity approach, such as the other formulae used from comparison without the adoption of
several variation laws to approach interphase Poisson’s ratio. Thus, one could not know beforehand
which variation law of interphase Poisson ratio would yield the highest predictions of EL in the final
expression of longitudinal modulus, although it was observed [25] that the parabolic variation law
generally yields the lowest values for the interphase stiffness of unidirectional fibrous composites
when compared with other laws that are commonly used. On the other hand, one may also pinpoint
that since according to strength of materials approach fibres, matrix and interphase are supposed
somewhat as solid blocks the volumes of which are proportional to their relative abundance in the
overall material instead of the modified form of Hashin–Rosen cylinder assemblage model presented
in Figure 1 one may adopt the following simplified model (see Figure 4) to simulate the microstructure
of the unidirectional fibrous composite.

Figure 4. Simplified model of the composite structure.

Evidently the following expressions hold

Um =
Vm

V
; U f =

Vf

V
; Ui =

Vi
V

(22)

with V = Vm + Vf + Vi.
Obviously, since the inequality U f < Ui + U f < 1 holds, the overall mathematical procedure

resulting in Equation (19) and in Equation (21) remains as is.
In this context, the three-phase modified version of Hashin–Rosen model exhibited in Figure 1

could be omitted, given that the radius of this coaxial cylinder model does not take place in the
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mathematical derivations carried out by the author’s to arrive at the upper bound of composite
modulus. Hence, the overall mathematical derivation leading to this bound may alternatively result
from the consideration of a simplified rectangular model and possibly seems closer to the basis of
a three-phase “solid blocks” unit cell than a coaxial cylinder model. However, it is the authors’
opinion that the adoption of the model presented in Figure 1 is very useful, since the radii of the three
embedded cylinders signify in a more elegant and comprehensive manner the way that the interphase
region surrounds the unidirectional fibre in the form of numerous successive annuli [24].

4. Conclusions

In this theoretical work, constituting a continuation of the author’s on-going investigation
into elastic properties of fibrous materials, an upper bound of longitudinal modulus of three
phase fibrous-reinforced composites was a determined according to strength of materials approach,
with respect to the constituent material properties, provided that the fibre is much stiffer than the
matrix. This hypothesis generally concerns polymeric fibrous composites. The fibres that reinforce the
polymer, which is supposed to be macroscopically homogeneous are unidirectional, continuous and
isotropic. Concurrently, the concept of interphase in the context of a cluster of three coaxial cylinders
was taken into account. In this framework, a rephrased form of Hashin–Rosen cylinder assemblage
model was adopted. The novel element here is that the authors did not suppose any particular
variation law to approach the interphase stiffness.

In this context, one may deduce that the following three basic intermediate steps referring to the
process of estimating the stiffness of the overall material were bypassed:

i. Theoretical approximation of interphase stiffness,
ii. Estimation of its averaging values,
iii. Measurement of interphase thickness via DSC experiments.

In closing, it can be said that the proposed formula contributes in a considerable manner to the
encapsulation of several analytical techniques for evaluating the stiffness of three-phase unidirectional
fibrous composites.

Author Contributions: Methodology, J.V.; Supervision, E.P.S.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare that there is no conflict of interests regarding the publication of
this paper.

Appendix A

In this section, let us make the following brief theoretical remarks referring to some reliable
theoretical formulae resulting in the direct estimation of longitudinal modulus for a general class of
unidirectional fibrous composites reinforced with continuous fibres.

(1) Theocaris, Sideridis, and Papanicolaou formula [11]

Here, the adopted microstructural model to simulate the periodic fibrous composite is a coaxial
three layer cylindrical model similar to that presented in Figure 1. The longitudinal modulus EL,
was calculated in the framework of energy balance for the overall material. In this context, the following
relationship holds

rm∫
0

ELε2rdr =
r f∫
0

[
8C2(1− v f − 2v2

f ) + E2
f ε2
]

rdr +
ri∫

r f

1
Ei

[
2K2

r4 (1 + νi) + 8M2(1− vi − 2v2
i ) + E2

f ε2
]
rdr+

+ 1
Em

rm∫
ri

[
2F2

r4 (1 + νm) + 8H2(1− vm − 2v2
m) + E2

mε2
]
rdr

(A1)
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In the above representation, both interphase modulus and Poison’s ratio are functions of the polar
distance from the fibre according to a three phase coaxial cylinder model. To integrate the second term,
four different laws of variation were taken into account.

Hence the following expressions hold:

(a) Linear Law for Interphase Stiffness and Poisson’s Ratio

EL = E f
r2

f

r2
m
+

(E f ri−Emr f )
r2

m

(
ri + r f

)
− 2

3

(
r2

i +rir f +r2
f

)
(E f−Em)

r2
m

+

+
[

1−νm−2ν2
m

Em
+ Em

]
(r2

m−r2
i )

r2
m

(A2)

Also according to Lipatov’s experimental method [6] the following equality holds

r2
f

r2
i
=

U f

U f + Ui
=

1−U f

1−U f (1− λ)
(A3)

thus it follows

EL = E f U f +
1
3

[(
E f + 2Em

)
(1−Um)−

(
2E f + Em

)
U f +

(
E f − Em

)√
U f (1−Um)

]
+

+
[

1−νm−2ν2
m

Em
+ Em

]
Um

(A4)

(b) Hyperbolic law for interphase stiffness and Poisson’s ratio

EL = E f
r2

f

r2
m
+ Em

(
r2

m−r2
i

r2
m

)
+

Emri−E f r f

r2
m

(
r f + ri

)
+ 2
(

E f − Em

) r f ri

r2
m

+
[

1−νm−2ν2
m

Em
+ Em

](
r2

m−r2
i

r2
m

)
(A5)

Then, by the aid of Equation (A3) it implies that

EL = E f U f +
(

Em
√

1−Um − E f

√
U f

)(√
1−Um +

√
U f

)
+ 2
(

E f − Em

)(√
U f (1−Um)

)
+
[

1−νm−2ν2
m

Em
+ Em

]
Um (A6)

(c) Two degree parabolic law for interphase stiffness and Poisson’s ratio

EL = E f
r2

f

r2
m
+

(E f−Em)
(

r3
i +r2

i r f +rir2
f +r3

f

)
2r2

m(ri−r f )
− 4

r2
m

(E f−Em)ri

(
r2

i +r f ri+r2
f

)
ri−r f

+

+

(
E f r2

i +Emr2
f−2Emr f rm

)
(r f +ri)

r2
m(ri−r f )

+
[

1−νm−2ν2
m

Em
+ Em

](
r2

m−r2
i

r2
m

) (A7)

and by the aid of Equation (A3) it implies that

EL = E f U f + EmUm +
3(E f−Em)

(√
(1−Um)3+

√
U f (1−Um)+υ f

√
1−Um+

√
U3

f

)
6(
√

1−Um−
√

U f )
−

− 8(E f−Em)(
√

1−Um)(1−Um+U f +
√

U f (1−Um))
6(
√

1−Um−
√

U f )
+
[

1−νm−2ν2
m

Em
+ Em

]
Um

(A8)

(2) Theocaris’ Two-Term Unfolding Model for Fibrous Composites [14]

ELC = Em + E f U f −
EmU f

3
+

E f U f

η− 1

(
1−η−1

)
+

E f Uη
f

3

(
1 +

1
√ −

2
)
−

EmU f

3

(
1
√ +

1
)

(A9)

where the coefficient η, was experimentally determined previously [14], additionally, the real quantity
B depends on the fibre volume fraction and the coefficient λ and signifies the implicit role of the
mesophase annulus in this formula.
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(3) Theocaris’ Three-Term Unfolding Model for Fibrous Composites [14]

ELC = Em + E f U f − EmU f + U f

[
E f

η
2 − 1

(
1−

η
2−1
)
− Em

η − 1

(
1−η−1

)]
(A10)

Again, the quantities η and B are determined in the same way as in Two-Term Unfolding Model.

(4) Sideridis-Papadopoulos-Kyriazi formula [15]

According to a classical elasticity approach, an upper bound for longitudinal modulus of
unidirectional fibrous composites reinforced with long fibres is given in a rigorous manner by the
following explicit expression

EL =
(1−v f−4vv f +2v2

L)

(1−v f−2v2
f )

E f U f +
(1−vi−4vvi+2v2

L)

(1−vi−2v2
i )

EiUi +
(1−vm−4vvm+2v2

L)

(1−vm−2v2
m)

EmUm (A11)

with

vL =
(1− v f − 2v2

f )E f U f v f + (1− vi − 2v2
i )EiUivi + (1− vm − 2v2

m)EmUmvm

(1− v f − 2v2
f )E f U f + (1− vi − 2v2

i )EiUi + (1− vm − 2v2
m)EmUm

(A12)

Again, the Poisson’s ratio of interphase zone named vi can be evaluated for linear, hyperbolic and
parabolic variation respectively.
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