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Abstract: The effect of high temperature on the mechanical properties of concrete reinforced by
steel fibers with various aspect ratios has been investigated in this study. Concrete specimens were
fabricated from four different concrete mixtures and cured for 28 days. After curing and natural drying,
the specimens were annealed at a temperature of 500 ◦C for 3 h in an electric furnace. The compressive
and tensile strengths as well as the elastic moduli of the produced specimens were determined.
It was found that the mechanical properties (especially flexural toughness) of steel fiber-reinforced
concrete were less affected by high temperature as compared to those of control concrete specimens.
The flexural tensile strength of fiber-reinforced concrete measured after high-temperature treatment
was almost equal to the value obtained for the reference concrete specimen at room temperature.
It should be noted that the addition of steel fibers to concrete preserves its mechanical properties after
exposure to a temperature of 500 ◦C due to fire for a period of up to 3 h, and thus is able to improve
its high-temperature structural stability. The test results of this study indicate that the use of steel
fibers in concrete-based materials significantly enhances their fire and hear-resistant characteristics.
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1. Introduction

Fibers have been used to reinforce brittle materials before the invention of cement and since the time
of the Egyptian and Babylonian civilizations [1]. In 1960, multiple studies were performed to improve
the mechanical properties of concrete by incorporating different types of fibers [2–6] into its structure,
which healed cracks and increased the ductility of concrete elements [7]. Furthermore, the addition of
fibers to a concrete matrix increased the strain at peak load and enhanced the energy absorption ability
of fabricated structures [8]. Many research groups have studied the properties of various composites
produced by fiber insertion, which included cement-based materials reinforced with agro-industrial
residual, recycled polyethylene terephthalate, vegetal, glass, and steel fibers [9–12]. In particular, the
addition of fibers to a concrete matrix improved its durability by exhibiting pseudo-ductile behavior
(residual strength to applied force after cracking). The addition of fibers to a composite matrix increases
its energy absorption capacity, because they promote the stress transfer through cracks by acting
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as bridges and thus increase the material stability [13–16], owing to the fiber’s characteristics, the
properties of the concrete matrix, and fiber–matrix interactions [15]. The efficiency of the added
fibers depends on their specific parameters such as volume fraction, aspect ratio (AR), shape, and
size distribution [17]. In addition to cementitious materials, various other composites may also be
reinforced by fibers, for example asphalt mixtures [18], polymers [19,20], or ceramic matrix [21].

Studies involving steel fibers for the reinforcement of cementitious materials (mainly concrete)
and their applications have become increasingly present in the scientific community. Kotsovos, Zeris,
and Kotsovos [22] studied the effect of steel fibers on reinforced concrete structures during earthquake
simulation. Chalioris and Sfiri [23] evaluated the shear behavior of steel fiber-reinforced beams under
cyclic loading. Chalioris [24] performed a consistent analytical approach to determine the minimum fiber
content in steel fibrous concrete beams that would lead to adequate shear strength and consequent stirrup
replacement. Park et al. [25] studied the influence of curing conditions on the compressive strength
at early ages of ultrahigh-performance steel fiber-reinforced concretes. Kang et al. [26] investigated
the microstructural properties of fiber-reinforced ultrahigh-performance concretes submitted to
different heat treatments. Chalioris and Panagiotopoulos [27] evaluated the flexural response of steel
fiber-reinforced concrete (SFRC) by a numerical approach. Guerini et al. [28] studied the effect of
steel fibers and synthetic macrofibers on the workability and mechanical performance of concrete.
Chalioris, Kosmidou, and Karayannis [29] investigated the influence of steel fiber addition on the
mechanical behavior of reinforced beams submitted to cyclic loading. Soares Junior et al. [30] studied
the performance of steel fiber-reinforced high-performance cementitious composite plates through
bending behavior, statistical analysis, and microstructural investigation. Workability was evaluated
in other works [31–34]. In general, as fiber content increases, workability decreases. Admixtures,
additives, fiber type, and mix proportion also affect the properties of the fiber-reinforced concretes
(FRC) in the fresh state.

The properties of concrete may be significantly influenced by high temperatures [35,36], which
cause a decrease in its compressive strength as well as cracking and spalling. In addition, high
temperatures reduce the bond strength between the cement paste and aggregates and lead to the
progressive breakdown of the cement gel structure, which consequently reduces its load-bearing
capacity [37,38]. Multiple studies of the mechanical properties of steel and polypropylene (FRC)
exposed to high temperatures have been performed [39–48]; the strength reduction and surface cracking
phenomena observed for various fiber-reinforced concrete are described in detail in [49].

However, the investigation of concrete deterioration at high temperatures represents a challenging
task because of the different properties of its constituents [50]. The negative effects of high
temperature on the microstructure (thermochemical decomposition and excessive microcracking) and
macrostructure (abrasion and spalling) of concrete substantially decrease its strength and elasticity
modulus. Furthermore, the strength of cement paste decreases after heating to temperatures above
300 ◦C due to the loss of water by hydrated silicate species (the process is accelerated in the temperature
region between 500 and 600 ◦C because of the calcium hydroxide dehydration). As a result, the cement
starts shrinking [51]. For temperatures below 200 ◦C, the strength reduction of the cement is relatively
insignificant. In the region from 200 ◦C to 300 ◦C, the weakening of the van der Waals forces between
various C–S–H layers occurs because of the water evaporation (both these factors contribute to the
loss of concrete strength) [50,52]. In the temperature region from 300 ◦C to 600 ◦C, the corresponding
reduction in strength amounts to 50%–90%. Between 600 ◦C and 900 ◦C, the related strength reduction
becomes equal to 90% [50,51,53]. At temperatures above 1000 ◦C, its residual strength is reduced to
zero [50]. However, the structural resistance of concrete become zero after heating to temperatures
above 600 ◦C [54]. At a temperature of 500 ◦C, the concrete suffers a 55%–70% loss of its initial
strength [55].

In the application scenario, FRC can be used in various situations, structural or not, such
as industrial floors, prefabricated elements, slabs, pillars, foundations, etc. [56,57]. Other specific
applications also occur, especially for high-fiber contents such as structures that are capable of
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withstanding earthquakes [22], impact resistance [58], ballistic defense, and explosions [59]. However,
the advantageous characteristics of FRC exposed above are favorable in fire situations. Structures can
be suddenly taken over by fires, which puts lives at risk and causes extensive financial impacts. The use
of fibers promotes good resistance at elevated temperatures, avoids spalling, and restricts dimensional
variations, keeping the concrete cohesive [60]. Fire suitability is essentially relevant in modular
buildings [61], in which different types of composite materials are used [62] (glass fiber-reinforced
polymer—GFRP; polymer or steel mesh-reinforced cementitious plate), and in railway infrastructure
constructions [63]. In the first case, modular buildings are constructed by combining large prefabricated
parts or elements, so there is a need for additional concern with thermal acoustic insulation and fire
resistance. The second point concerns the possibility of burning the railway superstructure sleepers in
case of fire or the welding of rail joints.

In this context, the study of building materials subjected to high temperatures is important,
especially those that have structural function. In addition, it was observed that temperatures around
500 ◦C are critical in terms of degradation of the cementitious matrix and consequent drop in
performance. As stated above, several works address the performance of fiber-reinforced concrete
subjected to elevated temperatures. However, the combined effect of the fiber aspect ratio and high
temperature on mechanical behavior needs to be further investigated. Thus, the present work aims
to investigate the influence of the addition of steel fibers and their respective aspect ratio on the
mechanical strength of concrete heated at 500 ◦C.

There are several studies in the literature related to the addition of steel fibers in concrete for use in
floors and slabs, but there are few studies on steel fiber-reinforced concrete in fire situations. The present
work contributed to the scientific development of concrete technology on the aspect of durability in
demands after submission to high temperatures. The results presented show the gains caused by the
addition of steel fibers in concrete, especially in situations after exposure to high temperatures.

2. Materials and Methods

Figure 1 shows the flowchart of the experimental procedure utilized for the characterization of
Portland cement and its aggregates. In this study, concrete specimens with and without steel fibers
were prepared. Tables 1–3 list the characteristics of the cement, fibers, and raw materials, respectively;
Table 4 specifies the proportions of the raw materials; and Table 5 describes the chemical composition
of the fibers.

Table 1. Properties of Portland cement used in this study.

Physical Mechanical Chemical (wt %)

Particle size
#200–75 mm (%) 0.28

Compressive
strength (MPa)

1 d 25.7 Insoluble residue 0.72

#325–45 mm (%) 2.75 3 d 36.1 Loss on ignition 3.79

Blaine (cm2/g) 5.232 7 d 41.2 MgO 2.91

Density (g/cm3) 3.070 28 d 49.7 SO3 3.63

Setting time
(min)

Initial 130
Expansibility

(mm)

Cold -

Final 160 Hot 0.4

Table 2. Properties of the steel fibers used in this study.

Notation Manufacturing
Material Type Section Diameter (d)

(mm)
Length (l)

(mm)
Aspect Ratio (AR)

(l/d)

AR 44 Drawn low-carbon
steel wire Hooked Circular 0.75 33.00 44

AR 67 Drawn low-carbon
steel wire Hooked Circular 0.75 50.00 67

AR 80 Drawn low-carbon
steel wire Hooked Circular 0.75 60.00 80
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Figure 1. A flowchart describing the experimental procedure used to characterize Portland cement and
its aggregates.

Table 3. Parameters of the raw materials used for concrete preparation in this study.

Component Description Density
(kg/dm3)

Unit Weight
(kg/dm3) Finesses

Binder High early strength Portland cement 3.070 - -
Fine aggregates Sand 2.591 1.541 2.672

Coarse aggregates Crushed limestone (Max size: 19 mm) 2.692 1.503 5.966
Water - - - -

Table 4. Parameters of the concrete mixtures utilized in this study.

Component Description Content (kg/m3) Proportion (kg)

Binder High early strength Portland cement 391.5 1.00
Fine aggregates Sand 742.0 1.90

Coarse aggregates Crushed limestone 972.5 2.49
Water (w/c = 0.55) - 214.8 0.55

Fibers (1% by volume) Steel fibers 81.2 0.21

Table 5. Chemical composition of the steel fibers used in this study.

Element %Fe %C %Mn %Si %P %S

Specification >99.19 0.06% max 0.25% to 0.40% 0.10% to 0.30% 0.025% max 0.025% max

The concrete specimens without fibers will be further referred to as control concrete (CC), and the
steel fiber-reinforced concrete (SFRC) specimens were found to be dependent on the AR of their fiber
components. Four prismatic specimens with dimensions of 150 × 150 × 500 mm and 20 cylindrical
specimens with diameters of 100 mm and heights of 200 mm were molded. A half of the prepared
specimens were heated to a high temperature after 7 d of 28 d humid curing in accordance with the
diagram presented in Figure 2.
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Figure 2. A schematic heating profile of the tested concrete specimens.

Both specimen groups (stored at a room temperature of 25 ◦C and subjected to a high temperature
of 500 ◦C) were characterized by mechanical testing to determine their compressive strengths, tensile
strengths (via diametral compression testing), flexural tensile strengths, and elastic moduli. To measure
the compressive strength, five non-heated and five heated cylindrical specimens of each concrete type
(including 10 CC specimens and 10 specimens from each SFRC group with a total of 40 specimens)
were compression tested. The testing procedure (Figure 3a) was performed using the universal testing
machine, and the specimens were tested at a loading speed of 0.5 MPa/s. The specimen bases were
regularized using neoprene caps with metallic bases. To determine the tensile strength by diametral
compression testing (Figure 3c), three non-heated and three heated cylindrical specimens prepared
from each concrete mixture were tested using the same experimental setup at a load speed of 0.2 MPa/s.
The flexural tensile strength (Figure 3d) was measured using two non-heated and two heated prismatic
specimens for each concrete mixture at a load speed of 0.1 MPa/s. To determine the static (Figure 3b) and
dynamic elastic moduli (Figure 3e), two non-heated and two heated cylindrical specimens fabricated
from each concrete mixture were tested. In the forced resonant frequency dynamic modulus test,
two specimens were tested, and the apparent specific mass was calculated, using a longitudinal
mode resonant frequency test system. To determine the frequency field to be used, the approximate
longitudinal resonant frequency value of 10 KHz was adopted for cylindrical specimens of 100 mm
diameter and 200 mm height, and for each specimen, there were 10 readings of the resonant frequency
totaling 20 readings. Based on the approximate longitudinal resonant frequency, frequency values
were defined for the extremes of the frequency range, i.e., the start frequency (Fs) and end frequency
(Fe). These values are used to calculate the respective dynamic modulus of elasticity (ED), according to
Equation (1):

ED = 4n2l2ρ10−12 (1)

where “n” is the fundamental mode frequency of longitudinal vibration in Hz, “l” is the length of the
specimen in mm, and “ρ” is the density of the material in kg/m3.

From the obtained flexural strengths, the values of the flexural toughness (T3, in N ×mm) and
flexural toughness factor (fe,3, dimensionless) were determined. The first parameter was computed in
accordance with the Japan Society of Civil Engineers - JSCE criterion SF-4 [64] by measuring the total
area under the displacement load curve (load versus strain) with the upper displacement limit equal to
L/150 (3 mm), where L (450 mm) was the length of the gap between the supports. Thus, toughness
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represents the product between the load (N) and deflection (mm). Afterwards, the value of flexural
toughness (T3) was used in Equation (2):

fe,3 =
T3·L

L
150 ·b·h

2
(2)

where “b” is the width of the specimen, and “h” is its height. Using this equation, the flexural toughness
factor (fe,3) corresponding to the mean dummy load resisted by the specimen after the cracking of the
cement matrix was obtained [65]. The toughness factor is a parameter that disregards the geometry of
the specimen, thus analyzing the energy absorption capacity in the material rupture.

Figure 3. Testing setups for (a) axial compression, (b) static moduli, (c) diametral compression,
(d) bending, and (e) dynamic moduli.

3. Results

Figure 4 shows the results of compressive strength testing of the concrete specimens obtained
before and after heating. The SFRC-AR44_25 ◦C sample exhibited a slightly higher strength than
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that of CC_25 ◦C (by approximately 3%). The compressive strength was not significantly reduced
due to the addition of fibers. Strength reductions were on the order of 7% and 19% respectively for
SFRC-AR60_25 ◦C and SFRC-AR80_25 ◦C. Several parameters can change the compressive strength of
the material, such as load application speed, environmental conditions, curing and capping methods,
which can generate a value distinction of 20%, thus demonstrating that the addition of fibers does not
generate significant changes in compressive strength [66–68]. It is generally assumed that the reduction
in the SFRC compression strength with an increase in the fiber AR before heating is related to the loss
of concrete workability in the fresh state due to the fiber insertion and increase in the fiber length [8].
The strengths of the SFRC-AR44_500 ◦C, SFRC-AR67_500 ◦C, and SFRC-AR800_500 ◦C specimens
exceeded that of CC_500 ◦C by approximately 45%, 53%, and 46%, respectively. A comparison of
the compressive strengths obtained for the non-heated and heated concrete samples showed that
their magnitudes were significantly reduced; however, the residual compressive strengths of the
steel fiber-reinforced concretes were higher than the values obtained for the non-fibrous ones. Thus,
the strength of the CC_500 ◦C specimen was equal to 36.5% of the magnitude measured for CC_25 ◦C,
whereas the SFRC-AR44_500 ◦C, SFRC-AR67_500 ◦C, and SFRC-AR80_500 ◦C samples had residual
compressive strengths equal to 52%, 60%, and 65% of the values obtained for the respective unheated
(25 ◦C) reinforced concretes, indicating that loss reduction occurred with an increase in the AR of
the reinforcement fibers. Although the obtained residual mechanical strengths were very close, and
the AR of the fibers did not apparently influence the measurement results obtained for the heated
samples, the workability loss in the fresh state with increasing fiber length and related reduction in
the compressive strength [8] were effectively eliminated. Since the residual mechanical properties of
the hot material do not differ significantly in the temperature range of 200–600 ◦C [69], the prepared
SFRC possesses better abilities to endure exposures to a temperature of 500 ◦C as compared to those of
ordinary concrete.

Figure 4. Compressive strengths of various concrete specimens.

Figure 5 shows the results of diametral compression and flexural strength testing. They show
that the addition of steel fibers to concrete significantly increases its flexural strength, which
becomes further improved with increasing AR [70]. The diametral compression strengths of the
SFRC-AR44_25 ◦C, SFRC-AR67_25 ◦C, and SFRC-AR80_25 ◦C specimens were greater than that of
CC_25 ◦C by 77%, 128%, and 98%, respectively. Further, the flexural strengths of the SFRC-AR44_25 ◦C,
SFRC-AR67_25 ◦C, and SFRC-AR80_25 ◦C samples were 8%, 85%, and 123% higher than that of
CC_25 ◦C, respectively. However, the SFRC-AR44_500 ◦C, SFRC-AR67_500 ◦C, and SFRC-AR80_500 ◦C
specimens demonstrated diametral compression strengths that were approximately 105%, 149%, and
154% greater than that of CC_500 ◦C and flexural strengths that were approximately 56%, 216%, and
208% higher than that of CC_500 ◦C, respectively. The residual diametral compression strength of the
CC_500 ◦C sample was equal to 53% of that of CC_25 ◦C, and the residual diametrical compression
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strengths of the SFRC-AR44_500 ◦C, SFRC-AR67_500 ◦C, and SFRC-AR80_500 ◦C specimens were
equal to 61%, 58%, and 68% of the strengths of their respective unheated concretes (25 ◦C). Furthermore,
the residual flexural strengths of the heated (500 ◦C) concretes were equal to 42%, 61%, 54%, and 45%
of the corresponding magnitudes measured for the unheated concretes, respectively. The obtained
results indicate that SFRC possesses higher flexural and diametral compression strengths than those
of non-fibrous concrete before and after heating, and that their values increase with increasing fiber
length (except for the SFRC-80 specimen in the diametral compression strength). Another important
advantage of SFRC is that its flexural and diametral compression strengths are equal to or higher than
those of non-fibrous concrete, indicating that at temperatures as high as 500 ◦C (caused by fire), SFRC
would retain its ability to endure mechanical loads that could be sustained by the fiberless concrete
before the fire, thus contributing to the safety of the fabricated structures.

Figure 5. Diametral compression and flexural strengths of the non-fibrous and fiber-reinforced
concrete specimens.

Figure 6 shows the static and dynamic elastic moduli measured for the non-fibrous and
fiber-reinforced concrete, indicating the absence of any significant differences between the values
obtained for the concrete specimens exposed to the same temperatures. According to the results of
previous studies, the elastic modulus of the fiber-reinforced concrete increases until the AR of the steel
fibers reaches 50 (AR 50) and then starts gradually decreasing after exceeding this value [71]. In this
work, a similar effect was observed for the AR of 44 (AR 44), which was very close to that of the AR
50 specimen; however, no significant effect of the AR on the dynamic elastic modulus was detected.
The reductions in the elastic moduli of the studied samples observed after their heating to 500 ◦C were
very close.

Figure 7 shows the load–deflection curves recorded during the flexural testing of the prismatic
150 × 150 × 500 mm concrete specimens. The CC samples exhibited typical brittle behavior, while the
SFRC specimens demonstrated pseudo-ductile behavior by retaining their residual strengths after a
first crack was produced by the applied force. The addition of fibers increased the value of the load
required to create a first crack in the studied specimen. Although the higher fiber AR may decrease
the values of the compressive strength and elastic modulus, it also increases the toughness and peak
strain of SFRC, which lead to the absorption of a greater amount of energy and better crack control
properties [72]. All the studied concrete specimens exhibited a loss of the load capacity after fire;
however, its magnitudes obtained for the reinforced concrete specimens were significantly smaller.
The SFRC-AR67_500 ◦C and SFRC-AR80_500 ◦C samples exhibited maximum loads that were equal
to or higher than that of CC_25 ◦C, indicating that the SFRC specimens with fibers AR 67 and 80
retained their flexural strengths after heating at the levels equivalent to the value obtained for the
non-fibrous concrete before heating. However, the data presented in Figure 7 confirm that these SFRC
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samples also preserved the ability to sustain high loads after reaching maximum loading during
long-term deflections.

Figure 6. Static and dynamic elastic moduli of the non-fibrous and fiber-reinforced concrete specimens.

Figure 7. Load–deflection curves recorded for various concrete specimens for flexural tests. (a) CC;
(b) SFRC-AR44; (c) SFRC-AR67; and (d) SFRC-AR80

Figure 8 shows the magnitudes of flexural toughness and the flexural toughness factor obtained for
the non-fibrous and fiber-reinforced concrete specimens, which increased with increasing AR. However,
the flexural toughness of the CC specimen was relatively small. The flexural toughness values obtained
for the SFRC-AR44 and SFRC-AR67 samples after heating to 500 ◦C were approximately 57% of the
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magnitudes measured before heating (for FRC80, this parameter was equal to 46%). Thus, the ability
to retain high residual compressive strengths (Figure 4), residual flexural strengths (Figure 5), and
residual tenacities (Figure 8) after heating makes SFRC a safer material with enhanced fire properties
as compared to those of CC.

Figure 8. Flexural toughness and flexural toughness factor values obtained for various
concrete specimens.

4. Discussion

The investigation of the effect of the fiber dimensions on the mechanical properties of the resulting
aggregates revealed that the optimal AR of the fibers was 67 (length = 50 mm). This result was in
good agreement with the data reported by Sarzalejo et al. [73], who suggested that the length of
the selected fibers must be twice as long as the maximum dimension of the aggregates with a 20%
tolerance. For the tensile strength (measured by diametral compression testing) as well as flexural
tensile strength, the fibers with an AR of 44 (length = 33 mm) did not meet the criterion, suggesting
that the selected fiber must be longer than twice the maximum dimension of the aggregates with
a 20% tolerance [73]. The evaluation of the fiber length and minimum dimension of the structural
elements for the cylindrical specimens showed that the lengths of the three types of fibers satisfied
the dimensional criteria proposed by Sarzalejo et al. [73] by being at least 1.5 times smaller than the
specimens’ diameters. However, the size of the fibers with an AR of 80 (length = 60 mm) was very close
to this limit. The evaluation of the fiber length and minimum dimension of the structural elements
for the prismatic specimens revealed that all the three fiber types satisfied this requirement [73]. It is
generally assumed that the inhibition of concrete spalling during fire occurs due to the addition of steel
fibers [74]; however, this does not increase the compressive strength and elastic modulus of the concrete
matrix, but rather increases its diametral compression and flexural tensile strengths. Furthermore,
the addition of steel fibers to concrete changes its behavior from brittle to pseudo-ductile and thus
ensures relatively low losses of its mechanical properties at high temperatures (as compared with those
of non-fibrous concrete).

5. Conclusions

The present work addresses the synergistic effect of the steel fiber aspect ratio and heating on
the mechanical behavior of concretes. The following conclusions were observed from the results
and discussions:

• The addition of steel fibers contributes to the increased tensile strength in diametrical compression;
• The addition of steel fibers contributes to the increase of the flexural strength;
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• The investigation concluded that concrete reinforced with steel fibers has a much higher residual
mechanical behavior after the fires when compared to non-reinforced concretes.

• The increase in fiber length leads to higher residual strength after fire.
• It was observed that the addition of fibers did not promote relevant variations in the compressive

strength of the analyzed models. The addition of fibers of different aspect ratios did not significantly
change the compressive strength when compared to the variations observed in the literature given
by the different molding processes, curing, and load application speed.

• Therefore, it can be concluded that the use of steel fibers in concrete-based materials significantly
enhances their fire and hear-resistant characteristics.

The present work suggests as future research the following topics:

• Evaluation of the chipping inhibition of concretes in fire situations by the addition of steel fibers;
• Evaluation of the mechanical properties of steel fiber-reinforced concrete during fires; and
• Finite element simulation of the mechanical behavior of steel fiber-reinforced concrete during fires.
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