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Abstract: Addition of steel fibres to concrete is known to have a significant positive influence on
the mechanical properties of concrete. Micro polypropylene (PP) fibres are added to concrete to
improve its performance under thermal loads such as in case of fire by preventing the phenomena
of explosive spalling. An optimum mixture of steel and micro PP fibres added to concrete may be
utilized to enhance both the mechanical and thermal behaviour of concrete. In this work, systematic
investigations were carried out to study the influence of elevated temperature on the mechanical
properties and physical properties of high strength concrete without and with fibres. Three different
mixtures for high strength concrete were used, namely normal concrete without fibres, Steel fibre
reinforced concrete and Hybrid fibre reinforced concrete having a blend of hooked end steel fibres
and micro PP fibres. The specimens were tested in ambient conditions as well as after exposure to
a pre-defined elevated temperature and cooling down to room temperature. For all investigated
concrete mixtures the thermal degradation of following properties were investigated: compressive
strength, tensile splitting strength, bending strength, fracture energy and static modulus of elasticity.
This paper summarizes the findings of the tests performed.

Keywords: steel fiber reinforced concrete; polypropylene fibres; elevated temperature; hybrid fibre
reinforced concrete; strength; fracture energy

1. Introduction and State of Art

Over the past decades, new concrete-based materials are being developed with an aim to derive
higher performance than ordinary concrete. Synthetic fibres are added to the concrete mixture to
improve one or more of its properties [1], such as creep or impact resistance or to prevent explosive
spalling due to fire [2]. In general, the addition of micro PP fibres does not significantly affect
the mechanical properties of concrete. Steel fibre reinforced concrete (SFRC) is probably the most
investigated fibre reinforced concrete type [3–6]. Due to the inclusion of steel fibres, the tensile
strength of concrete gets higher and the fracture behaviour of concrete becomes more ductile [3,4].
Inclusion of steel fibres has been proven to reduce the congestion of reinforcement required in the
beam-column joint regions according to new seismic design codes [7–9]. Additionally, researchers have
tried combining steel fibres with other type of fibres to improve different properties of the concrete
mixture [10,11] including the resistance to elevated temperature [12].

Understanding the thermal degradation of various concrete properties is of vital interest for the
evaluation of both fire performance and post-fire capacity of RC structures. Furthermore, these data
are useful for numerical models, which can then be used to assess the concrete performance upon
heating. Significant research has been performed to assure better understanding of the behaviour of
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concrete exposed to elevated temperature, principally for normal and high strength concrete. However,
the studies on the thermal behaviour of concrete with steel and/or micro polypropylene (PP) fibres are
limited and the majority of the studies focused only on few material properties at a time [13–15].

This work is aimed at studying the mechanical and physical properties of concrete with steel
fibres and a combination of steel and PP fibres after exposure to elevated temperatures in residual
state. Three different mixtures for high strength concrete are used in these studies, namely:

• NC—Normal concrete without fibres;
• SFRC—Steel fibre reinforced concrete having 50 kg/m3 of hooked end steel fibres and
• HyFRC—Hybrid fibre reinforced concrete having 50 kg/m3 of hooked end steel fibres +1 kg/m3

of micro PP fibres.

The specimens were tested in ambient conditions as well as in residual conditions after exposure
to a pre-defined elevated temperature and cooling down to room temperature. The maximum
temperature that was used in the tests was 800 ◦C. For all investigated concrete mixtures the thermal
degradation of following properties were investigated: compressive strength, tensile splitting strength,
bending strength, fracture energy and static modulus of elasticity. Different specimens, namely cubes,
cylinders, prisms and beams were used to test different properties. However, to optimize and based
on the results of the investigations, not all the tests were made for the same temperatures, which will
be discussed in the paper. This paper summarizes the findings of the tests performed.

2. Background

Concrete is a quasi-brittle material that displays a relatively steep descending branch after reaching
the peak load. The fracture behaviour of concrete in tension and the corresponding stress versus crack
opening is explained in Figure 1a (adapted from Reinhardt [16]). The response of concrete member in
terms of direct tensile stress is plotted as a function of strain in the pre-peak region and in terms of the
crack opening displacement in the post-peak region. The stress-strain curve for the concrete under
tension is almost linear until the peak-tensile stress (tensile strength of concrete) is reached. The slope
of this stress-strain curve in tension up to peak stress is often considered the same as the modulus of
elasticity of concrete in compression.
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In case of plain concrete, beyond this peak stress, the crack localizes and therefore instead of
average strain over the pre-defined gauge length, crack opening displacement is used to describe the
post peak behaviour of concrete under tension. Thus, the tensile response of concrete can be divided
in two zones:

• the pre-peak response where the strain over a certain gauge length is used to define the
behaviour and

• the post-peak response where the crack opening displacement is used to describe the behaviour.

The post-peak behaviour of plain concrete under tension in stress v/s deformation plot resembles
an exponential plot. The tensile stress attains the value of zero at a displacement, δo.

The fracture behaviour of concrete with steel fibres loaded under direct tension is depicted in
Figure 1b. Steel fibres are activated only after the concrete cracks. At any given displacement, δtot,
the total resistance of SFRC member is given as the sum of remaining concrete resistance and the
resistance offered by the steel fibres intercepted by the crack. Since the concrete resistance drops down
rather fast with crack opening, the total resistance is primarily given by the resistance of the fibres.
The steel fibres display a relatively ductile behaviour and continue to provide the resistance even
at rather high crack opening displacements. This results in a ductile tensile performance of SFRC.
The influence of steel fibres on the mechanical properties of concrete under ambient conditions has
been significantly investigated and well-reported [14,15,17–19].

When the concrete is exposed to elevated temperature, its mechanical properties decade.
For high-strength concrete, one of the major problems encountered in case of exposure to fire is that
of explosive spalling. This is due to a combination of pore pressures and thermally induced stresses
that cause the concrete to fail abruptly with a sudden release of energy [2]. This type of concrete
failure is characterized by bursting and forcible separation of thin layers of concrete, accompanied
by a typically loud explosive noise. The failure is progressive in nature, which may lead exposure
of reinforcement or prestressing cables to direct fire. Furthermore, it reduces concrete cross section
and can thus lead to partial or complete collapse of the structure [2]. The most efficient and popular
method to mitigate explosive spalling is the addition of micro polypropylene (PP) fibres in concrete.
According to experimental evidence, explosive spalling occurs typically at temperatures between
200 ◦C and 250 ◦C [20,21], while the PP fibres melt at approximately 160 ◦C to 170 ◦C. Empty or
partially empty fibre beds together with the existing concrete capillary pores and micro-cracks form
an interconnected porous network in concrete. The created network (e.g., increased permeability)
provides free path for the water vapour to escape resulting in a relief of the pore pressure and hence
no or very limited spalling occurs. Bošnjak [2] developed a test setup to measure the permeability
of concrete at elevated temperatures and used it to measure the influence of micro PP fibres on the
permeability of concrete. It was concluded that the addition of PP fibres does not significantly influence
the transport properties of concrete up to 80 ◦C. However, between 80 ◦C and 130 ◦C concrete with PP
fibres exhibits a sudden progressive increase in permeability of approximately two orders of magnitude
(Figure 2). Beyond 130 ◦C the rate of increase in permeability reduces and it roughly corresponds
to that of the concrete without fibres. Same as in the case of concrete without fibres, the residual
permeability values of concrete with fibres are found to be somewhat higher than the permeability
values at elevated temperatures.

As different types of fibres affect different properties of concrete, an optimal mixture of concrete
with a combination of fibre types may lead to an enhanced performance of concrete under different
loading conditions (e.g., mechanical + thermal). However, there are often concerns that the addition of
polypropylene, though effective in preventing explosive spalling, may result in a negative impact on
the mechanical properties of concrete, especially at high temperature. The aim of this experimental
study is to investigate the effects of steel and polypropylene fibre reinforcement on the mechanical
properties of concrete after exposure to elevated temperatures, in residual conditions.
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Figure 2. Permeability of concrete without and with micro PP fibres as a function of temperature,
data from [2]. (Note: 1E-18 refers to 1.0 × 10−18).

3. Materials and Methods

3.1. Concrete Mixture

In this experimental program, three different concrete mixtures were used, see Table 1.
The reference mixture was normal (plain) concrete without fibres (NC) designed to achieve a
characteristic target cubic compressive strength of approximately 50 MPa. The mixture with steel fibres
(SFRC) was made by adding 50 kg/m3 of steel fibres to the normal concrete mixture, which lies within
the typical range used in engineering practice. In order to ensure workability of the mixture, slight
adjustments were made to the aggregate content and the amount of super-plasticizer. As a general
rule to ensure a sufficient bond between the concrete matrix and fibres, the maximum aggregate
size should not exceed one-third of the fibre length. For this reason, the maximum aggregate size of
Dmax = 16 mm and the hooked-end type fibres HE 75/50 by the company ArcelorMittal (Cologne,
Germany) were used for SFRC concrete mixture [22]. The tensile strength of fibres was reported by the
manufacturer as 1200 N/mm2. The nominal diameter of the fibre was d = 0.75 mm and the nominal
fibre length was Lfiber = 50 mm (aspect ratio Lfiber/d = 67). The third mixture consisted of 50 kg/m3 of
the steel fibres plus 1 kg/m3 of micro PP fibres (hybrid fibre reinforced concrete—HyFRC). The micro
polypropylene fibres of type PB Eurofiber HPR 15/6 with high melt flow rate were used (obtained
directly from the producer—baumhueter extrusion GmbH (Rheda-Wiedenbrück, Germany)). The
diameter of the micro PP fibres is 15 microns and the length is 6 mm. These fibres have a superior
performance compared to standard micro PP fibres with respect to prevention of explosive spalling. It
was shown previously that even a relatively small dosage of HPR 15/6 fibres of 1 kg/m3 leads to a
massive improvement of the resistance to explosive spalling [2]. Increasing the PP fibre content beyond
this value is not expected to significantly influence the spalling resistance. However, it may have an
adverse effect on the workability and mechanical properties. The target of this work was to investigate
the mutual effect of steel fibres (used to enhance the mechanical properties) and micro PP fibres (used
to improve resistance to explosive spalling) after exposure to elevated temperatures. Therefore, only
one practically relevant dosage of PP fibres was used.

Table 1. Description of concrete mixture used in the test program.

Mixture
ID

Cement
(kg/m3)

Sand
(kg/m3)

Aggregate
1 (2–4 mm)

(kg/m3)

Aggregate
2 (4–8 mm)

(kg/m3)

Aggregate 3
(8–16 mm)

(kg/m3)

Water/Cement
Ratio (-)

Superplasticizer
(% of cement)

Steel
Fibres

(kg/m3)

Micro PP
Fibres

(kg/m3)

NC 370 562 259 392 571 0.48 0.2 0 0
SFRC 370 556 256 389 565 0.48 0.3 50 0

HyFRC 370 556 256 389 565 0.48 0.4 50 1
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3.2. Test Specimen

Different properties of concrete were tested in this study, for which different test specimen were
utilized. For each property and a given temperature, at least two specimens were tested to verify the
repeatability of the test results. The test specimens used to obtain different material properties are
summarized in Table 2.

Table 2. Description of the test specimen used to determine material properties.

Material property Specimen Type Specimen Dimensions Shape

Compressive strength Cube 150 mm × 150 mm × 150 mm
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3.3. Heat Treatment

The mechanical properties of different types of concretes were investigated over a range of 20 ◦C
(ambient conditions) until 600 ◦C, 700 ◦C or 800 ◦C depending on the property investigated. For heating,
the test specimens were placed inside an electric oven with programmable controls for the heating rate
as well as retention time for the temperature. The target temperature in each case was reached at a
relatively slow heating rate of 2 ◦C/min. After reaching the desired temperature, the temperature was
maintained for 3 h to ensure uniform heating of the test specimen. The temperature was allowed to
gradually come down after the completion of retention time by opening the small ventilation holes in
the oven, while keeping the oven door closed. When the oven temperature reached approximately
100 ◦C, the door of the oven was opened to allow relatively fast cooling. Note that all the tests were
performed on the cooled down specimen (residual state).

4. Test Results and Discussion

4.1. General

In this section, the results of the experiments performed are presented. In all the cases, after heat
treatment, the specimens were visually inspected for any surface cracks, which were then marked
in red colour. The specimens were tested under static loading rate. All concrete types were tested
at a similar age of approximately 5–6 months. Following material properties were investigated:
compressive strength, splitting strength, bending strength, fracture energy, dynamic modulus of
elasticity (non-destructive impact-echo test method) and static modulus of elasticity. While evaluating
the results of the present study, it should be kept in mind that only two specimens were tested per case
(only in exceptional cases three or more).

In the present study only one dosage of both steel and polypropylene fibres was investigated.
Therefore, the results and conclusions presented herein are indicative and valid only for the conditions
used in this study. Further studies are required to allow more general conclusions. In particular,
more detailed studies are required to investigate the thermal degradation of SFRC with different fibre
content and fibre types (straight and corrugated steel fibres).
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4.2. Compressive Strength

The compressive strength of concrete was obtained from a standard compressive strength test
using cube specimens of side 150 mm following the European testing standard (EN) 12390-3 [23].
Figure 3 presents the typical thermal cracks observed on the surface of the specimens after heat
treatment with a maximum temperature of 600 ◦C and a typical failure mode after the compressive
strength test. Due to relatively slow heating, the cracks appearing on the surface were rather fine.
The failure mode observed in the compressive strength test performed on the cubes after heat treatment
corresponds well with the failure modes observed for cubes tested under ambient conditions. Thus,
the exposure to elevated temperature does not result in a change of failure mode.
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Figure 3. Thermal cracks and typical failure mode observed for the cubes used for compressive strength
tests after an exposure to maximum temperature of 600 ◦C.

The compressive strength tests were performed on cubes with a maximum exposure temperature
of 800 ◦C. The results of the mean compressive strength of different concrete mixtures obtained from
the tests are plotted as a function of the exposure temperature in Figure 4a. In general, it can be
observed that the inclusion of steel and micro PP fibres does not have any significant influence on the
mean compressive strength of concrete. This can be attributed to the relatively low volumetric fraction
of fibres in concrete. Nevertheless, it is found that the addition of micro PP fibres does not negatively
influence the compressive strength of concrete, neither at ambient, nor at elevated temperature. It was
further observed that the reduction in compressive strength for all the mixtures tested was rather strong
for an exposure temperature of 800 ◦C. The scatter of test results within a particular test series was
found to be rather low independent of the concrete type and exposure temperature, as visible in Table 3.
The fibre-reinforced concrete types exhibit similar scatter as the normal concrete. With increasing
temperature, the scatter increases slightly for all three concrete types. This is most probably related to
the pronounced effect of concrete heterogeneity, which then affects thermally induced damage.
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The variation of the relative compressive strength with temperature as shown in Figure 4b follows
similar trend for all three concrete mixtures tested. The compressive strength remains almost constant
up to approximately 300 ◦C. As the difference in thermal strain of the concrete matrix and aggregates
increases, the compressive strength decreases linearly. After exposure to 800 ◦C normal concrete
exhibits slightly higher residual compressive strength than the fibre reinforced concrete types. This is
attributed to the scatter in the material properties of concrete. Thus, it can be concluded that the
influence of elevated temperature on the compressive strength of concrete with added steel fibres
as well with added steel and micro PP fibres is the same as that on the compressive strength of
normal concrete. These results lead to an important conclusion that addition of micro PP fibres can
prevent explosive spalling of concrete without leading to any deterioration of the compressive strength
of concrete.

Table 3. Overview of the test results.

Tmax
(◦C)

Compressive Strength
(MPa)

Tmax
(◦C)

Splitting Strength
(MPa) Tmax (◦C) Bending Strength (MPa)

- NC SFRC HyFRC - NC SFRC HyFRC - NC SFRC HyFRC

20
60.5 65.8 71.1

20
3.83 4.89 5.59 20 4.71 6.99 9.05

61.2 68.0 70.9 4.10 5.32 5.84 20 4.82 6.22 9.03

100
63.9 58.9 69.7

300
2.62 4.98 5.17 20 4.36 6.88 -

65.5 57.6 69.9 3.03 4.86 5.48 20 5.17 5.99 -

300
58.3 60.0 70.4

500
1.39 4.14 2.7 100/150 1) 5.77 5.17 -

62.1 61.6 68.2 1.46 3.44 3.21 200 - 4.79 -

500
45.6 45.8 58.9

600
1.39 - - 200 - 5.12 -

41.2 45.6 56.8 1.46 - - 300 3.56 5.06 5.32

600
46.9 51.4 52.6 700 0.82 2.37 2.05 300 3.16 4.01 5.51
46.7 46.3 47.7 - 0.77 2.18 1.75 400 2.18 3.30 4.13

800
29.5 21.1 19.1 - - - - 400 2.54 3.23 5.21
27.1 26.5 20.7 - - - - 500 1.81 3.82 3.32

- 600 1.07 4.13 2.77
600 - 2.59 3.95

1) NC was exposed to 150 ◦C; SFRC to 100 ◦C.

4.3. Split Tensile Strength

The split tensile strength was obtained by performing standard Brazilian tests according to EN
12390-6 [24], on concrete cylinders 150 mm in diameter and 300 mm high. Again, prior to mechanical
loading, thermal cracks were marked on the surface. Figure 5 displays the typical thermal cracks
visible on the surface of the cylinders used for split tension tests after heating to 600 ◦C and cooling
down to room temperature. Several fine cracks were seen on the surface due to slow heating. Figure 6
shows the test setup used for the split tension tests and a typical failure mode obtained from the tests.
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Figure 6. (a) Test setup and (b) typical failure mode of concrete cylinders used for determining split
tensile strength after exposure to a temperature of 600 ◦C.

The mean value and the relative degradation of the split tensile strength obtained from the tests for
different types of concrete is plotted as a function of the exposure temperature in Figure 7. As expected,
the influence of the presence of steel and micro PP fibres on split tensile strength is significantly higher
than that on the compressive strength of concrete. This is explainable by the fact that as the concrete
cracks in tension, the fibres crossing the crack plane get activated and provide resistance to failure due
to splitting. For the temperature range investigated (20 to 700 ◦C), the tensile strength of SFRC and
HyFRC was around 40% to 150% higher than that of normal concrete. This shows a high beneficial
influence of steel and micro PP fibres on tensile strength of concrete even at elevated temperatures.
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Figure 7. Influence of elevated temperature on split tensile strength of different types of concrete.

4.4. Flexural Tensile Strength (Modulus of Rupture) and Fracture Energy

The flexural tensile strength or modulus of rupture of concrete was measured in accordance with
RILEM 50-FMC Recommendation [25] using notched prismatic beam specimens with a cross-section
of 150 mm × 150 mm and a span length of 600 mm. A notch of 5 mm width and 50 mm length was
cut at the mid span of the beams. Figure 8 shows the test setup used in the flexural tests as well as
the typical failure mode obtained for beams with SFRC. Note that the same test was used to evaluate
the fracture energy of concrete as well. The tests were performed in crack tip opening displacement
(CTOD) control.
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Figure 8. (a) Test setup used and (b) close up view of the typical fracture region (failure mode) observed
in the flexural tests on notched beams.

The typical load-displacement curves obtained from the flexural tests on notched beams are
plotted in Figure 9 for different concretes (a) under ambient conditions and (b) after exposure to
a temperature of 400 ◦C in residual conditions. The load-displacement curves for normal concrete
displays a relatively straight pre-peak line, a well-defined peak and a gradual post-peak softening
curve, typically associated with the tensile behaviour of normal concrete. The load-displacement curve
for normal concrete retains its shape also after exposure to elevated temperature but reaching a lower
ultimate load. However, the sharpness of the peak is reduced and the post-peak softening becomes
more gradual for normal concrete loaded after exposure to elevated temperature.
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Figure 9. Load-displacement curves obtained from the flexural tests on notched beams.

Conversely, the load-displacement curves obtained for concrete with steel fibres (SFRC) as well
as the concrete with a combination of steel and micro PP fibres (HyFRC) under ambient conditions
display a first drop in the load at approximately the same load as the peak load obtained for normal
concrete. After this first drop, the load carrying capacity further rises and a high level of load is
maintained even at relatively large displacements. This phenomenon is associated with the tension
behaviour of concrete with steel fibres and is discussed in Figure 1 of this paper. It is interesting to
observe that even though the micro PP fibres are not expected to contribute much towards the strength,
the peak load reached for the concrete with both steel and micro PP fibres was significantly higher
than SFRC. This is, however, attributed to the higher concrete strength of HyFRC. It can be observed
in Figure 9a that only the cracking strength of HyFRC is higher than that of SFRC. The post-cracking
behaviour is similar for both SFRC and HyFRC. These results indicate that the tensile post-cracking
behaviour is mainly influenced by the steel fibres and not by PP fibres.



Fibers 2019, 7, 9 10 of 13

The performance of SFRC and HyFRC in residual conditions after exposure to a temperature of
400 ◦C was also significantly better than the performance of normal concrete. Both the strength as well
as displacement capacity were found to be rather large compared to the corresponding values obtained
for normal concrete. Thus, it can be said that the beneficial influence of adding steel and micro PP fibres
as observed under ambient conditions remain valid even after exposure to elevated temperatures.

Figure 10a displays the influence of elevated temperature on the flexural tensile strength of
different types of concrete. The concrete with both steel and micro PP fibres displays the highest
strength values for almost all the exposure temperatures. The trend of the flexural tensile strength is
comparable to that obtained for splitting tensile strength (Figure 7a). It may be noted that the slight
increase in the flexural strength of NC after exposure to 150 ◦C is probably attributable to the increased
concrete age at testing compared to all other specimens (concrete age 9 months).
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The fracture energy values of different concretes were calculated as the area under load-CMOD
(crack mouth opening displacement) curves. Figure 10b shows the variation of fracture energy as a
function of exposure temperature calculated for different concretes tested. Irrespective of the exposure
temperature, the fracture energy of normal concrete (NC) was found to be negligible compared to
that of SFRC or HyFRC. This can be observed by comparing the load-displacement curves obtained
for different concretes (Figure 9), where the area under the curves for normal concrete is negligible
compared to the area under the curves for concrete with fibres. The steel fibres contribute to high
increase in fracture energy under ambient conditions. With increasing temperature the bond between
steel fibres and concrete undergoes thermally induced damage, which then leads to a significantly
lower fracture energy. Already after exposure to 300 ◦C, the fracture energy of fibre reinforced concrete
reduces to more than half of the initial value (under ambient conditions). Beyond this temperature,
the fracture energy decreases only moderately. This trend is different from that observed in normal
concrete, which exhibits an increase in fracture energy up to 300–400 ◦C (up to 50–60%). Residual
fracture energy after exposure to 600 ◦C of normal concrete corresponds roughly to that under ambient
conditions. These results are consistent with those reported in literature [26].

In order to obtain more insight into the ductility of fibre reinforced concrete after exposure to
elevated temperatures, an evaluation of the residual flexural load for different CMOD values (first
cracking, 0.5, 1.5, 2.5, 3.5 and 10.0 mm) was performed. The results are summarized in Figure 11.
The relative flexural load represents the ratio of the flexural load corresponding to the measured
CMOD and the load at the proportionality limit. According to the European standard EN 14651 [27]
the proportionality limit is estimated as the maximum load attained before or upon reaching a CMOD
of 0.05 mm. However, considering that this limit would not be realistic for thermally damaged concrete,
the limit of proportionality was estimated as the maximum load attained up to a CMOD of 0.1 mm.
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In spite of the pronounced scatter, it can be observed in Figure 11 that the relative ductility of both
fibre reinforced concrete types is not significantly influenced by the temperature.
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4.5. Static Modulus of Elasticity

The static modulus of elasticity was obtained in accordance with EN 12390-13 [28] using the
prismatic specimens of size 100 mm × 100 mm in cross-section and 200 mm in height. The typical
test setup as well as the variation of the static modulus of elasticity as a function of temperature for
different types of concrete investigated is plotted in Figure 12. Only fine cracks were observed o
the surface due to thermal loading, which were marked. The plot of the static modulus of elasticity
as a function of temperature clearly shows that the absolute values as well as the variation of the
elasticity modulus the temperature for SFRC and HyFRC are quite similar to that of normal concrete.
Considering the relatively low volumetric content of the fibres in concrete, it can be expected that the
fibres do not have any significant effect on the modulus of elasticity.
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Figure 12. (a) Typical test setup and (b) variation of static modulus of elasticity with elevated
temperature for different types of concrete.

5. Conclusions

In this work, systematic experimental investigations were carried out to study the influence
of elevated temperature on the mechanical properties of concrete without fibres, SFRC—Steel fibre
reinforced concrete having 50 kg/m3 of hooked end steel fibres and HyFRC—Hybrid fibre reinforced
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concrete having 50 kg/m3 of hooked end steel fibres +1 kg/m3 of micro PP fibres. The test results led
to the following conclusions:

1. The compressive strength of SFRC and HyFRC was found to be comparable to that of NC for
entire temperature range, which is related to the relatively low volumetric content of fibres
in concrete.

2. The split tensile strength as well as the modulus of rupture (flexural tensile strength) for
concrete with fibres (both SFRC and HyFRC) was significantly higher than that of NC for all
the temperatures. An increase in strength of the order of 40% to 150% was observed due to the
presence of the fibres. The increase is primarily owed to the relatively high content of hooked-end
steel fibres, which can take up the load upon concrete cracking. However, the bond between steel
fibres and concrete is damaged due to thermal exposure, resulting in a decay of tensile strength
with increasing temperature.

3. The highest influence of the presence of fibres was observed in the fracture energy of concrete.
For both SFRC and HyFRC, the fracture energy was at least two orders of magnitude higher than
that of NC over the entire temperature range investigated in this work.

4. The static modulus of elasticity of all types of concrete investigated is of similar magnitude and
the variation with the temperature is also similar. The addition of fibres cannot affect elasticity
modulus due to their small volumetric content.

5. No negative influence of the presence of 1 kg/m3 of micro PP fibres was observed on the strength,
fracture energy or modulus of elasticity of concrete with steel fibres.

6. Such hybrid FRC has a huge potential in real-life applications to provide high mechanical as well
as fire resistance.
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