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Abstract: This paper discusses approaches to the numerical integration of the coupled nonlinear
Schrödinger equations system, different from the generally accepted approach based on the method
of splitting according to physical processes. A combined explicit/implicit finite-difference integration
scheme based on the implicit Crank–Nicolson finite-difference scheme is proposed and substantiated.
It allows the integration of a nonlinear system of equations with a choice of nonlinear terms from the
previous integration step. The main advantages of the proposed method are: its absolute stability
through the use of an implicit finite-difference integration scheme and an integrated mechanism for
refining the numerical solution at each step; integration with automatic step selection; performance
gains (or resolutions) up to three or more orders of magnitude due to the fact that there is no need to
produce direct and inverse Fourier transforms at each integration step, as is required in the method of
splitting according to physical processes. An additional advantage of the proposed method is the
ability to calculate the interaction with an arbitrary number of propagation modes in the fiber.

Keywords: nonlinear Schrödinger equations system; birefringent fiber; few-mode propagation; Kerr
effect; Raman scattering; dispersion; implicit/explicit Crank–Nicolson scheme

1. Introduction

Femtosecond lasers hold a strong position in the current industrial production of materials and
different-purpose products [1–4]. It should be noted that the problem of the delivery of high-power
optic pulses with the required parameters to the destination point appears straight at the beginning
of their practical usage. Special optical fibers (e.g., photonic band gap hollow-core and hole-core
fibers) are developed for transmission of high-power ultrashort pulses [5–7]. Special attention is
paid to polarization maintaining fibers [6]. At the same time, the widespread use of femtosecond
lasers requires the usage of cheaper fibers with more simple production techniques. The usage of a
shorter pulse technique allows the transmission of pulses with higher peak-power through quartz
fibers without maximum available energy exceedance, which can lead to fiber-core degradation [8].
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As a result, the cheaper quartz fibers have occupied the niche in industrial usage of femtosecond
lasers [9–13]. The birefringent fibers are of particular interest for transmission of high-power ultrashort
pulses [10–12], as it has been noted above.

In order to develop and create the methods and delivery technique of ultrashort (femtosecond)
pulses it is required to develop mathematical methods of ultrashort pulses evolution modelling in fiber.
The ultrashort pulse evolution during its propagation in fiber is described by the coupled nonlinear
Schrödinger equations system. The difference between the system mentioned above and the classic
form of Schrödinger equations is in the additional terms, which describe the third-order chromatic
dispersion and the Raman scattering [13–20]. Taha T.R. and Ablowitz M.I. made the comparative
analysis of the currently known numerical methods for solving the nonlinear Schrödinger equation in
1984 [12]. In their fundamental review, they examined many different algorithms, including numerical
ones, for solving the nonlinear Schrödinger equation. After this publication, the usage of splitting the
physical processes method with the fast Fourier transform became the main numerical method for
solving the optics problems in fiber. In particular, it was mentioned that the splitting into physical
processes method significantly exceeds the finite difference methods in accuracy, since the second
time derivative in it is calculated by the discrete Fourier transform, which provides an exponential
convergence rate with respect to the time variable [12]. The split-step Fourier method is used as a
standard method in most computer program packages. Although this method has sufficient accuracy,
it has its own computing complexity on its non-linear step. It is a good reason to search alternative
solution methods, including numerical ones, that can be faster than a split-step Fourier method in case
of a large number of time divisions [17,18,21,22].

The experimental results of 12 fs and 175 kW peak-power pulse transmission through birefringent
single mode fiber are presented in the series of works [23–28]. The comparison of the experimental
results with the computer calculations on fiber end output, which are received using finite difference
time domain method, are also presented there. The experimental results correspond to computer
calculations in part of pulse duration and its spectrum width. However, the finite difference time
domain method does not consider birefringent effects in single mode fiber. At the same time, the
computing pulse form at the fiber end output differs from the pulse experimental form significantly.
Later in [29–31] it was shown, that the main reason of such discrepancy was connected with the fact
that the birefringent effects were not taken into consideration.

Thus, the findings that it is necessary to consider the birefringent effects in fibers, even if fiber
length is small [32–34], were confirmed. In the case of the fiber‘s birefringent effects the system of two
Schrödinger equations describes a pulse evolution through fiber. This equations system for fibers with
birefringent effects and without Raman scattering is named as the Manakov equations system [20,32].

The system of nonlinear Schrödinger equations has been intensively studied over recent years.
Hardin R. and Tappert F. in 1973 [35], as well as Lake B. and co-authors in 1977 [36] were the first,
who applied methods of numerical solutions to nonlinear Schrödinger equation solution. Currently,
there are many numerical methods for solving the system of coupled nonlinear Schrödinger equations:
finite-difference schemes [37,38], spectral methods [39], Petrov-Galerkin method [40], and splitting
methods [41–44].

It is known that, it is necessary to take into consideration the third-order chromatic dispersion and
Raman scattering for pulses, shorter than 10 ps. As it has been shown above, this leads to the necessity
to include the additional terms in the Schrödinger equations. In contrast to [32] it is necessary to
solve the modification of coupled a nonlinear Schrödinger equations system [31,33,45]. The principal
difference and the major problem here is that nonlinear additional terms contain partial derivatives
from desired function by time. The solution with split-step method requires the increase in number
of operations in the fast Fourier step or the solving of an additional system of differential equations
at each integration step [45]. The projection operator method, based on a variational approach, is
suggested in [33] in contrast to split-step methods [31,45].
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In this work the numerical integration method is proposed for solving of the coupled nonlinear
Schrödinger equations system, written with third-order chromatic dispersion and Raman scattering.
The suggested method differs from the generally accepted approach, based on the method of splitting
according to physical variables. The system of equations is written in finite-difference relations with
separation to linear and nonlinear terms. Linear terms are written in an implicit scheme, and nonlinear
terms in an explicit finite-difference scheme. This approach allows researchers to divide the system of
Schrödinger equations into two independent systems of linear equations for each mode at each step
of numerical integration process. The algorithm for refining the numerical solution at each step is
proposed. It eliminates the errors associated with nonlinear terms in explicit form.

The main advantages of the proposed method are the following: absolute stability due to the
usage of an implicit finite-difference integration scheme and an integrated mechanism for refining the
numerical solution at each step; integration with automatic step selection; increase in the efficiency (or
resolutions) up to three or more orders of magnitude due to the fact that there is no need to produce
direct and inverse Fourier transforms at each integration step, as is required in a split-step method. An
additional advantage of the proposed method is the ability to calculate the interaction with an arbitrary
number of propagation modes in the fiber.

2. Coupled Nonlinear Schrödinger Equations System

In general terms, the evolution of short optical impulses in a birefringent fiber can be described by
the coupled nonlinear Schrödinger equations system:

∂Ai
∂z = −αi

2 Ai −β1,i
∂Ai
∂t − j

β2,i
2
∂2Ai
∂t2 +

β3,i
6
∂3Ai
∂t3 +

+ jγiAi
M∑

m = 1
Ci,m|Am|

2
−
γi
ω0,i

M∑
m = 1

Bi,m
∂
∂t

(
|Am|

2Ai
)
− jγiTRAi

M∑
m = 1

Bi,m
∂
∂t

(
|Am|

2
)
, i = 1, N,

(1)

where Ai—complex envelopes of the optical impulse of the i-th mode, αi—attenuation coefficient of
the i-th mode; β1,i, β2,i, β3,i—the first, second and third order dispersion parameters of the i-th mode
respectively; γi—nonlinearity parameter for the i-th mode; Ci,m, Bi,m—coupling coefficients between
the i-th and m-th modes; TR—Raman scattering parameter;ω0,i—angular frequency of the i-th mode;
z—coordinate along the axis of the fiber; t—time.

Coupled nonlinear Schrödinger Equations System for two orthogonally polarized modes (AX and
AY), propagating in a birefringent fiber, which is used for modeling of short optical pulses propagation,
has a form equivalent to Equation (1):

∂AX
∂z = −α2 AX −β1,x

∂AX
∂t − j

β2,x
2
∂2AX
∂t2 +

β3,x
6
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∂t3 +

+ jγxAX
(
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2 + 2
3 |AY|

2
)
−
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ω0
∂
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2AX + 1
3 |AY|

2AX
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(
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2 + 1
3 |AY|

2
)
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∂z = −α2 AY −β1,y

∂AY
∂t − j

β2,y
2
∂2AY
∂t2 +

β3,y
6
∂3AY
∂t3 +

+ jγyAY
(
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2 + 2
3 |AX|

2
)
−
γy
ω0
∂
∂t [|AY|

2AY + 1
3 |AX|

2AY
]
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∂
∂t

(
|AY|

2 + 1
3 |AX|

2
) . (2)

3. Initial Conditions and Boundary Terms

For the given the simplest initial conditions, that describe the absence of light in the fiber at the
initial and final point of time, terms are described as following:

AX(0, z) = 0, ∂AX(0,z)
∂t = 0, AX(T, z) = 0, AY(0, z) = 0, ∂AY(0,z)

∂t = 0, AY(T, z) = 0, ∀z ∈ [0, L], (3)

where T—final time.
Boundary conditions at one of the fiber ends are described as following time dependent functions:

AX(t, 0) = fx(t), AY(t, 0) = fy(t), (4)
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4. Dimensionless Equations

The system of Equation (1) has the dimension [W
1
2 m−1], hence the dimensions of the equations

constants are:

[AX] = [AY] = [
√

W], [α] = 1
[m]

, [β1,x] = [β1,y] =
[s]
[m]

, [β2,x] = [β2,y] =
[s2]
[m]

,

[β3,x] = [β3,y] =
[s3]
[m]

, [γx] = [γy] = 1
[W][m]

, [ω0] = 1
[s] , [TR] = [s].

(5)

To transfer Equation (2) into dimensionless form, we involve character process values, namely
La—characteristic length, Ta—time, and Pa—power:

ξ =
z
La

, τ =
t

Ta
, x =

AX
√

Pa
, y =

AY
√

Pa
, (6)

Replacement of variables in Equation (2) transforms it to dimensionless system:
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∂τ − j

β2,x
2

L
T2
∂2x
∂τ2 +

β3,x
6

L
T3
∂3x
∂τ3 +

+ jγxLPx
(
|x|2 + 2

3

∣∣∣y∣∣∣2)− γx
ω0

L
T P ∂∂τ

(
|x|2x + 1

3

∣∣∣y∣∣∣2x
)
− jγxL TR

T Px ∂∂τ

(
|x|2 + 1

3
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) . (7)

Conversion of the dimensional coefficients into dimensionless is performed according to
the formulas:

a = αLa
2 , b1,x = β1,x

La
Ta

, b2,x =
β2,x

2
La
T2

a
, b3,x =

β3,x
6

La
T3

a
, b1,y = β1,y

La
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β2,y

2
La
T2

a
,
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β3,y

6
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T3

a
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ω0Ta
, wx = ux
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ω0Ta

, wy = uy
TR
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.
(8)

As a result, we obtain the dimensionless coupled nonlinear Schrödinger equations system in a
form suitable for numerical integration: ∂x

∂ξ = − [a + Φ1x(x, y)] · x− [b1,x + Φ2x(x, y)] · ∂x∂τ − jb2,x
∂2x
∂τ2 + b3,x

∂3x
∂τ3

∂y
∂ξ = − [a + Φ1y(x, y)

]
· y− [b1,y + Φ2y(x, y)

]
·
∂y
∂τ − jb2,y

∂2 y
∂τ2 + b3,y

∂3 y
∂τ3

, (9)

where the definitions for non-linear components of the equations are:
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3
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1
3
∂|x|2

∂τ +
∂|y|

2

∂τ

)
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(
2
3 |x|

2 +
∣∣∣y∣∣∣2),

Φ2x(x, y) = vx

(
|x|2 + 1

3

∣∣∣y∣∣∣2), and Φ2y(x, y) = vy

(
1
3 |x|

2 +
∣∣∣y∣∣∣2).

(10)

Separation of Equation (7) on linear and nonlinear terms allows us to construct a numerical
integration algorithm based on finite-difference methods, where all linear terms can be written in
implicit form and nonlinear terms can be written in explicit finite-difference form.

5. The Finite-Difference Scheme

The modification of the Crank–Nicolson six-point implicit finite-difference scheme [46] up to an
eight-point scheme (Figure 1a), allows us to write the third-order partial derivatives with a second
order approximation.
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system integration at: (a) internal area; (b) boundary.

In Figure 1a, mesh nodes on dimensionless length variable ξ are indicated by k, and on
dimensionless time τ are indicated by n. For Figure 1a, “×” indicates the point, where the equality
relations of Equation (9) are recorded. Mesh nodes, where values of desired functions are known or
determined, are indicated by “·”. If values of desired functions are unknown, they are indicated by “◦”.
Integration is carried out along the length coordinate ξ from left to right. At each integration step, at
each point, a system of equations is recorded for four unknown values of the desired functions at the k
+ 1 integration step.

The system of Equation (9) can be rewritten in the form: ∂x
∂ξ = Fx(x, y)
∂y
∂ξ = Fy(x, y)

, (11)

where Fx(x, y), Fy(x, y) are used to denote appropriate parts in Equation (9).
If we add the parameter θ, that changes from zero to one, we can rewrite Equation (11) in

finite-difference implicit form. The finite-difference equivalences are written in each virtual point
with fractional indexes (k + 1

2 , n − 1
2 ). This point is denoted in Figure 1a by “×”. The finite-difference

equation system has the form:
(xn

k+1+xn−1
k+1)−(x

n
k+xn−1

k )

2∆ξ = θ · (Fx)
n−1/2
k+1 + (1− θ) · (Fx)

n−1/2
k

(yn
k+1+yn−1

k+1)−(yn
k+yn−1

k )

2∆ξ = θ · (Fy)
n−1/2
k+1 + (1− θ) · (Fy)

n−1/2
k

, (12)

where bottom indexes “k” are used to denote the discrete dimensionless length, and top “n” indexes—for
dimensionless time.

The values of desired functions in Equation (12) are known at the k-s layer, while the values at
the (k + 1) layer are known only on the boundary. The values of (Fx)

n−1/2
k , (Fy)

n−1/2
k are attributed to

virtual mesh node (k, n − 1
2 ), and (Fx)

n−1/2
k+1 , (Fy)

n−1/2
k+1 are attributed to virtual mesh node (k + 1, n − 1

2 ).
Dependence of θ parameter equivalences in Equation (12) will be written in virtual node with indexes
(k + θ, n − 1

2 ).
The nonlinearity, presented in Φ1x(x, y), Φ1x(x, y), Φ2y(x, y), Φ2y(x, y), and a third-order partial

derivative by time, do not allow the use of the classic approach to equation system solutions (Thomas,
or tridiagonal matrix, algorithm). The modification of Crank–Nicolson computing scheme is offered
in [46]. The main idea is to write all linear terms in implicit form, and all nonlinear terms in explicit
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form. Using the recommendations given in [46], we write the expressions for Fx(x, y) and Fy(x, y) as
the sum of linear and nonlinear parts:

(Fx)
n−1/2
k = (Lx)

n−1/2
k + (Nx)

n−1/2
k , (Fy)

n−1/2
k = (Ly)

n−1/2
k + (Ny)

n−1/2
k , (13)

where the definition for linear parts are:

(Lx)
n−1/2
k = −axn−1/2

k − b1,x
(
∂x
∂τ

)n−1/2

k
− jb2,x

(
∂2x
∂τ2

)n−1/2

k
+ b3,x

(
∂3x
∂τ3

)n−1/2

k
,

(Ly)
n−1/2
k = −ayn−1/2

k − b1,y

(
∂y
∂τ

)n−1/2

k
− jb2,y

(
∂2 y
∂τ2

)n−1/2

k
+ b3,y

(
∂3 y
∂τ3

)n−1/2

k
,

(14)

and for nonlinear parts:

(Nx)
n−1/2
k = −(Φ1x)

n−1/2
k xn−1/2

k − (Φ2x)
n−1/2
k

(
∂x
∂τ

)n−1/2

k
,

(Ny)
n−1/2
k = −(Φ1y)

n−1/2
k yn−1/2

k − (Φ2y)
n−1/2
k

(
∂y
∂τ

)n−1/2

k
.

(15)

To write the linear terms on (k + 1)-th layer, it is enough to replace «k» on «k + 1» in Equation (14).
For nonlinear terms on (k + 1)-th layer, it is necessary to use explicit finite-difference definition, using
values from the previous integration layer:

(Nx)
n−1/2
k+1 = −(Φ1x)

n−1/2
k xn−1/2

k+1 − (Φ2x)
n−1/2
k

(
∂x
∂τ

)n−1/2

k+1
,

(Ny)
n−1/2
k+1 = −(Φ1y)

n−1/2
k yn−1/2

k+1 − (Φ2y)
n−1/2
k

(
∂y
∂τ

)n−1/2

k+1
.

(16)

Notably, the explicit form in Equation (16) is taken only for Φ1x(x, y), Φ2x(x, y), Φ1y(x, y), Φ2y(x, y),
while for the linear parts of Equation (16), the implicit form will be used.

The values of nonlinear terms in virtual mesh point (k, n − 1
2 ) for Φ1x(x, y) and Φ1y(x, y) can be

written as:

(Φ1x)
n−1/2
k = −

jux
2

(∣∣∣xn
k

∣∣∣2 + ∣∣∣xn−1
k

∣∣∣2 + 2
3

(∣∣∣yn
k

∣∣∣2 + ∣∣∣yn−1
k

∣∣∣2))+ vx+ jwx
∆τ

(∣∣∣xn
k

∣∣∣2 − ∣∣∣xn−1
k

∣∣∣2 + 1
3

(∣∣∣yn
k

∣∣∣2 − ∣∣∣yn−1
k

∣∣∣2)),
(Φ1y)
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k = −
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2

(
2
3
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k
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k

∣∣∣2)+ ∣∣∣yn
k

∣∣∣2 + ∣∣∣yn−1
k

∣∣∣2)+ vy+ jwy
∆τ

(
1
3

(∣∣∣xn
k

∣∣∣2 − ∣∣∣xn−1
k

∣∣∣2)+ ∣∣∣yn
k

∣∣∣2 − ∣∣∣yn−1
k

∣∣∣2). (17)

and for Φ2x(x, y) and Φ2y(x, y):

(Φ2x)
n−1/2
k = vx

2

(∣∣∣xn
k

∣∣∣2 + ∣∣∣xn−1
k

∣∣∣2 + 1
3

(∣∣∣yn
k

∣∣∣2 + ∣∣∣yn−1
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∣∣∣2)),
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vy
2

(
1
3

(∣∣∣xn
k

∣∣∣2 + ∣∣∣xn−1
k

∣∣∣2)+ ∣∣∣yn
k

∣∣∣2 + ∣∣∣yn−1
k

∣∣∣2). (18)

The desired function values in virtual mesh point (k, n − 1
2 ) are written as a half of its sum in

neighbor mesh points:

xn−1/2
k =

xn
k + xn−1

k
2

, xn−1/2
k+1 =

xn
k+1 + xn−1

k+1

2
, yn−1/2

k =
yn

k + yn−1
k

2
, yn−1/2

k+1 =
yn

k+1 + yn−1
k+1

2
. (19)

The partial derivative from desired functions on dimensionless time in the mesh points (k, n − 1
2 )

are written as central finite-differences with second-order accuracy:

(
∂x
∂τ

)n−1/2

k
=

xn
k−xn−1

k
∆τ ,

(
∂2x
∂τ2

)n−1/2

k
=

xn+1
k −xn

k−xn−1
k +xn−2

k
2∆τ2 ,

(
∂3x
∂τ3

)n−1/2

k
=

xn+1
k −3xn

k+3xn−1
k −xn−2

k
∆τ3 . (20)

The partial derivatives for desired mesh function y are written similarly. In order to write the x
and y in the mesh nodes (k + 1, n − 1

2 ), it is enough to replace ”k” with “k + 1” in Equation (20).
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We substitute the expressions of Equations (20)–(13) in Equation (12), then we regroup terms (all
known variables to the right side and all unknown variables to the left side of equations), and denote
right (known) side of equations as:

(RX)
n
k+1 =

xn
k+xn−1

k
2·∆ξ·θ +

(1−θ)
θ

(
(Lx)

n−1/2
k + (Nx)

n−1/2
k

)
,

(RY)
n
k+1 =

yn
k+yn−1

k
2·∆ξ·θ +

(1−θ)
θ

(
(Ly)

n−1/2
k + (Ny)

n−1/2
k

)
,

(21)

where the linear and nonlinear terms are defined in Equations (14) and (15), then the equation system
will be as follows:

xn
k+1+xn−1

k+1
2·∆ξ·θ +

a+(Φ1x)
n−1/2
k

2

(
xn

k+1 + xn−1
k+1

)
+

b1,x+(Φ2x)
n−1/2
k

∆τ

(
xn

k+1 − xn−1
k+1

)
+

+
jb2,x

2∆τ2

(
xn+1

k+1 − xn
k+1 − xn−1

k+1 + xn−2
k+1

)
−

b3,x
∆τ3

(
xn+1

k+1 − 3xn
k+1 + 3xn−1

k+1 − xn−2
k+1

)
= (RX)

n
k+1

yn
k+1+yn−1

k+1
2·∆ξ·θ +

a+(Φ1y)
n−1/2
k

2

(
yn

k+1 + yn−1
k+1

)
+

b1,y+(Φ2y)
n−1/2
k

∆τ

(
yn

k+1 − yn−1
k+1

)
+

+
jb2,y

2∆τ2

(
yn+1

k+1 − yn
k+1 − yn−1

k+1 + yn−2
k+1

)
−

b3,y

∆τ3

(
yn+1

k+1 − 3yn
k+1 + 3yn−1

k+1 − yn−2
k+1

)
= (RY)

n
k+1

(22)

We rewrite the Equation (22) in canonical line equation systems form: An
xxn−2

k+1 + Bn
xxn−1

k+1 + Cn
xxn

k+1 + Dn
xxn+1

k+1 = (RX)
n
k+1

An
yyn−2

k+1 + Bn
yyn−1

k+1 + Cn
yyn

k+1 + Dn
yyn+1

k+1 = (RY)
n
k+1

(23)

The A, B, C and D coefficients in Equation (23) for desired mesh function x are determined by
formulas:

An
x =

jb2,x
2∆τ2 +

b3,x
∆τ3,

Bn
x = 1

2·∆ξ·θ +
a+(Φ1x)

n−1/2
k

2 −
b1,x+(Φ2x)

n−1/2
k

∆τ −
jb2,x

2∆τ2 − 3 b3,x
∆τ3,

Cn
x = 1

2·∆ξ·θ +
a+(Φ1x)

n−1/2
k

2 +
b1,x+(Φ2x)

n−1/2
k

∆τ −
jb2,x

2∆τ2 + 3 b3,x
∆τ3,

Dn
x =

jb2,x
2∆τ2 −

b3,x
∆τ3 ,

(24)

and for mesh function y:

An
y =

jb2,y

2∆τ2 +
b3,y

∆τ3,

Bn
y = 1

2·∆ξ·θ +
a+(Φ1y)

n−1/2
k

2 −
b1,y+(Φ2y)

n−1/2
k

∆τ −
jb2,y

2∆τ2 − 3
b3,y

∆τ3,

Cn
y = 1

2·∆ξ·θ +
a+(Φ1y)

n−1/2
k

2 +
b1,y+(Φ2y)

n−1/2
k

∆τ −
jb2,y

2∆τ2 + 3
b3,y

∆τ3,

Dn
y =

jb2,y

2∆τ2 −
b3,y

∆τ3 .

(25)

6. Boundary Conditions

The integration process is going from layer to layer according to dimensionless length ξ. The
system of Equation (23) is being solved on each layer along dimensionless time τ. Boundary conditions
of Equation (4) in a finite-difference computing scheme are transformed into initial conditions, so
mesh function values at initial (k = 1) and at previous (k-th) integration layer will be known. Initial
conditions of Equations (3) and (4) provide the boundary conditions for function values at n = 1, 2, and
N. The Equations (3) and (4) in dimensionless variables and finite-difference form will be written as:

(x0)
0
k =

X(0,Laξk)
√

Pa
,

(x0)
1
k = (x0)

0
k +

Ta∆τ
√

Pa
X′(0, Laξk),

(x0)
N
k = 1

√
Pa

X(Ta, Laξk),

xn
0 = 1

√
Pa

fx(Taτn),

(y0)
0
k =

Y(0,Laξk)
√

Pa
,

(y0)
1
k = (y0)

0
k +

Ta∆τ
√

Pa
Y′(0, Laξk),

(y0)
N
k = 1

√
Pa

Y(Ta, Laξk),

yn
0 = 1

√
Pa

fy(Taτn).

(26)
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The situational views on the boundary integration area for the eight-point computing scheme
are presented in Figure 1b. The nodes of mesh, where values are known or given, are marked by
black dots.

It is worth noting that n index in Equation (23) takes values from 3 up to (N − 1). The common
form of equations has a different form at n = 3, 4 и(N − 1), because Equation (23) includes the boundary
conditions in explicit form. We write them separately:

n = 3,

 A3
xx1

k+1 + B3
xx2

k+1 + C3
xx3

k+1 + D3
xx4

k+1 = (RX)
3
k+1

A3
yy1

k+1 + B3
yy2

k+1 + C3
yy3

k+1 + D3
yy4

k+1 = (RY)
3
k+1

. (27)

The values of x1
k+1, x2

k+1 and y1
k+1, y2

k+1 in Equation (27) are known, hence, we can transfer these
terms into the right part of equations and for n = 3 system, Equation (27) can be written as:

n = 3,

 C3
xx3

k+1 + D3
xx4

k+1 = (RX)
3
k+1 −A3

xx1
k+1 − B3

xx2
k+1

C3
yy3

k+1 + D3
yy4

k+1 = (RY)
3
k+1 −A3

yy1
k+1 − B3

yy2
k+1

. (28)

and the same for n = 4:

n = 4,

 B4
xx3

k+1 + C4
xx4

k+1 + D4
xx5

k+1 = (RX)
4
k+1 −A4

xx2
k+1

B4
yy3

k+1 + C4
yy4

k+1 + D4
yy5

k+1 = (RY)
4
k+1 −A4

yy2
k+1

. (29)

If n = (N − 1), the xN
k+1 and yN

k+1 are known, hence:

n = N − 1,

 AN−1
x xN−3

k+1 + BN−1
x xN−2

k+1 + CN−1
x xN−1

k+1 = (RX)
N−1
k+1 −DN−1

x xN
k+1

AN−1
y yN−3

k+1 + BN−1
y yN−2

k+1 + CN−1
y yN−1

k+1 = (RY)
N−1
k+1 −DN−1

y yN
k+1

. (30)

7. The Line Equation System in Classic Form

It should be especially noted that Equation (23) breaks down in two independent line equation
systems, relative to mesh node variables xn

k+1 and yn
k+1(n = 3, N − 1). These two equation systems

can be solved separately at each integration step along the length.
We can write each line equation system in Equation (23) in matrix from:

M×X = R. (31)

The matrix M is four-diagonal matrix, where in addition to main diagonal, which consists of “C”
coefficients, contains one “upper” (“D”) and two “sub” (“A” and “B”) diagonals. There is no need
to store the whole matrix M in computer memory. Instead, we use the two sets of five arrays for all
four diagonals and its right member vector for each part of Equation (23). The A and B arrays are
used for two sub diagonals storage, C—for main diagonal, D—for upper diagonal and R—for right
member vector:

A[i] = Mi,i−2 = Ai
∗, 4 ≤ i ≤ N − 1

B[i] = Mi,i−1 = Bi
∗, 3 ≤ i ≤ N − 1

C[i] = Mi,i = Ci
∗, 2 ≤ i ≤ N − 1

D[i] = Mi,i+1 = Di
∗, 2 ≤ i ≤ N − 2

R[i] = Ri = (R∗)
i
k+1 2 ≤ i ≤ N − 1

. (32)

A syntax form, familiar to many programming languages, is used in Equation (32). It allows us to
discern variables A, B, C, and D, used in Equation (23) and above, from arrays A, B, C, and D, used for
matrix M elements notation.

The line equation system solution with m-diagonal matrix comes down to sequential transforming
matrix to an upper triangular matrix and vector of unknowns is computed backwards. We can use our
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modification of Thomas tridiagonal algorithm, which allows the transformation of the four-diagonal
matrix M to the triangular form, according to:

R[i] = R[i + 1] −R[i] ×C[i + 1]/D[i],
A[i] = −A[i] ×C[i + 1]/D[i],
B[i] = A[i + 1] −B[i] ×C[i + 1]/D[i],
C[i] = B[i + 1] −C[i] ×C[i + 1]/D[i],
D[i] = C[i + 1] −D[i] ×C[i + 1]/D[i] = 0,

∀i = N − 2, 3,−1. (33)

After the matrix M (with right member vector R) is transformed, we calculate unknown vectors
according to:

T[3] = R[3]/C[3] ,
T[4] = (R[4] −B[4] ×T[3])/C[4],
T[i] = (R[i] −A[i] ×T[i− 2] −B[i] ×T[i− 1])/C[i], ∀i = 5, N − 1 ,

(34)

where the unknown vector, as in the Equation (23) solution, is denoted as T.

8. Numerical Solution Refining Algorithm

The refining solution algorithm is used at each integration step. The explicit nonlinear terms
determination (from previous k-th integration layer) makes its contribution to the inaccuracy of new
(k + 1)-th layer values calculation. The main idea of the refining algorithm is in the iterative process
organization at each integration step, which corrects nonlinear terms. At the first iteration step the
numerical solution for mesh functions xn

k+1 and yn
k+1 is searched according to the method suggested

above. At the next integration step we can correct the values of nonlinear terms since we can use
values calculated previously from average between k-th and (k + 1)-th layers to renew the nonlinear
terms. The iteration process stops when the absolute difference between two values of desired mesh
functions, calculated on two iteration steps, is less than the given allowable error.

9. Method Verification on Some Classic Tasks

The coupled nonlinear Schrödinger equations system, written with third-order dispersion and
Raman scattering, coincides with various classic equations of mathematical physics. So, we can obtain
the classic heat diffusion in a solid rod task with or without convection. In other cases, the coupled
nonlinear Schrödinger equations system can coincide with Korteweg–de Vries equation of waves on
shallow water surfaces. The coupled Manakov equations system in multimode fibers with strongly
(and weakly) coupled groups of modes is also a particular case of the coupled nonlinear Schrödinger
equations system [29–31,46].

Each of these equations (except Manakov system) has real desired functions and real
variables—time and length. In our case we have two complex desired functions of two real
variables—length and time. It is required to swap time and length variables in the coupled nonlinear
Schrödinger equations system in order to use it for heat diffusion or the Korteweg–de Vries task applies.
Besides, it is required to set all imaginary parts of desired functions equal to zero. For the coupled
nonlinear Schrödinger equations system, used as Manakov system, the special set of equation constants
is required.
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9.1. Heat Diffusion in a Solid Rod Task

The coupled nonlinear Schrödinger equations system numerical solution, used as equation of heat
diffusion task without heat conductivity [47], is shown in Figure 2a. The equations system variable
time t is used as length and equations system variable z is used as physical time (time and length in the
equations system are swapped), and the equations system constants are: α , 0, β1,x = β1,y = 0, β2,x , 0,
β2,y = 0, β3,y = β3,y = 0, γx = γy = 0.
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Figure 2. Heat diffusion in the solid rod task numerical results: (a) without convection; (b) with
connectivity. Curves for different length values are marked: red at z = 0 (initial), brown at z = 1/3, green
at z = 2.3, blue at z = 1.

In Figure 2a we can see that in initial moment of time (z = 0) the point with length coordinate
(t = 140) is heated up. In the process of time (with z growing) it becomes colder in this point, due to α
, 0, and heat diffuses to the left and to the right sides, due to β2,x , 0. If we also request the β1,x , 0,
the heat convection appears.

The numerical results at values α , 0, β1,x , 0, β1,y = 0, β2,x , 0, β2,y = 0, β3,y = 0, β3,y = 0, γx = 0,
γy = 0 are shown in Figure 2b. We can see, that in process of time (with z growing), in addition to
previous effects, the heat point is moving along the length (along the t variable). The heat diffusion
task solution, based on coupled nonlinear Schrödinger equations system, demonstrates an excellent
matching with classic heat diffusion equation solutions, including analytical solutions, by its character
and values.

9.2. The Korteweg–De Vries and Linear Tasks

The Korteweg–de Vries equation is a mathematical model of waves on shallow water surfaces. It is
particularly notable as the prototypical example of an exactly solvable model with non-linear partial
differential equation whose solutions can be exactly and precisely specified. If we set the equations
system coefficients equal to α = 0, β1,x = 0, β1,y = 0, β2,x = 0, β2,y = 0, β3,y , 0, β3,y = 0, γy = 0 and
choose special and different values γx for individual nonlinear terms, we receive the Korteweg–de
Vries equation. The obtained computing results are presented in Figure 3a. Its common character
almost coincides with our previous results [29–31,46], and other authors’ results [48].
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Figure 3. The numerical results of: (a) Korteweg–de Vries equation; (b) coupled linear Schrödinger
equations system. Curves for different length values are marked: red at z = 0 (initial), brown at z = 1/3,
green at z = 2.3, blue at z = 1.

The computing results of the coupled Schrödinger equations system solution in its linear case (at
γx = γy = 0) are shown in Figure 3b. The obtained numerical results coincide with physical processes
as well as with other solutions in the literature [29–31].

9.3. The Ultra-Short Pulse Evolution in Fiber

The special case of the coupled nonlinear Schrödinger equations system is the case when this
equations system coincides with the Manakov equations system with second-order dispersion and
Raman scattering, when β3,y = β3,y = 0, TR→ 0 andω0→∞. The computing results of the Manakov
equations system task, received on the base of coupled nonlinear Schrödinger equations system, is
shown in Figure 4a. These results coincide with our previous results [29–31,46] and other researchers‘
results [23–28,49].
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The ultra-short pulse evolution in fiber with third-order dispersion and Raman scattering is
described by complete coupled nonlinear Schrödinger equations system. The values from [23–31],
which were used in their experiment, were taken as: α = 0.2 dB·m/km, β1,x = 4.294 × 10−9 s/m,
β1,y = 4.290 × 10−9 s/m, β2,x = 3.600 × 10−26 s2/m, β2,y = 3.250 × 10−26 s2/m, β3,y = β3,y = 2.750 ×
10−41 s3/m, γx = γy = 3.600 × 10−2 (m·W)−1, TR = 4.000 × 10−15 s,ω0 = 2.3612 × 10−15 s−1 (wavelength
798 nm). The single chirped Gauss pulse is in the input fiber end (chirp C = –0.4579), pulse duration is
12 fs, with maximum power P = 1.75 × 105 W. The pulse form is described as:

f (t) = A · exp

− (1− j ·C)(t− T)2

2 · τ2

. (35)

The pulse evolution according to computing results is shown in Figure 4b. The number of
mesh points along dimensionless time was chosen as 20,000; approximately 720,000 integration steps
were made along dimensionless time with initial time step ∆ξ = 1·10−4 d.u. Besides, the automatic
integration step correction algorithm was included. It allowed the calculation of pulse evolution length
up to ~2.5 mm. The maximum error for iteration process was chosen as 10−30 d.u. All calculations
were made in a processor with double precision and 64-bit architecture.

The computing result curve (blue line in Figure 4b) is in good matching with experimental results,
presented in [23–31]. It excellently confirms that the suggested method is effective and can be used to
solve similar nonlinear tasks.

10. Conclusions

In our research we showed that the suggested method can be successfully used for solving the
coupled nonlinear Schrödinger equations system in case of strongly coupled groups of modes for pulse
evolution. In comparison with the splitting by physical processes method, the proposed method is
absolutely stable due to the usage of an implicit finite-difference integration scheme. Commonly, our
method has the following advantages: firstly, computational complexity is reduced, since two (direct
and inverse) Fourier transforms are replaced with the numerical linear equations system solution
at each integration step; secondly, possible errors in computing schemes are reduced because the
nonlinear terms are not taken from the previous layer at each integration step; thirdly, the separation
of the nonlinear system of Schrödinger equations into two independent linear equation systems at
each integration step allows us to include an arbitrary number of propagation modes into equations
and investigate their mutual influence.

Results, received from model task investigations and their comparison with other researcher’s
results, as well as experimental data, allows us to conclude that the suggested method is effective,
advantageous and has potential for future improvement.
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