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Abstract: This paper discusses the basic concepts of phase dislocations and vortex formation in
the electric fields of fundamental air core mode of hollow core waveguides with specific types of
rotational symmetry of the core-cladding boundary. Analysis of the behavior of the electric field
phase in the transmission bands shows that the mechanism of light localization in the hollow core
waveguides with discrete rotational symmetry of the core-cladding boundary cannot be completely
described by the ARROW model. For an accurate description of the phase behavior, it is necessary to
account for phase jumps of the magnitude of π when passing through the phase dislocations.

Keywords: micro-structured optical fibers; hollow core waveguides; optical vortices; Poynting vector;
phase dislocations

1. Introduction

The problem we focus on in this paper has been under investigation for ten years in
the field of hollow core micro-structured optical fibers [1] and it is related to the expla-
nation of the light localization mechanism in the negative curvature hollow core fibers
(NCHCFs) [2–4]. These fibers have been alternatively known in literature as inhibited
coupling photonic crystal fibers [5], anti-resonant hollow core fibers [6], revolver hollow
core fibers [7] and so on. In our opinion, this terminological disparity reflects the fact that
the mechanism of light localization is not completely understood. Until now, two main
concepts can be developed to explain the strong light localization in these fibers. The first
concept is called inhibited coupling mechanism and it assumes a low spatial overlap and
strong phase mismatch between transverse phases of the air core modes and the cladding
modes of the hollow core waveguides [8]. The second one is based on the well-known
ARROW (anti-resonant optical waveguide) mechanism of light localization [9], which
assumes that the walls of the cladding elements of the waveguide can be considered as
Fabry-Perrot type resonators. In this case, there are wavelengths associated with large
losses in the waveguide when the phase incursion in the wall of the cladding element is
equal to mπ and, accordingly, with small losses when the phase incursion for the fields
of the air core mode is equal to (m + 1/2)π, where m is an integer. These hollow core
fibers have unique optical properties and various research groups all over the world have
achieved outstanding results using these fibers [10,11].

In this paper, we consider two main reasons for the appearance of phase dislocations
and vortices [12] in the fields and energy flows of the fundamental air core mode of hollow
core waveguides. In particular, we demonstrate that the vortex of the transverse component
of the Poynting vector of the fundamental air core mode centered at the origin is caused by
the leaky behavior of the fundamental air core mode. In this case, due to singularities of
the axial components of the electric and magnetic fields of the fundamental air core mode
at which Re(Ez) = Im(Ez) = 0 and Re(Hz) = Im(Hz) = 0 there is a vortex of energy flow
with the center on the axis of the waveguide. A singularity of this type in the energy flows
of the fundamental core mode is characteristic of all types of leaky waveguides with the
streamlines of the transverse component of the Poynting vector of the fundamental core
mode having a spiral shape and, as a result, the azimuthal component of the Poynting
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vector Pϕ 6= 0. This means that there is an axial component Lz of the kinetic (Abraham-type)
total angular momentum density [13] of the leaky fundamental air core mode.

On the other hand, hollow core waveguides, except for hollow core PCFs (photonic
crystal fibers) [1], can have a complex shape of the core-cladding boundary in the form of
polygons (Kagome lattice hollow core fibers [14]) or have a cladding consisting of a set of
capillaries (negative curvature hollow core fibers). In this case, as will be shown below, the
formation of singularities and phase dislocations of the electric fields of the fundamental
air core mode occur not only at the origin but also in the cladding. If the core-cladding
boundary has a discrete rotational symmetry or the elements of the waveguide cladding
are arranged according to a specific type of discrete rotational symmetry, the structure of
the radial projection of the Poynting vector has the same type of rotational symmetry. The
phase singularities occur in the cladding elements wall along curves obeying the equation
Re(Ei(x, y)) = Im(Ei(x, y)) = 0, where i represents any of the coordinates (x, y, z). When
passing through the phase dislocation curve, the phase of the field undergoes a jump of
the magnitude of π, and therefore, radiation should be reflected from the walls of the
cladding elements inside the transmission bands in a different way than according to the
ARROW model.

2. Role of Losses in Vortex Formation in Hollow Core Waveguides

To demonstrate the physical mechanism of the formation of a central vortex of the
transverse component of the Poynting vector located on the z-axis of the hollow core
waveguide, we compared the behavior of the transverse component of the Poynting vector
of the fundamental core mode for a step-index fiber with no losses and a hollow core
waveguide that has an air core in an infinite volume of a dielectric (Figure 1).
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Figure 1. (a) Schematic representation of the cross section of a waveguide in a Cartesian and cylindrical coordinate system;
(b) Schematic representation of the refractive index profiles for a waveguide that localizes radiation according to the
principle of total internal reflection (step-index fiber) (left) and an air core waveguide with leaky modes (right).

It is known that the axial components of the electric and magnetic fields of hybrid
modes of the step-index fiber, localized in the core due to the principle of total internal
reflection, can be written as [15]:

Ez = AJn
( u

a r
)

cos(nϕ + ϕ0),

Hz = BJn
( u

a r
)

sin(nϕ + ϕ0),
(1)
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at r ≤ a, where a is a radius of the fiber core and:

Ez = A Jn(u)
Kn(v)

Kn
( v

a r
)

cos(nϕ + ϕ0),

Hz = B Jn(u)
Kn(v)

Kn
( v

a r
)

sin(nϕ + ϕ0),
(2)

at r > a. It is assumed that the time dependence and the dependence on the z-coordinate
has the form of ei(ωt−βz), β is a propagation constant of the core mode. In (1) and (2)
Jn(x) and Kn(x) are a Bessel function of the first kind and a modified Bessel function,

parameters u = a
√

k2
1 − β2 and ν = a

√
β2 − k2

2, where k1 = 2π
λ ncore, k2 = 2π

λ ncladd and λ is
a wavelength, ncore and ncladd are refractive indices of the fiber core and cladding. Here,
we assume that all refractive indices are real values.

It is known from waveguide electrodynamics that the transverse components of the electric
and magnetic fields of the core modes are expressed in terms of axial components as [15]:

Er = − i
(k2n2−β2)

(
β ∂Ez

∂r + ωµ0
r

∂Hz
∂ϕ

)
,

Eϕ = − i
(k2n2−β2)

(
β
r

∂Ez
∂ϕ −ωµ0

∂Hz
∂r

)
,

Hr = − i
(k2n2−β2)

(
β ∂Hz

∂r −
ωε0n2

r
∂Ez
∂ϕ

)
,

Hϕ = − i
(k2n2−β2)

(
β
r

∂Hz
∂ϕ + ωε0n2 ∂Ez

∂r

)
,

(3)

It can be seen from (1)–(3) that the time averaged Poynting vector
→
S = 1

2 Re
(→

E ×
→
H∗
)

of the fundamental core mode has only one non-zero component. The power carried by
the optical fiber moves only along the z-axis and not along ϕ- and r-axis in cylindrical
coordinate system.

A different behavior can be observed for the simplest hollow core leaky waveguides,
which are a round hole and a hollow hexagon in an infinite dielectric layer. Let us consider
the vortex properties of the electric and magnetic fields and the transverse component of
the Poynting vector of the fundamental air core modes of these waveguides.

The numerical calculations were carried out with a COMSOL commercial package at a
wavelength of λ = 3.39 µm to reduce the number of finite elements in the calculations. The
remaining parameters of the hollow core waveguides are shown in the caption of Figure 2.
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Figure 2. Axial component of the Poynting vector (in color) and the streamlines of transverse component of the Poynting vector
of fundamental air core modes (HE11) (black lines) at a wavelength of 3.39 µm: (a) air hole in an infinite layer of dielectric
(refractive index n = 1.45) with an air core diameter of D = 90 µm; (b) air core hexagon in an infinite layer of a dielectric
(refractive index n = 1.45) with the same effective mode area of the fundamental air core mode as the one shown in (a).
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The behavior of streamlines of the transverse component of the Poynting vector of the
fundamental air core mode (Figure 2) indicates the presence of both the r- and ϕ-projections
of the time averaged Poynting vector component and therefore, the optical vortex. They
occur due to different mechanisms of light localization in the air core waveguides and in the
step-index fiber (Figure 1). For the air core waveguide, the presence of waveguide losses
leads to the occurrence of azimuthal and radial projections of the transverse component
of the Poynting vector of the fundamental air core mode. We will consider this behavior
using the example of a leaky air core waveguide with a core in the form of a round hole in
an infinite layer of a dielectric (Figure 2a).

The axial components of the electric and magnetic fields of a fundamental air core
mode (HE11 mode) in the air core (Figure 2a) are described by the same Bessel functions
as in the case of a step-index fiber (1). Assuming the fundamental air core mode has a
complex propagation constant β = β(Re)− iβ(Im), where β(Im) << β(Re) as it often happens
in practice, the function argument u in (1) can be represented as u ≈ u(Re) + iu(Im), where

u(Re) = a
√

k2
1 − β(Re)2 and u(Im) = aβ(Re)β(Im). This expansion of the function argument

is possible since, for example, for the fundamental air core mode shown in Figure 2a
β = 2π

λ

(
n(Re)

e f f − in(Im)
e f f

)
= 2π

λ (0.99958− i1.5e− 5). In this case, it is clear that ϕ- and
r-projections of the electric and magnetic fields in the air core will have both imaginary
and real parts (3). For example, near the origin, the axial components of the electric and
magnetic fields of the fundamental air core mode can be represented using an asymptotic
of the Bessel function of J1(q) at q→ 0:

Ez ≈ 1/2Aq cos(nϕ + ϕ0),

Hz ≈ 1/2Bq sin(nϕ + ϕ0),
(4)

where q = (q(Re)+ iq(Im))r isacomplexargumentand q(Re) =
√

k2
1 − β(Re)2,and q(Im) = β(Re)β(Im).

The axial components of the electric and magnetic fields of the fundamental air core
mode have the same structure (4) and they are proportional to q(4). This means that
the real and imaginary parts of the axial components of the electric and magnetic fields
simultaneously tend to zero and Re(Ez) = Im(Ez) = Re(Hz) = Im(Hz) = 0 at r = 0
forming a vortex (Figure 3a). The transverse component of the time averaged Poynt-
ing vector of the fundamental air core mode will have non-zero ϕ- and r-projections
→
S transv = 1

2 Re
[(

Eϕ H∗z − Ez H∗ϕ
)→

r + (Ez H∗r − Er H∗z )
→
ϕ
]
6= 0 at any point of the waveg-

uide cross section, except for the origin (Figure 2a). At the origin, both projections of the
transverse component of the Poynting vector component are equal to zero. Thus, the leaky
fundamental air core mode has the kinetic (Abraham-type) angular momentum density [13].

For the hollow core hexagon (Figure 2b), the axial components of the electric and mag-
netic fields of the fundamental air core mode can be represented as a series of Bessel functions
of the first kind of different orders with a corresponding asymptotic at the origin as in (4).
The propagation constant of the fundamental air core mode is β = 2π

λ (0.99958− i1.53e− 5)
and the vortex formation is confirmed by the phase distribution of the axial electric fields
of the mode (Figure 3b). It means that, as in the case of an air hole waveguide, real and
imaginary parts of the axial components of the electric and magnetic fields are equal to zero
at the origin and there is a vortex of the transverse component of the Poynting vector of the
fundamental air core mode (Figure 2b). Both phase distributions (Figure 3) are governed by a
nonlinear rule [16] and these vortices are called anisotropic. In our work [17], we showed that
the coordinates of the vortex centers of the transverse component of the Poynting vector of
the leaky core modes also satisfy the equation Px(x, y) = Py(x, y) = 0, where Px and Py are
projections of the transverse component of the Poynting vector.
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3. Impact of the Core-Cladding Boundary Shape on the Vortex Formation. Problem of
Loss Reduction

In this section, we would like to consider the correlation between the vortex formation
in the transverse component of the Poynting vector and phase dislocations of the fields
of the fundamental air core mode, not only at the origin, but also in the waveguide
cladding. Here it is important to determine of light localization mechanism in hollow core
waveguides with a complex shape of the core-cladding boundary and to reduce respective
waveguide losses.

To better understand the difference between the processes of the energy leakage in
hollow core waveguides with various rotational symmetries of the core-cladding boundary,
we consider two examples. In the first example, we examine the distribution of the radial
projection of the transverse component of the Poynting vector of the fundamental air core
mode in two waveguides discussed in the previous section. The results of the numerical
calculation are shown in Figure 4. In both cases shown in Figure 4, the sign of the radial
projection of the transverse component of the Poynting vector changes from zero to some
positive values, taking no negative values. This is due to the fact that in both cases, the
transverse component of the Poynting vector has only one vortex located at the origin.
In addition, the radial projection of the transverse component of the Poynting vector in
the case of a hollow core hexagon has an inhomogeneous distribution in the waveguide
cross section not related to the discrete rotational symmetry of the core-cladding boundary.
The losses in both cases are approximately equal as indicated in the previous section (the
imaginary parts of the propagation constants).

However, similar waveguides with a finite wall thickness show a completely dif-
ferent behavior. Let the waveguides considered above be located in empty space and
have a wall thickness of 1 µm, so that the radiation is transmitted in the longest wave-
length transmission band. For the capillary the distribution of the radial projection of the
transverse component of the Poynting vector of the fundamental air core mode does not
change qualitatively compared to the case shown in Figures 4a and 5a. Only the imaginary
part of the propagation constant decreases approximately by two orders of magnitude
β = 2π

λ (0.99958 − i7.7e − 7). For the hollow core hexagon, the structure of the radial
projection of the transverse component of the Poynting vector of the fundamental air core
mode has, in contrast to the distribution shown in Figure 4b, a certain discrete rotational
symmetry that coincides with the symmetry of the core-cladding boundary. It should be
noted that, as it was shown in our work [18], in contrast to the capillary (Figure 5a) the
radial projection of the transverse Poynting vector component for the hollow core polygon
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has both positive (dark red) and negative (dark blue) values (Figure 5b). For the hollow
core hexagon, the imaginary part of the propagation constant is somewhat lower than for
the capillary β = 2π

λ (0.99958− i5.4e− 7).
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To qualitatively explain why the hollow hexagon with a finite wall thickness has
the structure of the radial projection of the transverse component of the Poynting vector
shown in Figure 5b, let us consider the refraction and reflection of radiation from the
core-cladding boundary. For the waveguides shown in Figure 4 there is a quasi-standing
wave (the air core mode) and refracted waves at the core boundary running away to
infinity outside the waveguides. It is known that for an optical vortex to form under the
interference of plane waves, it is necessary to have at least three waves in the considered
space region [19]. Therefore, vortices in electromagnetic fields and energy flows of the
fundamental air core mode for the waveguides shown in Figure 4 can be formed only at
the origin, as it was shown in Section 2. A similar reasoning can be applied to the case of
the capillary (Figure 5a), namely, in addition to the air core mode and the wave going to
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infinity outside the waveguide, there are only two cylindrical waves in the capillary wall.
For the axial components of the electric and magnetic fields of the fundamental air core
mode, they can be expressed as the sum of two Hankel functions:

Ez =
(

AH(1)
1 (ktr) + BH(2)

1 (ktr)
)

cos(ϕ + ϕ0),

Hz =
(

CH(1)
1 (ktr) + DH(2)

1 (ktr)
)

sin(ϕ + ϕ0),
(5)

where kt = 2π
λ

√
n2

wall − β2, where n2
wall is a refractive index of the capillary wall. The

optical vortices in the axial component of electric fields occur at Re(Ez) = Im(Ez) = 0 and
in the energy flows when Px = Py = 0 (Px and Py are projections of the transverse Poynting
vector component) and do not occur in the core-cladding capillary wall and therefore, their
formation is possible only at the origin.

For the hollow core hexagon, the presence of a finite thickness of the core-cladding
boundary combined with angular regions of the wall leads to a complex interference inside
the waveguide wall, in which the axial components of the electric and magnetic fields of
the fundamental air core mode are described by series:

Ez = ∑
n

(
An H(1)

n + Bn H(2)
n

)
cos(nϕ + ϕ0),

Hz = ∑
n

(
Cn H(1)

n + Dn H(2)
n

)
sin(nϕ + ϕ0),

(6)

where An, Bn, Cn and Dn are the harmonic amplitudes.
The phase distributions of the axial component of the electric field of the fundamental

air core mode for the capillary and hollow core hexagon are shown in Figure 6. Figure 6a
shows that the distribution of the axial component of the electric field of the fundamental
air core mode has only one phase singularity located on the axis of the waveguide. The
difference between the phases of the axial component of the electric field in the hollow
core and in the outer space is approximately 1.6 radians at each point of the capillary wall.
This value is consistent with the values of the phase difference obtained from the ARROW
model, when the phase difference should be equal to π/2 for the anti-resonant condition in
the longest wavelength transmission band. In addition, there are no phase inhomogeneities
along the perimeter of the capillary. For the hollow core hexagon (Figure 6b), the phase
distribution of the axial component of the electric field of the fundamental air core mode
is inhomogeneous along the perimeter of the hexagon. The phase distribution is periodic
in accordance with the discrete rotational symmetry of the core-cladding boundary and
the phase difference between the field inside the air core and in the outer space varies in
adjacent sections of the waveguide wall from exact value of π to arbitrary values of radians
lying in the range from 0 to π/2 radians. It can be shown that the phase of transverse
components of the electric field of the fundamental air core mode behaves in the same way.
At the same time, the losses for the hollow hexagon, as it follows from the values of the
imaginary parts of the propagation constants of the fundamental air core mode, are slightly
lower than for the capillary.

It can be seen from the above that this a difference in the interaction of the fundamental
air core mode with the core-cladding boundary wall for the capillary and the air core
hexagon should lead to different types of light reflection from the waveguide wall and the
air core mode energy leakage. For the capillary, the effective light localization occurs under

the anti-resonant condition 2πd/λ
√

n2
wall − β2 = (m + 1/2)π, where d is the thickness

of the core-cladding boundary wall and m is an integer corresponding to the number
of transmission bands (in our case m = 0 and the phase shift is π/2). This phase shift
occurs along the entire core-cladding boundary of the capillary. It is well known from
singular optics that when passing through the phase dislocation of electromagnetic fields,
the phase abruptly changes by π [20]. For the hollow core hexagon, the phase jump of
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π for the electric field of the air core fundamental mode inside the air core and outside
the waveguide occurs due to phase dislocations arising in the core-cladding boundary
wall at the core-cladding boundary sections where Re(Ez(x, y)) = Im(Ez(x, y)) = 0 and
Re
(
Etransv

i (x, y)
)
= Im

(
Etransv

i (x, y)
)
= 0, where i = {x, y}. The light reflection from

the waveguide walls occurs precisely in this phase regime and is not consistent with the
ARROW model.
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Figure 6. Phase distribution of the axial electric field component at a wavelength of 3.39 µm for: (a) a capillary with a wall
thickness of 1 µm (b) hollow hexagon with a wall thickness of 1 µm. Black lines are streamlines of the transverse component
of the Poynting vector of the fundamental air core mode. Thin red and white lines correspond to the condition that the real
(red) and imaginary (white) parts of the axial component of electric field being equal to zero. The phase changes from −π
(dark blue) to π (dark red).

To confirm this finding, let us consider a well-known hollow core waveguide [21]
with a cladding consisting of six capillaries of the same thickness as the wall thickness of
the waveguides discussed above (Figure 5). The capillaries will be located at the vertices
of the hollow core hexagon shown in Figure 2b. Figure 7a shows the distribution of the
radial projection of the transverse component of the Poynting vector of the fundamental
air core mode of the waveguide. As can be seen, the distribution exactly repeats the similar
distribution obtained for the hollow core hexagon (Figure 5b) and does not coincide with
the distribution in Figure 4b. The radial projection of the transverse component of the
Poynting vector has both positive and negative values, as in Figure 5b. This suggests that
the presence of thin-walled capillaries at the vertices of the hexagon leads to the same
light localization mechanism as for the hollow core hexagon (Figure 5b). In addition,
the effective mode area of the waveguide shown in Figure 7 is smaller than in the case
shown in Figure 5b, but the propagation constant of the fundamental air core mode is
β = 0.99916− i6.6e− 7. The loss values are very close to each other.

To confirm that the radiation is localized in the hollow core waveguide (Figure 7a)
due to the presence of phase dislocations of the fields of the fundamental air core mode, the
phase distribution of the axial component of the electric field Ez was plotted in Figure 7b.
It can be seen from Figure 7b that the phase distribution of the axial component of the
electric field has a vortex structure and a singularity at the origin. In addition, the phase
experiences a jump equal to π between the field inside the cladding capillary and outside
it. This suggests that in this case the mechanism of radiation reflection and its localization
in the air core is the same as for the hollow core hexagon (Figure 6b). The difference is
that for the waveguide with a cladding consisting of capillaries, the phase jump equal
to π occurs only in the capillary wall. Figure 8a shows an enlarged image of the phase
distribution of the axial component of the electric field (Figure 7b) near and inside the
capillary wall in the longest wavelength transmission band. Figure 8b shows the same
distribution for the cladding capillary wall thickness of 2.42 µm (according to the ARROW
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model, the wavelength of 3.39 µm is anti-resonant for m = 1 at this value of the capillary
wall thickness). The figures clearly show the phase jumps of the magnitude of π when
passing through the phase dislocations of the electric field.
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Figure 7. Hollow core waveguides formed by six capillaries with an outer diameter of 20 µm and a wall thickness of 1 µm
inserted into the corners of the hollow core hexagon (Figure 2b): (a) radial projection of the transverse component of the
Poynting vector of the fundamental air core mode at a wavelength of 3.39 µm; (b) phase distribution of the axial electric
field component of the fundamental air core mode at a wavelength of 3.39 µm. Thin red and white lines correspond to the
condition that the real (red) and imaginary (white) parts of the axial component of the electric field being equal to zero. The
phase changes from −π (dark blue) to π (dark red). The refractive index of the capillaries is 1.45.
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Figure 8. Phase distribution of the axial component of the electric field of the fundamental air core mode in the cladding
capillary wall at a wall thickness: (a) d = 1 µm (the longest wavelength transmission band); (b) d = 2.42 µm. The phase
changes from −π (dark blue) to π (dark red), with light green corresponding to zero. Thin red and white lines correspond to
the condition that the real (red) and imaginary (white) parts of the axial component of electric field being equal to zero.
For (a) red and white lines superimpose on the inner border of the cladding capillary. Other parameters are the same as
in Figure 7.
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4. Discussion

In this work, the mechanisms of light localization of the fundamental air core mode in
hollow core waveguides were considered from the perspective of the phase dislocations of
the mode fields and their impact on vortex formation in the transverse component of the
Poynting vector. According to the ARROW model, the most efficient reflection of radiation
of the air core mode from the waveguide wall can be achieved at an anti-resonant condition
when phase incursion in the waveguide wall is (m + 1/2)π, where m is an integer. In
this case, the number of lines of zero values of any component of the electric field of the
fundamental air core mode in the core-cladding boundary wall determines the number of
the transmission bands of the waveguide. For example, the phase incursion in the capillary
wall in the second transmission band is 3π/2 and two lines of zero values of the axial or
transverse component of electric field are in the capillary wall according to the ARROW
model. In this case, the imaginary or real parts of the electric field components are not
specified. While this model accurately describes the light localization in waveguides with a
continuous rotational symmetry of the core-cladding boundary, it should always be borne
in mind that the components of the electric fields of the air core mode have both imaginary
Im(E(x, y)) = 0 and real parts Re(E(x, y)) = 0 that have their own lines of zero values
in space. For a single capillary, lines of zero values of the axial component of the electric
field intersect with each other only at the origin. A completely different behavior occurs in
hollow core waveguides with a finite wall thickness comparable to the wavelength and
with a specific discrete rotational symmetry of the core-cladding boundary. In this case, the
lines of zero values of the real and imaginary parts of the axial component of the electric
field can intersect and overlap not only at the origin but also in the cladding forming phase
dislocations of different types. The phase changes abruptly to π when passing through this
phase dislocation of the air core mode electric fields and its behavior cannot be explained by
the ARROW model. This behavior of the fundamental air core mode fields in the cladding
can generate the corresponding vortices in the transverse component of the Poynting
vector [17]. In our opinion, all of the above considerations should be taken into account for
a correct understanding of the light localization mechanism in hollow core waveguides
and the application of the ARROW model.
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