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Abstract: The versatile bast fiber jute has environmental benefits compared to glass fibers. However,
for jute to be used in a composite, the fiber properties need to be altered. This study aims to
improve the mechanical properties of jute yarn to make it more suitable for technical applications as
a composite. To alter its mechanical properties, jute yarn was immersed in water during microwave
treatment. The time and power of the microwave settings differed between runs. Two states of the
yarn were tested: fastened and un-fastened. Tensile testing was used at the yarn and fiber level,
followed by Fourier-transform infrared spectroscopy (FTIR) and microscopy. The treatment result
demonstrated the ability to increase the elongation of the jute yarn by 70%. The tenacity was also
increased by 34% in the fastened state and 20% in the un-fastened state. FTIR showed that no change
in the molecular structure occurred. The treatments resulted in a change of yarn thickness depending
on the state of the yarn. The results indicate that microwave treatment can be used to make jute more
suitable for technical applications depending on the microwave treatment parameters.

Keywords: microwave treatment; jute; yarn; mechanical properties; tensile testing

1. Introduction

Natural fibers are competitive with glass fibers as reinforcement in composites. There
are two main reasons for the competitiveness of natural fibers: one is that natural fibers
are superior to glass fibers from an environmental sustainability perspective, and the
other reason is the cheap price of natural fibers. The properties of the reinforcement in
a composite should complement the properties of the matrix phase. Composites using
glass fibers as reinforcement require high stiffness. Natural fibers are not as stiff but can
still be stiff enough depending on the application as the application determines what
properties are desired. The purpose of a composite is to utilize the different properties of
the different phases to fabricate a material with enhanced properties, often tailored for a
specific purpose.

For composites, bonding issues between the matrix phase and reinforcement must
be considered. One reason is that the load transfer between the different phases is the
mechanism behind the composite’s function of utilizing the characteristics of the ingoing
phases. If the mechanical properties of reinforcement of the matrix are too diverse, the risk
of detachment at load is increased.

For this reason, the good-enough stiffness of natural fibers can be beneficial as it can
minimize the risk of detachment due to the tensile load on the composites that contain
a soft, deformable matrix in combination with a stiff reinforcement. Another common
bonding issue in composites arises when a hydrophobic matrix, such as most polymers, is
combined with a hydrophilic reinforcement, such as natural fibers. If the bonding between
the phases is weak, it will lead to poor load transfer between the phases and, therefore, a
less-performing composite.

Among the industrially used natural fibers, jute is the cheapest [1] and has a high
stiffness compared to other natural fibers. Jute properties can be altered using different
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treatments. For example, when mixing jute with wool in spinning, the jute can be treated
with caustic soda for improved crimp, softness, and pliability [2]. Furthermore, for knitting,
jute fibers need to be made softer and smoother [3]. A common treatment of jute is
wollenisation, in which a strong alkali (18%) is used to weaken and crimp the fiber [4].
Good results in increasing both the elongation and tenacity have been achieved through
grafting. For example, Khan et al. [5] investigated jute yarn grafted with 1,6-hexanediol
diacrylate and found an increase in the tensile strength and elongation at break. Grafting
with vinyl monomers has also shown results of increased tensile strength, elongation at
break, and water uptake [6].

Disadvantages of jute properties include poor elongation and loss in strength at
wetting [7]. If the elongation could be increased, additional application areas for jute
would be possible. In order to increase the elongation, studies using chemicals, such as
liquid ammonia [7] and sodium hydroxide [8] have succeeded, however, with the effect of
decreased or, in the best case, sustained tenacity. Tensile testing of jute yarn at elevated
temperatures has shown decreased tenacity with increased temperature [9]. Those tensile
tests were done under dry conditions, and the humidity loss was reported as a possible
explanation for the loss in stress.

Varieties of properties of several textile materials at different levels have been changed
through microwaving. Microwave treatments have been used for changing properties,
such as coloring [10], fiber-surface roughness [11], and hydrophilicity [12]. Microwaving
has also been used to extract fibers [13] and polysaccharides from algae [14] and to graft
polymer on flax fibers [15]. The main advantage of microwaving is that the heating is fast
and effective [16]. The heating reaches the entire material at once instead of solely relying
on conduction and convection for the heat flow to spread.

Studies of microwave treatments for jute, especially without use of chemicals, are
few. The most common is to use microwaving as an accelerator of chemical reactions. It is
not common to study the effect of microwaves alone on natural fibers. However, Li et al.
(2020) [17], studied microwave treatment with only water for dissolving bamboo pulp. The
result was a rougher fiber surface and a higher reactivity of the fibers. They explain their
results as an attack on the cellulose fibers from the polarized water molecules that move
according to the shifting electrical field. Still, attempts to use microwave treatment on jute
yarn to enhance its mechanical properties have not been performed yet.

When investigating the mechanical properties and uncertainties of jute at the fiber
and yarn level, Ullah et al. (2017) [18] concluded that it was better to do investigations at
the yarn level to produce good products using jute.

In this article, we aim to study the effect of microwave treatment without chemicals
on the mechanical properties of jute yarn. The purpose is to find out whether the jute
properties can be altered.

2. Materials and Methods
2.1. Materials

Jute yarn of 4475 dTex and twist number 120 was used for samples for the microwave
treatments. The samples were soaked and microwave treated in water with a hardness of
3◦dH, pH was 8.1 at 24.1 degrees Celsius and alkalinity of 58 mg HCO3/L The microwave
used for the treatments was a Samsung M1727N with a microwave output of 800 W.

2.2. Methods
2.2.1. Microwave Treatment Procedure

Before the microwave treatment, the samples were soaked in water for 24 h. To enable
the full absorption of water, we ensured that the samples were well covered by water.
During the microwave treatment, a length of 30 m of yarn was used with a water amount
of 2 L. The yarn treatment was done under loose (un-fastened) and fastened conditions.
After treatment, the samples were dried at room temperature for about one week until the
weight gain from immersion was gone.
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Before tensile testing, the samples were conditioned at 50% humidity and 24 ◦C for
24 h. During the conditioning, there is a sorption process of water vapor from the lab
atmosphere leading to an increase in the yarn weight of 1%. Weighing of the samples
before soaking, after soaking, after drying, and after conditioning ensured that the samples
had their initial moisture content before conditioning for tensile testing. A reference sample
was neither soaked nor microwave treated. Figure 1 shows the treatment procedure.
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Figure 1. Schematic description of the treatment procedure.

Regarding the microwave treatment, there were two treatment factors: Time and
Power. The objective for the first three treatments (0, 1, and 2) was to investigate the
effect of energy uptake augmentation. After, different combinations of time and power
were tested but with the same energy uptake. Lastly, one test with high energy uptake
was performed.

Since not all microwaves will reach the water and increase its heat, the efficiency of the
microwave was investigated and can be seen in Table 1. The efficiency of the microwave
was calculated from the theoretical energy, calculated using Equation (1)

E = Pt (1)

The experimentally determined power from the average of three runs with 500 g of
water at each power level where the temperature before and after microwaving was used,
using Equation (2)

P = cm∆T/t, c = 4190 J/kgK. (2)

Table 1. The efficiency of the microwave for the used power settings.

Power Setting of Microwave [W] Efficiency (Pexperimental/Ptheoretical)

450 0.715
600 0.786
800 0.7825

The theoretical energy output in each treatment combination was multiplied with
the efficiency factor(s) corresponding to each power setting. For treatment combinations
containing more than one power level, the energy from each level was calculated and
summed. The resulting energies were assumed to reach the container with water and
yarn. This is called the Energy uptake and can be seen in Table 2. In total, six treatment
combinations are summarized in Table 2, where each treatment combination number
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is performed in two states (fastened and un-fastened) with twelve repetitions of each
combination. The experimental steps of the treatment are illustrated in Figure 2.
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Table 2. Combinations of the treatment series.

Treatment Combination
Number Yarn Length [m] Water Quantities

[liter] Time [s] Power [W]
(Theoretical)

Energy Uptake
[kJ]

0 L/0 B 30 2 0 0 0
1 L/1 B 30 2 60 450 19.2
2 L/2 B 30 2 100 800 60
3 L/3 B 30 2 50 + 50 800 + 800 60
4 L/4 B 30 2 60 + 90 450 + 600 61.5
5 L/5 B 30 2 60 + 90 + 180 450 + 600 + 800 173.1

2.2.2. Tensile Test

Tensile testing was used at the yarn level. For testing, a tensile tester from Mesdan
with pneumatic clamps and a 0.1 kN load cell was used and can be seen in Figure 3. ISO
standard 2062 Traction of yarns was chosen. The tensile tester was situated in a controlled
environment of 59% relative humidity and 20 ◦C.

2.2.3. Fourier-Transform Infrared Spectroscopy (FTIR)

A Nicolet iS10 FTIR Spectrometer was used to investigate possible changes in the
chemical structure due to the treatment combinations. The spectroscopy was performed in
the air without a controlled environment; therefore, the relative humidity was 45%, and
the temperature was 20 ◦C.

2.2.4. Microscopy

The yarn thickness and morphology were investigated using a microscope. Five
sections of each sample were photographed, and, for each picture, four measurements of
the diameter were performed, for a total of 20 measurements of each sample. This was
done with a Nikon SMZ800 microscope.
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3. Results and Discussion

The tests were performed as previously described in Table 2, where the treatment
combinations were performed with the yarn in the un-fastened and fastened state. To
investigate the effects of microwave treatment, tensile tests were performed for un-fastened
and fastened yarn. The results from this (the tenacity and elongation) are presented in
Table 3 under the un-fastened conditions and Table 4 under the fastened conditions. For
both the fastened and un-fastened states, the treatment combinations showed an increase
in both the elongation and tenacity.

An increase in both the elongation and tenacity is not common, as most reported
treatments with chemicals without grafting show sustained or decreased tenacity when
the elongation is increased. The chemicals likely destroy the jute. Wetting is also known to
decrease the strength of jute yarn, although Ben Smail (2019) [9] mentioned that strength
loss at higher temperatures could be due to humidity loss. The treatments in water with
the microwave reported in this study showed an increase in strength supporting the idea
of humidity as a factor for maintaining the strength. However, the temperatures used by
Smail (2019) [9] were much higher than those reached in this study.

Table 3. The tensile testing results for un-fastened yarn after treatment.

Treatment Combination Time [s] Power [W] (Theoretical) Energy Uptake [kJ] Tenacity [cN/tex] Elongation [%]

0 L 0 0 0 9.18 2.88
1 L 60 450 19.2 11.01 4.95
2 L 100 800 60 9.81 4.41
3 L 50 + 50 800 + 800 60 10.39 4.61
4 L 60 + 90 450 + 600 61.5 10.20 4.61
5 L 60 + 90 + 180 450 + 600 + 800 173.1 10.12 4.43

Table 4. The tensile testing results for fastened yarn after treatment.

Treatment Combination Time [s] Power [W] (Theoretical) Energy Uptake [kJ] Tenacity [cN/tex] Elongation [%]

0 B 0 0 0 9.18 2.88
1 B 60 450 19.2 10.82 3.07
2 B 100 800 60 11.44 2.96
3 B 50 + 50 800 + 800 60 11.13 2.80
4 B 60 + 90 450 + 600 61.5 12.34 3.12
5 B 60 + 90 + 180 450 + 600 + 800 173.1 10.11 3.03
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3.1. Effect of Treatment on the Tenacity and Elongation

Figure 4 shows the effects of the different treatments on the yarn tenacity, where the
state of the yarn during microwave treatment is indicated with the color blue for fastened
and red for un-fastened. The state of the yarn affected the tenacity for the treatment
combinations 2, 3, and 4, which are the intermediate energy output treatments. At the low
and high energy output levels, factors other than the state of yarn appeared to dominate
the change in tenacity.

The highest tenacity was found for the yarn treated in the fastened state, where it was
12.34 cN/tex under the treatment 4 B, which is an augmentation of 34% compared to the
reference specimen. For the un-fastened state, there was an augmentation of 20% with
treatment number 1 L. It is noteworthy that these increases were after treatments in water,
as jute normally show a decrease in strength upon wetting.
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Regarding the elongation (Figure 5), there was no real effective treatment under the
fastened state of yarn. On other hand, the effect was remarkable under the un-fastened
state, where the 1 L treatment leads to a 70% augmentation compared to the reference yarn.
It is possible to increase the jute yarn elongation without the use of chemicals.
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To better understand the effects of the treatment, the effect of energy uptake on the
tenacity was investigated. In Figure 6, it can be seen that the largest effect is in zone 1, at
about 60 kJ. Comparison of Figure 6 and Tables 3 and 4 makes it possible to identify the
method of application as an important parameter in effecting the tenacity. The best results
were achieved through a two-step treatment with lower energy the first time.
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Figure 7 presents the effects of the energy uptake on the elongation, and it can be
seen here that the largest effect was also in zone 1 with lower energies below 60 kJ. The
highest elongation was achieved at 20 kJ energy uptake, and it was not a two-step treat-
ment. This means that the resulting jute yarn properties of elongation and tenacity could
probably be tailored by a careful choice of treatment regarding the total energy and number
of treatments.
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Treatments of the same energy with different microwave settings in time and effect
produced different results in the tensile properties. This is because the effect comes from
the water molecule movements induced by the shifting electrical field of the microwave.
Therefore, the effect cannot be achieved through traditional heating methods.

3.2. Microscope

An optical microscope was used to measure the thickness of the treated yarn. The
yarn thickness was affected by the state of the yarn during treatment. This can be seen in
Figure 8. For the un-fastened state, the resulting yarn thickness was thicker than for the
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yarn treated in the fastened state. An idea for an explanation of the increase in thickness
was that the un-fastened state could lead to shrinking in length. The shrinking could then
lead to higher measurements of elongation as there was more yarn per length to elongate
before the break.

However, this explanation is not fully consistent, as the highest elongation was found
in treatment combination with low energy uptake, while the highest thickness was found
in the intermediate energy uptake treatments. The thickness was also increased for the
fastened state without a corresponding increase in elongation, so there is likely another
factor involved in the increase in elongation. The yarn has, at a global level, different
abilities to adapt to the treatments depending on the state of yarn. It would be interesting
to further investigate these changes at a micro-level.
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3.3. Fourier-Transform Infrared Spectroscopy (FTIR)

The FTIR analysis was performed to investigate whether the microwave treatments
destroyed the molecular bonds in the jute yarn. We found that there was no destruction
of the molecular bonds: the transmittance peaks were of the same size and at the same
place for all samples. Figure 9 illustrates the similarity between the samples where the
subtraction curve shows small values that could be explained as sample and measurement
variation. The temperatures during the microwave treatments were not sufficient to destroy
the jute at a molecular level. This could be why there was no reduction in tenacity after
treatments that led to increased elongation.

These results are in line with the increased fiber roughness and fiber reactivity after
microwave treatments of bamboo fibers reported by Li et al. (2020) [17]. They showed
that microwaving had good results for dissolving bamboo pulp at the fiber level, and our
work showed that microwaving also had an effect on the properties of jute at the yarn level
without destruction of the molecular bonds. The microwave affects the water molecules.
Their polarity makes them move and adjust to the shifting electrical field in the microwave.

It is this movement of water molecules around and within the jute fibers that produces
an effect in the fiber and yarn properties. To increase the understanding of the phenomenon,
it would be interesting to investigate the changes at the fiber/micro-level of the jute yarn
to investigate if there are any structural changes. This was out of the scope for this article,
as it has been suggested by other authors that the properties at the yarn level of jute are
more important than at the fiber level for product quality predictions.
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terial, which is already used with large variations. Jute is also an abundant fiber source 
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Figure 9. FTIR results for untreated and treated jute yarn. (a) FTIR results for the untreated reference sample. (b) FTIR
results for a microwave treated sample. (c) FTIR results shown as subtraction of samples.

4. Conclusions

We aimed to study the effect of microwave treatments without chemicals on the me-
chanical properties of jute yarn. The purpose was to determine whether the jute properties
could be altered. We demonstrated that the properties of elongation and tenacity of jute
yarn could be altered using only a microwave and water.

The tenacity could be increased by microwave treatment, and an increase in elongation
could be tailored by the choice of state (fastened or un-fastened) during the treatment.
High yarn elongation was achieved by microwave treatment in the un-fastened state. If
lower elongation is preferred, this can be achieved by treatment or soaking under tension.
The states of the yarn during microwave treatment had a strong effect. The yarn thickness
was affected by the state of yarn during treatment.

Future work could investigate the reasons for these results at the structural level of
the yarn and fiber, and further experiments with different treatment combinations could
provide a better understanding of how the properties of jute yarn can be tailored using
only microwaves and water.

Controlling material properties is an important part of controlling product quality.
Changing the properties of jute yarn will enable additional application areas for this
material, which is already used with large variations. Jute is also an abundant fiber source
with environmentally sustainable cultivation. It makes sense to use environmentally
sustainable methods for all parts of the product production in order to create a sustainable
product from jute. The results of this work can help in finding new application areas of
jute with an environmentally sustainable process for changing the material properties.
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