
Supplementary Information 
In this document we detail all reactions and parameter values used in our stochastic simulations. 
Following this, we provide additional numerical simulation results obtained by varying parameters 
related to ‘slow codons’: the length of mRNA transcripts, and the position and efficiency of slow codons. 

S1   Model equations 
The reactions used in our model are a stochastic version of those used in [1]. One of the key differences 
is our implementation of translation, where we use a multi-step reaction scheme instead of a single-step 
one. In Table S1, we display both the reactions and rate calculations where appropriate. Symbols for 
variables and parameters are detailed in Tables S2 and S3, respectively. In what follows we define the 
following elements and their corresponding sets: 𝑥 ∈ 𝑟, 𝑒, 𝑞, ℎ , 𝑋 ∈ 𝑅, 𝐸, 𝑄, 𝐻 , 𝐴 ∈all species except mRNA . 

Table S1. Biochemical reactions and their associated reaction rates. 

Process Reaction Rate 

Nutrient 
transport 

∅ ( )⎯⎯ 𝑠 
 

𝑘 (𝐸) = 𝜀  𝐸 

Nutrient 
metabolism 𝑠 ( , )⎯⎯⎯ 𝑔 𝑛 𝑘 (𝐸, 𝑠) = 𝜀  𝐸 𝑠  𝐾 + 𝑠  

Transcription ∅ TX ( )⎯⎯⎯⎯ 𝑥 

𝑘TX (𝑔) = 𝑣TX  𝑔𝐾 + 𝑔 

 𝑘TX (𝑔) = 𝑣TX  𝑔𝐾 + 𝑔 𝐾  𝐾 + 𝑞  

Translation 
initiation 𝑅 + 𝑥 𝑥  𝐶  

Translation 
elongation 𝑥 + 𝑔 TL ( )⎯⎯⎯⎯ 𝑥 ,  𝑘TL (𝑔) = 𝑣TL 𝑔 TL𝐾TL TL + 𝑔 TL  𝑣  

 Translation 
termination 𝑥 + 𝑔 TL ( )⎯⎯⎯⎯ 𝑥 + 𝑅 + 𝑋 

Dilution and 
degradation 

𝐴 → ∅ 𝑥 ⎯ ∅ 

𝜆 = 𝛥𝑚10  Δ𝑡 
 

 

 



S1.1   Formulating growth rate to keep cell mass constant 
In this section we detail how growth rate is calculated. We begin with a cell in mid-exponential growth. 
Over the course of our stochastic simulation steps, new cell mass is continually produced due to protein 
production. To keep cell mass constant between successive stochastic steps, we find a dilution rate, 𝜆, 
that balances the increase in cell mass due to protein production. We determine such dilatation rate 𝜆 as 
explained hereafter.  

We define 𝑀 as the cell mass expressed in terms of average amount of amino acids in the cytoplasm. We 
use indices to denote what the cell mass is at different stages during a stochastic simulation step. Given 
this, 𝑀  denotes the cell’s mass at the beginning of a simulation step. 𝑀  denotes cell mass 
following completion of a reaction during the considered stochastic simulation step (which could involve 
production of one protein molecule). Finally, 𝑀  denotes the mass of the cell following any potential 
dilution. The change in cell mass during a stochastic simulation step is defined as ∆𝑀 = (𝑀 −𝑀 ). To ensure that the cell mass is maintained constant from one stochastic simulation step to the 
next, we need to impose 𝑀 = 𝑀 . This is achieved by defining 𝑀 = 𝑀  :   

𝑀 =  𝑀  𝑀𝑀 + Δ𝑀 = (𝑀 + Δ𝑀) 𝑀𝑀 + Δ𝑀 = 𝑀 . (S1) 

Defining 𝑀  this way is equivalent to considering a specific dilution rate intended to keep cell mass 
constant between stochastic simulation steps. This dilution rate is defined as − , i.e. the negative rate 
of change of cell mass between stochastic steps, under the constraint 𝑀 =  𝑀 : 𝜆 = − 𝑀 − 𝑀Δ𝑡 = Δ𝑀Δ𝑡 . (S2) 

In our simulations, we have chosen the initial protein values (see Section S2) so that the total amount of 
amino acids corresponds to the approximate average number of amino acids in an E. coli cell [2], i.e. 10  
amino acids. Therefore, to express the dilution rate in terms of the mass of one cell, we divide 𝜆  by this 
target average number of amino acids per cell: 𝜆 = 𝜆10 = Δ𝑀Δ𝑡 10 . (S3) 

 

S2   Variables and initial values 

The variables used in our model are shown below, alongside the initial values we used in our 
simulations. Endogenous initial values were chosen by running preliminary deterministic simulations and 
using their steady-state output as the initial value for the stochastic simulations. Initial values for the 
heterologous simulations are taken from the steady-state values of an endogenous simulation with a 
nutrient quality of 100 (no unit). 



Table S2. The variables used in the simulations and their initial values. 

Variable Description Initial value, endogenous 
(molecules/cell) 

Initial value, herologous 
(molecules/cell) 𝑠 Internal nutrients 128 49 𝑔 Energy unit 100,000 7,699 𝑟 mRNA for R fraction 187 85 𝑒 mRNA for E fraction 278 119 𝑞 mRNA for Q fraction 3,508 2,667 ℎ mRNA for H fraction – 0 𝑅 Ribosomal proteins 7,373 5,713 𝐸 Enzyme proteins 10,924 7,995 𝑄 Housekeeping proteins 138,080 182,505 𝐻 Heterologous proteins – 0 

 

S3   Parameter values 
A list of the parameters used in our simulations is presented in Table 3. Values taken from literature are 
indicated in the column titled “Source” with the corresponding bibliographic reference(s) indicated in 
square brackets. Most parameter values are taken from [1]. When values are modified from those 
proposed in the literature, this is indicated with one or multiple † symbols and the corresponding 
explanation for this change is presented in Section S3. The following abbreviations are used in Table 3: 
aa: amino acid. Rf: ribosomal footprint = 30 nucleotides = 10 aa; the span of one ribosome on an mRNA 
transcript. Input: different values within the range shown have been used to conduct stochastic 
simulations. ‘–’ denotes no unit. 

Table S3. Parameter values used in our model. 

Parameter Description Value Unit Source 𝑀  Cell mass 108 aa [2] (also in [1]) 𝑁  Number of ribosomal footprints per 𝑟 
transcript 

750 Rf [3] (also in [1]) 𝑁 = 𝑁 = 𝑁  Number of ribosomal footprints per 𝑒, 𝑞, ℎ 
transcript 30 Rf [4] (also in [1]) 𝑛  Number of amino acids per ribosomal 
footprint 10 aa [5] 𝐶 = 𝐶 = 𝐶  Translation initiation rate for 𝑅, 𝐸, 𝑄 
fractions 

1 – [6] 𝑣TL Maximum translation elongation rate 1,260 aa min-1 [2] (also in [1]) ℎ  𝑄 fraction autoregulation Hill coefficient 4 – [6] 𝑑 mRNA degradation rate 0.1 if free,  0 if not molecs min-1 [6] (also in [1]) vTX  Maximum transcription rate for ℎ 850 × prom  molecs min-1 cell-1 Chosen relative 
to prom  𝜀  Nutrient transport coefficient 0.363 min-1 † 𝜀  Nutrient metabolism coefficient 2.9 min-1 † 𝐾  Nutrient metabolism Hill threshold 100 molecs cell-1 †† 



𝐾  𝑄 fraction autoregulation Hill threshold 5,000 – †† 𝐾  Transcription Hill threshold for 𝑟 30,000 molecs cell-1 †† 𝐾 e Transcription Hill threshold for 𝑒 3,000 molecs cell-1 †† 𝐾TL Translation elongation Hill threshold 1,000 molecs cell-1 †† 𝐾TX  Transcription Hill threshold for ℎ 30,000 molecs cell-1 †† 𝐾  Transcription Hill threshold for 𝑞 10,000 molecs cell-1 †† ℎ  Nutrient metabolism Hill coefficient 3 – ††† ℎTL Transaltion elongation Hill coefficient 2 – ††† 𝑣  Maximum transcription rate for 𝑟 27 molecs min-1 cell-1 †††† 𝑣  Maximum transcription rate for 𝑒 20 molecs min-1 cell-1  †††† 𝑛 Nutrient quality 10-600 – Input prom  Promoter strength of gene construct 0.3-3 – Input RBS  RBS strength of gene construct 0.3-3 – Input 𝑣  Relative codon efficiency on transcript 𝑥 
at position 𝑖 

0.005-1 – Input 𝐶  Translation initiation rate for 𝐻 fraction RBS  molecs min-1 cell-1 Input 

 

S3.1   Explanation for changes in some values compared to those proposed in [6] 
The change of some of the values relative to those proposed [1] is founded on intuitive reasoning 
explained here-in. We note that the values in [1] also include some uncertainty, and so a detailed 
parameter fit against an extensive experimental data set would be required to further validate the 
proposed values. This is however beyond the scope of our model. 

Nutrient-related parameters (†) 

In [1], parameters 𝜀  and 𝜀  take values of 726 min-1 and 5,800 min-1 respectively, which we reduce by 
2000-fold to values of 0.363 min-1 and 2.9 min-1. This is for two reasons which are multiplicative: firstly, 
we vary nutrient quality from 10 to 600 in order to reach saturation of growth rate values in our model 
output (Figure 4A, main text), which is two to three orders of magnitude higher than in [1]. This would 
significantly change the dynamics of nutrient transport and metabolism, therefore to maintain the rates 
of these processes, we first reduce 𝜀  1000-fold. Secondly, [1] uses two classes to describe ‘enzymatic 
proteins’ with identical transcription and translation dynamics. We combine these into one class, 𝐸, 
meaning that any calculation involving 𝐸 proteins would be over-represented 2-fold compared to [1]. 
This requires requires balancing 𝜀  and 𝜀  by a further factor of two, yielding a reduction of 1,000 ×2 = 2,000 in total. 

Adjusting half-saturation constants (††) 

Half-saturation constants (HSCs) are used in Hill equations for reactions involving transcription, 
translation and nutrient metabolism. In [1], a single parameter is used for each of translation and 
metabolism, and two are used for transcription due to a separation of ribosomal and non-ribosomal 
reactions; in our model, we furthermore use transcription HSCs for each protein fraction. Those 
parameters used for translation and transcription relate to quantities of 𝑔 (‘energy units’), where one 
unit is subsequently used in each translation elongation step. The HSC values used in [1] for translation 



and 𝑅/non-𝑅 transcription are 7.0, 4.4 and 430 energy units per cell respectively; we deem these as too 
low for our model, as explained below. 
 
In order to utilise the saturating effects from the Hill equations, the HSCs for transcription and 
translation should be within a similar order of magnitude as the steady-state value of energy units in the 
cell. While literature is sparse on average quantities of energy units, we can calculate a value from 
simple approximations. In our simulations, the number of mRNA molecules for each species at steady 
state is on the order of ~103, and each such molecule requires 30 (for E,Q,H) or 750 (for R) energy units 
to fully translate, or approximately ~102 (see Table 2). We reason that a typical E. coli cell in exponential 
growth would be adapted to store energy reserves (in the form of ATP) to be able to sustain some 
translational capacity for short periods without any nutrient intake [7]. For example, in order to 
translate just 1% of its proteome using existing energy reserves only would require approximately × = 103 energy units per cell. This suggests that, in order to be in the energy range where 
saturation effects from Hill kinetics are applied, the HSCs for transcription and translation should be at 
least 10  in our model. Given this, we increased the values of HSCs for transcription and translation to 
be in the range 1,000 to 30,000 energy units. Although the precise values are arbirtary, we chose our 
values to ensure that (i) the HSC for ribosomal transcription was higher than for the other native 
fractions (i.e. it gets inhibited more readily), and (ii) the lowest value was the HSC for translation (i.e. it 
gets inhibited less readily). This is to reflect the fact that, in response to low energy levels, an E. coli cell 
inhibits ribosomal RNA biogenesis more significantly than other processes [8].  

Adjusting Hill coefficients (†††) 

In [1], the Hill coefficients used for nutrient metabolism and translation elongation were both 1, 
producing a classic Michaelis-Menten saturation curve. We instead wanted these processes to behave 
more switch-like to reflect the fact that many cellular processes are tightly controlled. To do this, we 
increased the Hill coefficients from 1 to 3 for nutrient metabolism (ℎ ) and from 1 to 2 for translation 
elongation (ℎTL), meaning that change in kinetics will now occur over a smaller range of values. 

Adjusting parameters to reflect assumptions about E. coli transcript composition (††††) 

In order to make the ratio of 𝑒-transcripts to 𝑞-transcripts in the cell more realistic, we changed values 
of 𝑣  and 𝑣  from 4.14 and 948.93 in [1] to 20 and 850 respectively (unit: molecs min-1 cell-1). In 
both our model and in [1], 𝑒 and 𝑞 have the same transcript length and so any differences to their 
translation rate will be due to the difference in the number of transcribed genes belonging to each 
fraction. The ratio of approximately 4:950 from [1] implies that 𝑞-transcripts are 238 times more 
abundant than 𝑒-transcripts. Given that a typical E. coli cell contains approximately 1,380 mRNA 
molecules in exponential growth [9], the ratio from [6] implies there are  × 4 ≈ 6 enzymatic 
transcripts at steady state. Intuitively, this is too small, therefore we adjust this ratio to 20:850, which 
gives × ≈ 32 enzymatic transcripts, a more reasonable value. 
 
We additionally reduced the ribosome transcription rate, 𝑣  from 930 in [1] to 27 (unit: molecs min-1 
cell-1). This is because 68% of the cell’s RNA polymerases work on ribosomal RNA synthesis [10] and 



ribosomal mRNA is 30x longer than non-ribosomal mRNA in our framework. It follows that the ribosomal 
transcription rate is % ≈ 2.3% of the total transcription rate of an E. coli cell. This suggests that E. coli’s 

total mRNA synthesis rate is approximately . % = 1174 min-1 cell-1, which is close to the sum of our 
constituent transcription rate parameters (𝑣 + 𝑣 + 𝑣 = 897 min-1 cell-1). Our value is slightly 
lower as we wanted to account for the added effect of RNA polymerase traffic jams on ribosomal RNA 
genes [10]. 

S3.2   mRNA:protein mass ratio calculations 

During our simulations, we calculate the mRNA:protein mass ratio for comparison with bacterial growth 
laws. We take the average molecular weight of a nucleotide to be 330 g mol-1 and of an amino acid as 
118.9 g mol-1 [11]. The total mass of mRNA transcripts is then calculated as the sum of the mass of each 
transcript type multiplied by its corresponding abundance in the cell. The total protein mass was 
obtained similarly, giving the quantities needed for the mRNA:protein mass ratio. 

 
S4   Supplementary results 
S4.1   Proteome fraction changes in response to nutrient quality 

In Figure 4 from the main text, we used our model to reproduce a number of ‘bacterial growth laws’ by 
showing how different variables changes in response to increasing nutrient quality, 𝑛. For the 
endogenous simulations (without inclusion of a synthetic gene construct), we showed that increasing 𝑛 
increased the growth rate to the point of saturation while monotonically increasing the mRNA:protein 
mass ratio. While not central to our main results, it may also be useful to observe what happens to the 
steady-state values of all the endogeneous proteome components: 𝑅, 𝐸 and 𝑄. We display the results 
below for the seven different values of 𝑛 as used in Figure 4. 

 

 

 

 

 

 

 

 Figure S1. Steady-state endogenous proteome fractions plotted against nutrient quality. 



From Figure S1, it can be seen that 𝑅 and 𝑄 mirror each other's dynamics with R being the dominant 
species at high values of 𝑛 , while 𝐸 shows a slight relative decrease when 𝑛 increases. This can be 
explained in terms of how the cell distributes its resources when it has access to a large energy supply: 
in higher nutrient quality conditions (i.e. at higher values of 𝑛), more energy is available to the cell per 
nutrient molecule absorbed and thus there is no need for the cell to absorb and metabolize as many 
nutrients as in lower nutrient quality conditions (smaller values of 𝑛).  As a result, 𝐸 decreases, and the 
cell has more resources to spend on other fractions. For increasing values of 𝑛, this causes 𝑄 to increase, 
due to its large maximal transcription rate.  At even higher values of 𝑛, 𝑄 eventually gives space to 𝑅, 
due to the fact that mRNA species of 𝑄 are negatively autoregulated. 

S4.2   Changing ‘slow codon’ parameters 

In addition to the parameters mentioned in the main text, we changed three other key parameters to 
better understand the effect these had on the model’s output: 

i) Slow codon position. In addition to placing a slow codon towards the end of the mRNA 
transcript, we conducted simulations with a slow codon near the beginning of the transcript 
(footprint position 5 Rf). In this instance, translation is still slowed down, however only very 
short queues can form, leading to a lower amount of sequestered ribosomes. 

ii) Slow codon efficiency. In addition to a slow codon that has a relative efficiency of 0.5%, we 
ran simulations with a slow codon with a relative efficiency of 3%. This was used to assess 
how changing the efficiency of a codon affects queue formation. 

iii) mRNA length. Our standard simulations use mRNAs with a length of 30 Rf. In reality, mRNA 
length can vary significantly. We also ran simulations with mRNAs of length 60 Rf to test 
whether this has an impact on queue formation. In this instance, the slow codons were 
located at footprint positions 5 Rf or 56 Rf. 

As the impact of these parameters was not the focus of our study, we provide just a basic snapshot of 
their effects, in the form of the relationship between 𝐻  and 𝐺  at steady state. In general, the 
more efficient the translation process is, the higher the values of 𝐺  are for equivalent values of 𝐻 . In addition, the linearity of each trend suggests how predictable the dynamics of translation and 
protein production are, with more linear trends conveying higher predictability. In this light, linear 
regression fits are provided for each case studied. Slower codons towards the end of the mRNA typically 
give rise to very inefficient constructs, depending on promH and RBSH. 
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S4.3   Absolute values of heterologous protein yield 

In Section 3.2.2, we presented an analysis of hypothetical growth scenarios and calculated how much 
heterologous protein would be produced over time. When presenting this data in Figure 6, we used a 
normalised form of protein yield (𝐻(𝑡)norm) at each time point in order to make comparisons between 
different construct designs easier to interpret. The absolute values were not included in the core 
manuscript, however it may still be useful for readers to see these. In Figure S3, we therefore present 
heat maps of absolute protein yield values for both growth scenarios (uncapped exponential growth, 
turbidostat growth) and for both of the main codon compositions used (no slow codons, one slow codon 
towards the end of a transcript). The interpretation of this figure is identical to that in Figure 6b, except 
we now: 

• show the full suite of heat maps for both growth scenarios separately. This is because the 
absolute protein yield increases over time even when protein production dynamics are time-
invariant, such as in a turbidostat operating at steady-state capacity  

• use a separate scale bar for each heat map. This is in order to preserve visual comparisons 
between construct designs at a specific time interval 

For subfigure a, the shading of heat maps over the time intervals is identical to those in Figure 6b. In 
subigure b, the shading of each heat map remains consistent over the time points because the protein 
production dynamics of a turbidostat operating at steady-state capacity remain constant over time. 

 

 

Figure S2. Comparing the impact of different parameters via their effect on the relationship between 𝐻  and 𝐺 . In each 
subfigure, a different parameter has been varied, and we include plots for each location of slow codon on the mRNA transcript:
blue = no slow codon, yellow = slow codon near the start (at position 5 Rf), orange = slow codon near the end (at positions 26 Rf
for shorter mRNA and 56 Rf for longer mRNA). R2 values from a linear regression are given. (a) Slow codon efficiency = 3%, mRNA 
length = 30 Rf. (b) Slow codon efficiency = 0.5%, mRNA length = 30 Rf. (c) Slow codon efficiency = 0.5%, mRNA length = 60 Rf. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S4.4   Simulation convergence, ribosome densities and proteome mass fractions 

For each combinaiton of promoter strength and RBS strength, we show three set of additional data: (i) 
the convergence of the simulation, (ii) the ribosome density on mRNAH transcripts, and (iii) the steady-
state proteome mass fractions. For each case, we show a set of data for scenarios when the slow codon 
(codon efficiency = 0.5%) is positioned near the beginning of an mRNAH transcript of length 30 Rf (at 
position 5 Rf), and near the end of that trancript (at position 26 Rf). This results in two sets of nine graphs 
(for each promoter-RBS combination tested) in each case. Within each set, the subplots are arranged in 
a 3x3 grid to match the promoter-RBS values from Figures 5a,b and Figurse 6a,b. 

Figure S3. Absolute values of heterologous protein yield for a variety of construct design and growth conditions. Values from
different promoter and RBS strengths are displayed using 3x3 matrices. Values from different codon compositions are shown via
differently coloured rows (blue: no slow codon; orange: one slow codon towards the transcript’s end). Values from different
growth scenarios are split into the two subfigures (a: uncapped exponential; b: turbidostat operating at steady-state capacity). 
For a more thorough interpretation of the figure’s design, see the caption for Figure 6 in the main manuscript. 



Simulation convergence 

As stated in Section 2.1, a simulation stops when all variables have reached convergence. This is defined 
as when a variable’s quantity does not deviate by more than 1% from its moving mean, where the 
moving mean is calculated from the last 10% of the simulation time. Below, we show how this is 
performed for the heterologous protein species (𝐻). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S4. Convergence of the heterologous protein variable, 𝐻, for simulations with a slow codon (codon efficiency = 0.5%) at 
position 5 Rf out of 30 Rf. Lines represent the quantity of 𝐻 during the course of a simulation with particular values for 
promoter strength and RBS strength, as defined at the start of Section 4.4. Horizontal dashed lined denote 1% deviations from 
the mean value of 𝐻 during the last 10% of simulation time. The vertical dashed line refers to the time at 90% of the total 
simulation time. 



 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S5. Convergence of the heterologous protein variable, 𝐻, for simulations with a slow codon (codon efficiency = 0.5%) at 
position 26 Rf out of 30 Rf. The definition of the dashed lines is identical to that of Figure S3. 

 

 

 

 

 

 



Ribosome density plots 

As explored in Section 3.2.1 and in Figure 5d, we can plot the proportion of ribosomes on mRNAH 
transcripts that are on each footprint position. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure S6. Ribosome density plots for simulations with a slow codon (codon efficiency = 0.5%) at position 5 Rf out of 30 Rf.  

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S7. Ribosome density plots for simulations with a slow codon (codon efficiency = 0.5%) at position 26 Rf out of 30 Rf.  

 

 

 

 

 

 

 



Proteome mass fractions 

Finally, we plot the steady-state mass fractions of each proteome class, and represent these as pie 
charts. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S8. Steady-state proteome mass fractions for each protein class for simulations with a slow codon (codon efficiency = 
0.5%) at position 5 Rf out of 30 Rf. Blue = 𝑅, green = 𝐸, purple = 𝑄, yellow = 𝐻. 
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Figure S9. Steady-state proteome mass fractions for each protein class for simulations with a slow codon (codon efficiency = 
0.5%) at position 26 Rf out of 30 Rf. Blue = 𝑅, green = 𝐸, purple = 𝑄, yellow = 𝐻. 
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