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Simple Summary: Circulating tumor DNA profiling by next-generation sequencing (NGS) is be-
coming essential for guiding targeted therapies. However, it remains challenging. Here, we show
that variant allele fraction and the median of absolute values of all pairwise differences impact the
agreement between digital PCR and NGS calls. Therefore, we propose a new parameter, named
R-score, which integrates both variables, and we evaluate its usefulness for optimizing NGS variant
calling.

Abstract: Next-generation sequencing (NGS) has enabled a deeper knowledge of the molecular
landscape in non-small cell lung cancer (NSCLC), identifying a growing number of targetable
molecular alterations in key genes. However, NGS profiling of liquid biopsies risk for false positive
and false negative calls and parameters assessing the quality of NGS calls remains lacking. In this
study, we have evaluated the positive percent agreement (PPA) between NGS and digital PCR calls
when assessing EGFR mutation status using 85 plasma samples from 82 EGFR-positive NSCLC
patients. According to our data, variant allele fraction (VAF) was significantly lower in discordant
calls and the median of the absolute values of all pairwise differences (MAPD) was significantly
higher in discordant calls (p < 0.001 in both cases). Based on these results, we propose a new
parameter that integrates both variables, named R-score. Next, we sought to evaluate the PPA for
EGFR mutation calls between two independent NGS platforms using a subset of 40 samples from the
same cohort. Remarkably, there was a significant linear correlation between the PPA and the R-score
(r = 0.97; p < 0.001). Specifically, the PPA of samples with an R-score ≤ −1.25 was 95.83%, whereas
PPA falls to 81.63% in samples with R-score ≤ 0.25. In conclusion, R-score significantly correlates
with PPA and can assist laboratory medicine specialists and data scientists to select reliable variants
detected by NGS.

Keywords: NGS; ctDNA; VAF; liquid biopsy; filtering; variant calling

1. Introduction

The analysis of circulating tumor DNA (ctDNA) has become an attractive approach
for non-invasive biomarker testing as well as for real-time monitoring of cancer patients;
its usefulness is especially remarkable in lung cancer patients [1–4]. These tumors are
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mostly diagnosed at advanced stages, in elderly patients with a median age at diagnosis
of approximately 65 years [5], and they are difficult to access owing to their anatomical
location, which makes it sometimes difficult to obtain sufficient material for molecular
analysis [6]. Moreover, in the last decades, there has been a major paradigm shift in the
management of metastatic non-small cell lung cancer (NSCLC), with the advent of targeted
therapies for patients harbouring druggable alterations such as EGFR or BRAF mutations,
as well as ALK, ROS, and RET rearrangements, and so on [7]. Furthermore, novel KRAS
inhibitors constitute a promising therapeutic approach for advanced NSCLC patients [8,9].
Specifically, 30% of NSCLC tumours harbour activating mutations in the EGFR gene, which
identify patient candidates to receive tyrosine kinase inhibitors (TKIs) [10]. For this subset
of patients, liquid biopsy has been proven to be extremely useful, saving time in the process
of diagnosis. In this way, guidelines recommend testing for the T790M EGFR mutation in
the blood after progression to an EGFR TKI as a first choice, and re-biopsies are suggested
in the case of a negative result in order to identify patients that can benefit from osimertinib
(a third-generation TKI) [11]. Moreover, ctDNA plasma levels have been shown to be of
prognostic significance for these patients, and monitoring EGFR mutation levels in the
plasmas has been proven useful for response to treatment monitoring [5,12,13].

Next-generation sequencing (NGS) enables simultaneous detection of multiple al-
terations in a single test. Incorporation of unique molecular identifiers (UMIs), random
nucleotide sequences assigned to each DNA fragment prior to PCR amplification dur-
ing library preparation, enables the detection, quantification, and sequencing of unique
DNA fragments with high-resolution, allowing the identification and removal of amplifica-
tion artifacts arising from library preparation and the reduction of the limit of detection
(LOD) [14,15]. Nonetheless, ctDNA is present at very low levels in the plasma and its
profiling is still challenging with working conditions sometimes close to the edge of this
technology. Therefore, there is a need to develop new parameters assessing the quality of
the reads in order to avoid false positive and false negative calls.

Here, we assess the impact of two parameters, namely, variant allele fraction (VAF) and
median of the absolute values of all pairwise differences (MAPD), separately and together
on variant calls when using the Oncomine Pan-Cancer Cell-Free Assay™ (ThermoFisher
Scientific®, Palo Alto, CA, USA) by evaluating the agreement between digital PCR (dPCR)
and NGS for the assessment of EGFR mutation status. Based on our data, we propose a new
parameter named R-score and, finally, we evaluate the agreement in NGS calls between
two independent NGS methods according to R-score.

2. Materials and Methods
2.1. Patients and Samples

A total of 85 samples from advanced EGFR-positive NSCLC patients were recruited
upon disease progression to a first-line with a TKI, between February 2016 and March
2019. The study was approved by the Hospital Puerta de Hierro Ethics Committee. All
patients provided the appropriate written informed consent to participate in the study
prior to enrolment. Briefly, eligible patients were both male and female, age >18 years, with
a pathologically confirmed diagnosis of stage IV NSCLC harbouring an EGFR mutation.
Blood samples were collected in 8.5 mL PPTTM tubes (Becton Dickinson, Franklin Lakes,
NJ, USA).

2.2. Laboratory Procedures

Two independent laboratories were involved in this study: laboratory 1 (L1) and
laboratory 2 (L2). Samples for which we did not have available at least 8 mL of plasma
(N = 45) were processed only by L1 exclusively, and they were used to test the agreement
between dPCR and NGS exclusively. For 40 plasma samples, we had available at least 8 mL
of plasma, and samples were divided into two aliquots, which were then distributed to L1
and L2. L1 carried out dPCR assays and NGS analysis using the Oncomine Pan-Cancer
Cell-Free Assay and an Ion S5 sequencer (ThermoFisher Scientific®, Palo Alto, CA, USA),
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whereas L2 carried out NGS with QIAact Lung DNA UMI Panel using the GeneRead
Platform (QIAgen, Valencia, CA, USA).

Isolation of plasma was achieved by two consecutive centrifugations at room temper-
ature, the first one at 1500× g for 10 min and the second at 5000× g for 20 min. cfDNA
was extracted with the QIAamp Circulating Nucleic Acid Kit (QIAgen, Valencia, CA, USA)
according to the manufacturer’s protocol (QIAamp Circulating Nucelic Acid Handbook
10/2013). DNA concentration was measured by Qubit 2.0 Fluorometer with Qubit 1X
dsDNA HS Assay Kit (ThermoFisher Scientific®, Palo Alto, CA, USA) and fragment length
and sample quality were evaluated using the Agilent High Sensitivity DNA Kit using
Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). Supplementary
Figure S1 shows the observed size of the cfDNA fragments, which was approximately
180 bp. cfDNA was stored at −80 ◦C until further analysis.

In order to detect somatic mutation in the EGFR gene, dPCRs were performed us-
ing predesigned TaqMan® dPCR assays in a QuantStudio® 3D Digital PCR (Applied
Biosystems®, South San Francisco, CA, USA). dPCR reaction was carried out in a final vol-
ume of 18 µL; this reaction included 8.55 µL of template cfDNA, 9 µL of 20X QuantStudio®

Master Mix, and 0.45 µL 40X TaqMan assay. Subsequently, 14.5 µL of final reaction volume
was loaded to QuantStudio® 3D digital PCR 20K chip. The thermal cycler conditions
were as follows: initial denaturalization at 96 ◦C for 10 min, 40 cycles at 56 ◦C for 2 min,
98 ◦C for 30 s, 72 ◦C for 10 min, and finally samples were maintained at 22 ◦C for at least
30 min. Chips were read using QuantStudio® 3D Digital PCR instrument. The results
were analysed with QuantStudio® 3D AnalysisSuite™ Cloud. Default call assignments
for each data cluster were manually adjusted when needed. A positive and a negative
control were included in every run. The LOD and limit of quantitation of the dPCR
TaqMan® assays were estimated based on the standard deviation of the response and the
slope according to the recommendations of The International Council for Harmonisation
of Technical Requirements for Pharmaceuticals for Human Use; ICH Q2 (R1) guidelines
(validation of analytical procedures: text and methodology), and they have been published
elsewhere [13]. The sensitivity and specificity of the assays, considering tissue genotyping
to be the gold standard, have also been reported [16].

The presence of EGFR mutations was evaluated in parallel by two independent
NGS platforms, Ion S5™ XL and GeneReader™, and using two different gene panels,
Oncomine™ Pan-Cancer Cell-Free Assay (ThermoFisher Scientific®, Palo Alto, CA, USA)
and the QIAact Lung DNA UMI Panel (QIAgen, Valencia, CA, USA), respectively. The
comparison was performed using 40 samples.

For NGS analysis using the Oncomine Pan-Cancer Cell-Free Assay (NGS-Oncomine),
library preparation was performed with a minimum input of 10 ng of cfDNA according
to manufacturer’s instructions. The final pool was loaded in an Ion 550™ Chip using Ion
Chef™ Instrument (ThermoFisher Scientific®, Palo Alto, CA, USA). Finally, loaded chips
were sequenced on an Ion GeneStudio™ S5 Sequencer (ThermoFisher Scientific®, Palo Alto,
CA, USA). Torrent Suite Software (v5.12) was used to perform raw sequencing data analysis.
The CoverageAnalysis (v. 5.12.0.0) plugin was used for sequencing coverage analysis
(ThermoFisher Scientific®, Palo Alto, CA, USA). As recommended by the manufacturer,
a median read coverage >25,000 and median molecular coverage >2500 were required
to detect a variant with a VAF of 0.1%. Raw reads were aligned to the human reference
genome hg19. Variant calling, annotation, and filtering were performed on the Ion Reporter
(v5.10) platform using the OncomineTagSeq Pan-Cancer Liquid Biopsy workflow (v2.1).
Briefly, sequencing reads were mapped to defined target regions (Oncomine Pan-Cancer
DNA Regions v1.0 (5.10)) and subjected to variant calling using Oncomine Pan-Cancer
Annotations v1r.0.

For NGS analysis using the QIAact Lung DNA UMI Panel (NGS-GeneReader), li-
braries were performed with an input of 16.75 µL and ~10–70 ng of purified cfDNA,
according to manufacturer’s instructions. Then, libraries were quantified using a QIAxcel
Advanced System and Qubit dsDNA HS Assay kit in order to pool in batches of six samples.
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GeneRead Clonal Amp Q Kit was used to clonal amplification of pooled libraries. After
bead enrichment, pooled libraries were sequenced using the GeneRead UMI Advanced Se-
quencing Q kit in a GeneReader instrument. Finally, FASTQ files alignment was performed
using hg19 as reference genome, and variant calling and report generation of sequencing
results were performed by QIAGEN Clinical Insight Analyze software.

2.3. Parameters

VAF was defined as the number of mutant molecules at a specific nucleotide location
relative to the sum of total DNA molecules (mutant + wild type). VAF was provided
for each detected mutation after dPCR and NGS analysis. In dPCR analysis, VAF was
calculated, following the next equation, by QuantStudio® 3D AnalysisSuite™ Cloud:

VAF = (FAMcopies/µL)/(FAMcopies/µL + VICcopies/µL) × 100 (1)

where FAM copies = number of reads of mutated sequences and VIC copies = number of
reads of wild-type sequences.

In the case of NGS-Oncomine, VAF was calculated, using the CoverageAnalysis (v.
5.12.0.0) plugin. Likewise, using NGS-GeneReader, VAF was calculated with QIAGEN
Clinical Insight Analyze software in the same way as NGS-Oncomine.

NGS-Oncomine platform also provides a quality sequencing parameter, MAPD, as
a pair is defined as adjacent amplicons in terms of genomic distances. Assuming that
adjacent amplicons in the genome most likely have the same underlying copy number in
a sample, the difference between the log2c(read count ratio) values against the reference
baseline for all adjacent amplicons contains information for the noise level of the data. The
MAPD is an estimation of coverage variability between adjacent amplicons. The default
threshold is 0.5 [17]. As a result, sample results with an MAPD above this value should be
reviewed with caution

MAPD = median(|xi+1−xi|) (2)

where xi = log2 ratio for marker i.

2.4. Statistical Analysis

The primary objective was to evaluate the impact of VAF and MAPD parameters,
separately and together, firstly on the positive percent agreement (PPA) between dPCR and
NGS (NGS-Oncomine) and secondly on the PPA between two independent NGS platforms
(NGS-Oncomine and NGS-GeneReader).

Each mutation was treated as a separate measurement for statistical analysis; therefore,
137 measurements were used in this study.

The correlation between VAFs measured by dPCR and NGS was assessed with simple
linear regression analysis, using the concordance correlation coefficient (p) and Spearman’s
coefficient (r). For comparisons between numerical variables, Mann–Whitney U test was
used. Comparisons between categorical variables were made using Fisher’s exact test or
chi-squared test, whichever was most appropriate.

To describe how often NGS and dPCR methods agreed on EGFR calls, as well as
concordance between the two different NGS platforms, we calculated the PPA.

The threshold of p < 0.05 was considered as statistically significant. Statistical software
used was Stata v16.0 (StataCorp 2019. Stata Statistical Software Release 16. College station,
TX: StataCorp LLC) and R version 3.6.3. (R core team 2020. The R Foundation for Statistical
Computing Platform, Vienna, Austria) URL https://www.R-project.org/ (last accessed on
26 July 2021).

3. Results
3.1. EGFR Mutation Detection by dPCR and NGS-Oncomine

EGFR mutation status was evaluated in 85 plasma samples from 82 EGFR-positive
NSCLC patients in parallel by dPCR and NGS-Oncomine. All samples used in this study

https://www.R-project.org/
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had detectable EGFR driver mutations by dPCR. The mutation detected by dPCR was
always concordant with the EGFR mutation detected on the pre-treatment tissue sample as
reported by pathologists. Among the total number of detected EGFR mutations (N = 137),
62% were activating mutations, among which the most common mutations were exon 19
deletions (55.3%) or L858R (36.5%). The rest of the EGFR driver mutations were L861Q
(3.5%), G719A (2.3%), S768I (1.2%), and exon 20 insertions (1.2%). Regarding T790M
resistance mutation, 61.2% of samples were identified as T790M positive by dPCR. Data for
T790M status in tissue samples were not available. Of note, 42 (30.6%) mutations detected
by dPCR were not found using NGS-Oncomine. When analysing mutations separately,
a lower PPA was measured in L858R mutation (67.74%; 95%CI 50.31–85.17) compared
with exon 19 deletion (76.60%; 95%CI 64.03–89.16). Less common EGFR mutations such as
L861Q, S768I, and G719A were detected by both methods. It should be noted that the exon
20 insertion (c.2310_2311insGGT; p.D770_N771insG) was not found by NGS-Oncomine.

Finally, regarding T790M resistance mutation, 52 (61.2%) samples were identified
as T790M positive by dPCR, whereas only 28 (33%) samples were T790M positive using
NGS-Oncomine (53.85% of agreement; 95% CI 39.83–67.86).

3.2. VAF and MAPD Involvement in the Agreement between dPCR and NGS-Oncomine Calls

Overall, there were 91 concordant calls by both technologies and 46 discordant calls
with a PPA of 66.42% (95% CI 58.42–74.43).

First, we evaluated the overall correlation between VAF values assessed by dPCR
and NGS-Oncomine when the mutation was detected by both methods. According to our
data, VAFs measured by NGS-Oncomine were significantly correlated to VAFs assessed by
dPCR (r = 0.89; p < 0.001) (Figure S2). Next, VAFs values and MAPD scores were compared
between discordant and concordant calls. Overall, dPCR VAFs values were significantly
lower in discordant calls compared with concordant calls (p < 0.001) (Figure 1A). Specifically,
1.1% and 10.9% of concordant calls have VAF ≤ 0.1% and ≤ 0.5%, respectively, compared
with 8.9% and 46.7% in discordant calls. Likewise, MAPD score was significantly higher in
discordant samples compared with concordant samples (p < 0.001) (Figure 1B).
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 Figure 1. Boxplot. (A) VAF values in concordant and discordant calls (dPCR-NGS-Oncomine) in
logarithmic scale. (B) MAPD values in concordant and discordant calls (dPCR-NGS-Oncomine) in
logarithmic scale.

Next, we sought to evaluate the combined effect of VAF and MAPD parameters. Dot
plots in Figure 2 show the concordance between dPCR and NGS-Oncomine on variant
calls according to VAF and MAPD parameters. Discordant calls are coloured in red and
concordant calls are coloured in blue. Figure 2A is divided into four quadrants using
as cut-offs the logarithmic median values of VAF and MAPD according to our data set.
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As shown, the highest PPA (96.9%; 95%CI: 83.8–99.9%) was observed in the lower-right
quadrant. Conversely, the PPA descended as much as 27.6% (95%CI: 12.7–47.2%) for calls
clustered in the upper-left quadrant, meaning that, the higher the VAF and the lower the
MAPD, the higher the PPA. Similar results were obtained when quadrants were divided
using thresholds according to technical specifications for each parameter (Figure 2B). As
illustrated, PPA between NGS and dPCR calls was 0% (95% CI: 0–60.2%) when using a cut
off of ≤−0.301 for VAF and >−0.301 for MAPD, whereas in the opposite conditions, the
PPA increased to 84.9% (95% CI: 74.5–90.9%).
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VAF and MAPD values, both in logarithmic scale, are represented in the x and y-axis, respectively. Concordant calls are
coloured in blue, while discordant calls are coloured in red. PPA for calls clustered in each quadrant is shown. (A) Dot plot
divided into four quadrants using as cut-off the logarithmic median values of VAF and MAPD. In this way, the median
VAF in our data set was 1.87, which is 0.272 on logarithmic scale, and the median MAPD was 0.28, which corresponds to
−0.553 on logarithmic scale. (B) Dot plot divided into four quadrants according to technical specifications. MAPD threshold
was selected following Ion Reporter recommendations [17]. According to the manufacturer, a value of MAPD above 0.5
is considered too high. Samples with high MAPD values have low coverage uniformity, which can result in missed or
erroneous variant calls. The VAF threshold was chosen based on results from previous studies [18]. Therefore, both axes
were divided using −0.301 value for VAF and MAPD (log(0.5)).

3.3. R-Score Is a Useful Parameter to Select Reliable Variant Calls

Based on previous observations, we proposed a new parameter, named R-score, which
is defined as follows:

R-score = log(MAPD/VAF) (3)

In order to evaluate the utility of R-score for assessing the quality of an EGFR variant
call, we evaluated the PPA between NGS-Oncomine and dPCR and NGS-Oncomine and
NGS-GeneReader according to R-score.

First, we assessed the correlation between VAF values from NGS-Oncomine and
NGS-GeneReader when the mutation was detected by both methods. According to our
data, VAFs values from NGS-Oncomine significantly correlated with VAFs from NGS-
GeneReader (r = 0.80; p < 0.001).

R-score was then calculated for each variant detected by NGS-Oncomine using the VAF
and MAPD provided by the corresponding analysis software. MAPD and R-score values
were significantly higher in discordant calls between dPCR and NGS-Oncomine compared
with concordant calls (p < 0.001) (Figure 3A and Table S1). Conversely, VAF values were



Biology 2021, 10, 954 7 of 10

significantly lower in discordant calls between dPCR and NGS-Oncomine (Table S1).
Subsequently, the PPA for EGFR variant calling between both NGS platforms was evaluated
using different arbitrary R-score cut-offs (−1.25, −1, −0.75, −0.5, −0.25, 0, and 0.25). As
shown in Figure 3C, there was a clear linear correlation between the PPA and the R-score
(r = 0.97; p < 0.001). Of note, the PPA of samples with an R-score ≤ −1.25 was 95.83%,
whereas PPA falls to 81.63% in samples with an R-score ≤ 0.25 (Figure 3B). A complete list
of all mutations detected according to the NGS platform is available in Table S2.
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analysis software. (B) Positive percent agreement (PPA) with corresponding 95% confidence interval (95%CI) between NGS-
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−1.25, −1, −0.75, −0.5, −0.25, 0, and 0.25, and PPA between both NGS platforms was estimated. (C) Correlation between
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4. Discussion

Biomarker testing in NSCLC has been demonstrated to improve survival
outcomes [19–21]. Of note, the number of biomarkers that need to be tested is constantly in-
creasing in NSCLC as new targeted therapies are becoming available [7]. Unlike PCR-based
platforms, which only allow a few mutations to be analyzed, NGS enables for interrogating
multiple genomic alterations simultaneously in a single test. Indeed, National Comprehen-
sive Cancer Network guidelines recommend that, when feasible, biomarker testing should
be performed via a broad, panel-based approach by NGS [2]. However, NGS profiling of
liquid biopsies, although feasible [22,23], remains challenging. On one hand, the sensitivity
of the assays remains a major limitation [24], and approaches aimed to increase sensitivity
might risk false positive calls. Moreover, it has been reported that tumor mutational burden
(TMB) analysis, which has been proposed as a predictive biomarker for the identification of
patients most likely to respond to immune checkpoint inhibitors, through liquid biopsies,
is feasible [25]. TMB is optimally assessed by whole-exome sequencing (WES) [26], but
targeted panels provide a time-effective and cost-effective alternative [27]. Nevertheless,
TMB analysis requires sequencing over 0.5 Mb [28,29]. In this scenario, it is of particular
interest to reduce as much as possible the risk of false-positive and false-negative calls.
Thus, new parameters evaluating the quality of NGS calls are needed. A recent compre-
hensive study, in which several methodologies for the analysis of circulating tumor DNA
were compared, revealed that the agreement between platforms significantly improved
when discarding samples with VAF ≤ 0.5% [16]. Likewise, a study comparing BEAM-
ing and droplet dPCR for ctDNA analysis using plasma samples from advanced breast
cancer patients enrolled in the PALOMA-3 trial showed that discordant calls occurred
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at VAFs < 1% [30]. In the view of our findings, we hypothesized that the combination of
VAF with MAPD could further improve the assessment of the reliability of a variant call.
According to our data, MAPD was significantly higher in discordant samples compared
with concordant calls (p < 0.001), while VAF values were significantly lower in discordant
calls compared with concordant samples (p < 0.001). Remarkably, as shown in Figure 2,
the highest PPA (96.9%; 95%CI: 83.8–99.9%) was observed in the lower-right quadrant.
Conversely, the PPA descended as much as 27.6% (95%CI: 12.7–47.2%) for calls clustered in
the upper-left quadrant.

Our results are limited to EGFR locus as the cohort included exclusively EGFR-positive
NSCLC patients. Nonetheless, mutations in other key genes were found. Specifically, in
our data set, there were two samples testing positive for KRAS mutations by both NGS
platforms (data not shown). Larger cohorts assessing the utility R-score for assessing the
reliability of variant calls in other loci different may be of particular interest.

Taken together, we propose the R-score defined as the log(MAPD/VAF). According to
our results, EGFR variants with positive R-score are particularly sensitive to genotyping
errors. As presented in Figure 3, a significant correlation was found between PPA and the
R-score cut-off values, indicating that R-sore can be useful to discriminate between true
and false calls in the EGFR locus.

5. Conclusions

VAF and MAPD have an impact on EGFR variant calling. Combining this information
in a score (R-score) can further improve the assessment of the reliability of a variant call.
Using a dataset of 85 EGFR-positive NSCLC patients, we find that EGFR variants with
positive R-score are particularly sensitive to erroneous variant calls in the EGFR gene.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/biology10100954/s1, Figure S1: Two samples electropherogram showing a 180 bp peak
corresponding to low fragment cfDNA and peaks corresponding to mono-, di-, and tri-nucleosomes.
(B) Gel-like image of cfDNA samples an-alysed with Bioanalyzer 2100; Figure S2: Correlation between
variant allele fraction assessed by dPCR and Oncomine-NGS. Linear regression line is shown in black
and the 95% confidence interval is shaded in grey. Pearson’s correlation coefficient and p-value are
shown in the graph; Table S1: Effect size and p-values for VAF, MAPD, and R-score parameters when
assessing significant differences between concordant and discordant calls; Table S2: Table with all
EGFR mutations detected by dPCR, NGS-Oncomine, and NGS-GeneReader with VAF values for each
assay and cfDNA concentration.
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