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Simple Summary: New risks to plant health are constantly emerging. Such is the case of the rice
root knot nematode Meloidogyne graminicola, adapted to flooded conditions and representing a risk to
all types of rice agro-systems. It has been recently detected in Italy and added to the European and
Mediterranean Plant Protection Organization (EPPO) Alert List. The presence of this nematode in
Europe poses a threat to rice production, as there is a high probability to spread, due to trade activities
and climate changes. In view of its importance, an extensive updated review was carried out.

Abstract: Rice (Oryza sativa L.) is one of the main cultivated crops worldwide and represents a staple
food for more than half of the world population. Root-knot nematodes (RKNs), Meloidogyne spp., and
particularly M. graminicola, are serious pests of rice, being, probably, the most economically important
plant-parasitic nematode in this crop. M. graminicola is an obligate sedentary endoparasite adapted
to flooded conditions. Until recently, M. graminicola was present mainly in irrigated rice fields in
Asia, parts of the Americas, and South Africa. However, in July 2016, it was found in northern Italy
in the Piedmont region and in May 2018 in the Lombardy region in the province of Pavia. Following
the first detection in the EPPO region, this pest was included in the EPPO Alert List as its wide host
range and ability to survive during long periods in environments with low oxygen content, represent
a threat for rice production in the European Union. Considering the impact of this nematode on
agriculture, a literature review focusing on M. graminicola distribution, biology, identification, and
management was conducted.

Keywords: damage; hosts; life cycle; plant-parasitic nematode; rice root-knot nematode

1. Introduction

Rice (Oryza sativa L.) is the third most important cereal crop in the world, just behind
wheat and maize, playing a strategic role in solving food security issues. New risks to
plant health are constantly emerging. Many nematodes in rice have been detected and
described, but only a few have harmful effects on rice production, such is the case of
the rice root-knot nematode (RKN) Meloidogyne graminicola Golden and Birchfield, 1965
(Mg) [1], recently detected in Italy and added to the European and Mediterranean Plant
Protection Organization (EPPO) Alert List [2]. Mg is considered a major threat to rice
production, particularly in Asia. Projections by the Intergovernmental Panel for Climate
Change indicate that there will be an increase in mean annual temperature and rainfall
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in South Asia, West Africa, and Europe. The elevated temperature and moisture may
result in an increasing rate of infection, development, and reproduction, causing shifts in
Mg abundance and geographic distribution. Such effects may have a detrimental impact
on rice in temperate regions. Furthermore, Mg is a clear example of how alterations in
rice production (shortage of water due to socioeconomic pressure and climate change)
contributed to changes in its status as the major plant-parasitic nematode (PPN) in rice.
An effort has been made to gather all the information regarding several aspects of Mg to
present it as a comprehensive review on rice RKN.

2. Meloidogyne graminicola—Origin and Distribution

The rice RKN, Mg, was first isolated in India by Israel et al. [3], but it was only
described in 1965 when it was found on the roots of barnyard grass (Echinochloa colonum)
in Baton Rouge, Louisiana, USA [4]. Since then, this nematode has been reported from the
USA on rice and weeds in Louisiana, on grass in Georgia and Mississippi, and on sandbur
(Cenchrus spp.) in Florida [5–8]. Its occurrence has been widely accounted in rice fields in
several Asian countries [9–11] and also in South Africa, Colombia, Brazil, and Italy [12–14].

Mg has been reported to parasitize primarily in irrigated and rainfed rice in South
and Southeast Asian countries, such as China, India, the Philippines, Burma (Myanmar),
Bangladesh, Pakistan, Laos, Thailand, Vietnam, and Nepal [15–17]. In China, it was first
found on Allium tistulosum in the Hainan province by Zhao et al. [18]. More than a decade
later, it was detected associated with rice and other hosts including weeds in the provinces
of Anhui, Fujian, Hainan, Hunan, Hubei, Zhejiang, Jiangxi, and Sichuan, causing a severe
incidence in the Hunan province [19–22].

In India, this nematode was first isolated in the county of Orissa from upland rice
soils by Israel et al. [3]. Since then, it has been found infecting rice in the provinces
of Andaman and Nicobar Islands, Assam, Andhra Pradesh, Bihar, Gujarat, Himachal
Pradesh, Jammu and Kashmi, Karnataka, Kerala, Madhya Pradesh, Manipur, Orissa, Tamil
Nadu, Tripura, and West Bengal [23,24]. In 1971, its presence was referred in Thailand,
causing typical root galls in entire rice-growing areas and in nursery seedbeds [25], and in
Bangladesh, where it has been often associated with deepwater and pre-monsoon upland
rice systems [26–28]. Minor infestations were reported in lowland rainfed rice areas [28].
Nonetheless, in the northwest of Bangladesh, where the dominant cropping system is
lowland rainfed alternated with wheat, severe infestations of Mg were observed [29].

Later, in the 1990s, Mg was reported infesting rice fields in Sri Lanka, where it is now
dispersed into major rice-growing areas of the country [30–32]. In a study performed in
Vietnam, in 1992, to determine the PPN in deepwater rice systems, Mg was identified for
the first time as one of the main causes of high yield losses of rice [33]. In Pakistan, during
a survey in rice fields of Sheikhupura (Punjab), Munir and Bridge [34] reported its presence
for the first time in the country and in 2007, Mg was detected in Nepal [35].

The occurrence of Mg in Africa was recorded on grass roots of Paspalum sp. in the
South East region of Antsirabe, and its identification was based on morphological traits [36].
Later, in 2014, during a survey carried out in 14 sites distributed along a NW/SE axis
between the towns of Marovovay and Manakara, Mg was found [37].

The first report of Mg in South America was by Monteiro et al. [38] in cyperaceas
collected in Presidente Prudente, São Paulo, Brazil. However, only in 1991, Sperandio
and Monteiro [39] first reported and described the species in the municipality of Palmares
do Sul (Rio Grande do Sul) and, in 1994, Sperandio and Amaral [40] found Mg in other
municipalities in the south of Rio Grande do Sul. The latest reports confirm the presence of
the rice RKN in the region [41,42].

In Ecuador, Mg was first identified in 1987, in the “Sausalito” village located in the
corner of Puerto Inca, province of Guayas, in a field planted with the cultivar Oryzica 1. In
surveys conducted in the Provinces of Manabí, Guayas, and Los Ríos, Mg was not found in
any other field planted with rice. Nevertheless, by 2000, it had already been disseminated
to all rice fields of the Province of Guayas and, in 2002, it was present in the Province of
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Los Ríos [43]. In a new survey conducted in 2015 in the provinces of Guayas and Los Ríos,
the rice RKN was found to be the most widespread, occurring in both rainfed lowland and
irrigated areas in high densities [13].

In Colombia, Goméz et al. [44] reported the presence of galls in the roots of rice plants
in the county of Tolima, Ibague. Thirteen years later, in a survey programme established by
the Colombian rice federation “FEDEARROZ”, Bastidas and Montealegre [45] described
the symptoms of a new rice disease denominated as “Entorchamiento” and concluded
that it was caused by nematodes of the Meloidogyne genus. The species Mg was later
identified, on the basis of morphological and biometrical characters, in other counties and
its presence confirmed in other rice production zones, corroborating its spread throughout
the country [46,47].

In Europe, Mg was detected, in July 2016, in several rice fields of northern Italy in the
Piedmont region, being the first report of its presence in the EPPO region [14]. Due to this
detection, the EPPO decided to include Mg in the Alert List A2 in 2017. Following the first
report, it was detected in the Lombardy region, province of Pavia [2].

This Meloidogyne species is present almost in every continent (Table 1. Figure 1). Such
occurrence and increase detection draws attention to its potential to affect temperate rice
agro-systems adversely.

Table 1. Distribution of Meloidogyne graminicola in Africa, America, Asia, and Europe.

Distribution Year References

Africa
Madagascar 2014 [37]
South Africa 1991 [36]

America (North-USA)
Florida 2003 [8]
Georgia 1984 [6]

Louisiana 1965 [4]
Mississippi 1990 [7]

America (South)
Brazil 1988, 1991, 1994, 2017, 2019 [38–42,48]

Colombia 1994, 2001, 2010 [45–47]
Ecuador 1987, 2002, 2016 [13,43]

Asia
Bangladesh 1971, 1978, 1979, 1983, 1990 [49–52]

China 2001, 2015, 2017, 2019, 2020, 2021 [18–22,53]
Indonesia 1993, 2015, 2018 [54–56]

India

1963, 1979, 1985, 1987, 1989, 1993,
1994

2000, 2004, 2005, 2006, 2007, 2010,
2011, 2017

[3,23,57–69]

Laos 1968 [70,71]
Malaysia 1994 [72]
Myanmar 1981, 2011 [73,74]

Nepal 2007, 2009 [16,35]
Pakistan 2003 [34]

Philippines 1994, 2001 [75,76]
Singapore 2001 [77]
Sri-Lanka 1997, 2001 [30,31]
Thailand 1971 [25]
Vietnam 1992, 1994 [33,78]

Europe
Italy 2016, 2018 [2,14]
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Figure 1. Geographical distribution of Meloidogyne graminicola.

3. Life Cycle and Symptoms

Mg is a facultative meiotic parthenogenetic species with the probability of occurring
amphimixis being very low [79,80]. The infective second-stage juvenile (J2) move through
the soil to find a suitable host and penetrate the root near the tip. They migrate inter-
cellularly towards the region of cell differentiation, close to the root meristem, inducing
a permanent feeding site in the stele [81,82]. Once established in the roots, J2 become
sedentary and flask-shaped and undergoes three molts to become third (J3) and fourth
stages (J4) and adult stage. Hyperplasy and hypertrophy of surrounding cells cause the
formation of macroscopically visible galls on the root system [1,83,84]. These galls with a
characteristic hook shape are located mostly at the root tips, affecting root development
and physiology, and a profuse proliferation of very slender and fluffy roots that lead to
substantial yield losses [12,85,86]. Females remain within the galled roots, and eggs are
deposited in a gelatinous matrix (egg mass) inside the root cortex. The first-stage juveniles
(J1) develop inside the egg and molt to become J2. After hatching, the J2 can be released
into the soil or remain within the gall to migrate and establish new feeding sites, inducing
the formation of new galls [27,87–89]. This unusual way of laying eggs is an advantage
as it allows Mg to complete its life cycle without leaving the host. Up to 50 egg-laying
females can be found in a single gall, indicating that infection can be extremely high [12].
As Mg is unable to penetrate rice roots in flooded soils, it has been reported that under
continuously flooded conditions, egg masses remain viable for as long as 14 months and J2
for at least five months, resuming their activity by attacking the root tips when fields are
drained [27,90].

The most common underground symptom is the characteristic hook shape of the
galls, as referred before. Additionally to the consumption of cytoplasmic content of
giant cells by the nematode, the galling produced by Mg provokes an alteration of the
root vascular system by disrupting water and nutrient transport from the roots to the
aboveground parts, resulting in loss of plant vigor, poor growth, and yield reduction [91].
To maintain a compatible host–parasite relationship, Mg meddles and manipulates the
defense mechanism of the plant, making it unable to prevent the nematode penetration
and development [80]. Infestations of Mg cause a reduction in phenols and changes in
plant immunity gene expression in the shoots and roots, causing greater susceptibility
to the rice blast pathogen, Pyricularia oryzae, and fungus from soil, such as Fusarium
moniliforme [3,92,93].

Aboveground symptoms due to Mg infection include patches in rice fields, stunted
appearance, chlorotic leaves, early flowering and maturation, and few chaffy grains on
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the panicles on heavily affected root systems [80,94,95]. These symptoms are similar to
that attributed to nutritional and water-associated disorders or to secondary diseases. The
degree of symptom manifestation differs with time of infection, age of the plants, and
climatic conditions [17]. A reduction in chlorophyll content and changes in photosynthetic
rates were also reported by Swain and Prasad [96,97]. Losses in flooded rice fields occur
when infected seedlings fail to develop, leaving patches of open water in the fields [27].
Overall, symptoms observed in infested upland and lowland rice fields from different
geographical locations reported by several researchers match among them. For instance,
in Italy, the fields showed patches, with plants exhibiting poor growth and stunting and
roots having galls of different shapes and sizes [14]. In India, surveys carried out in rice
fields, from different districts, a loss of vigor, reduced tillering, poor growth, and galls were
detected [24,98,99].

Khan et al. [100] observed that in some species of weeds, the egg masses were found
within the galls, while others had small galls with egg masses on the root surface or heavy
root galling and large egg masses. In Bangladesh, Mg was associated with yellowing and
stunting of deep-water rice and drowning of plants when they remain submerged and die
after rapid and deep flooding [50,101]. In China, the symptoms included chlorotic leaves
on heavily affected root systems, while root tips become swollen and hooked [102,103]. In
South America, newly emerged leaves appear distorted and crinkled along the margins
and roots show the characteristic hook-like galls [41,42,46,104].

Mg reproduces relatively fast on rice, depending on temperature and climatic con-
ditions, when compared with other RKN species. Several authors reported that the
Mg life cycle varies considerably, ranging from a very short life cycle of only 15 days
at 27–37 ◦C [105,106] to a rather long life cycle of up to 51 days in some regions of In-
dia [107,108]. On average, Mg can complete its life cycle within 19 to 27 days during the
early summer, but the period can extend by 5 to 12 days [27,105,108–110]. For instance,
isolates from Bangladesh had a very short life cycle on rice of <19 days at temperatures
of 22–29 ◦C [27] and an isolate from the USA completed its life cycle in 23–27 days at
26 ◦C [105]. Due to the short life cycle, the presence of even a small number of Mg J2 at
planting can lead to an increase of the population density during a single crop cycle [111].

4. Damage/Crop Losses in Rice

Mg is the most prevalent PPN on rice and considered a major threat to rice as yield
losses can reach up to 70% [12,94,112]. Mg densities of 120, 250, and 600 eggs/plant in
seedlings 10, 30, and 60 days after planting were reported by Rao et al. [110], causing 10%
losses. In a later study, Cuc and Prot [78] stated that a density of 100 J2/g root could be
considered as high infestation. Most recently, Win et al. [74] found that population densities
could exceed 1000 J2/g root with 12–16 galls/plant, contributing to a 65% yield reduction.
It has also been found that there is a decline in yield when more than 75% of the roots are
affected by nematodes [32]. Additionally, the water regime is an important environmental
factor that influences the development and population dynamics of Mg, and the damage
and yield loss that it can cause to rice. Soriano et al. [91] showed that rice cultivar tolerance
to Mg varies with the water regime and that yield losses may be prevented or minimized
when the rice crop is flooded early and maintain inundated until harvesting. For example,
losses in lowland rainfed rice in Bangladesh can range between 16 and 20%, while in India,
losses range between 16 and 32% under irrigated conditions and between 11 and 73%
under flooded conditions [102,113]. In China, the highest incidence of the disease is in the
Hunan provinces, exceeding 85% in infested paddy fields [19]. Furthermore, reports of
Mg infestations in rice–wheat agroecosystem of India, Nepal, and Pakistan suggest that
the damage caused by the rice RKN may be responsible for the poor productivity in this
cropping system [10,11,35,114].

Changes in agricultural policy and adoption of new rice production technologies in
South East Asian countries have influenced the status of the rice RKN problem [75]. For
instance, in the Philippines, Mg became a major constrain due to the intensification of rice
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cropping and shortage of water supply. This situation forced the farmers to grow direct
wet seeding, and intermittent irrigation, providing favorable conditions for Mg infestation
and increasing the economic losses [9,75]. In India, the system of rice cultivation shifted to
the so-called “system of rice intensification practice”, where a new ecological condition is
being developed through modification of rice cultivation practices that includes planting
younger and tender seedlings, the creation of greater aeration in soil, and regulation in
irrigation. All these conditions provide a suitable environment to increase the infestation
levels of the rice RKN [112,114,115].

Spatio-temporal studies have also demonstrated that densities of Mg J2 in the soil
fluctuate throughout the year [116]. Moreover, Mg’s ability to survive and reproduce in
off-seasons on weeds and forage crops contributes to increase the population levels in the
soil, and rice infection in the next season [35]. Besides alternative hosts and irrigation,
the soil type influenced the tolerance of plants to Mg and showed differences in the
multiplication of the nematode [91]. Studies have also revealed that infestation levels
depend on the rice cultivar [117,118], and the aggressiveness differs between populations,
suggesting intraspecific variability [35,119]. It was also found that Mg consists of more
than one race. In fact, populations from Florida have shown less aggressiveness and
difference on the host infection and reproduction patterns than the Asian populations, and
populations from Vietnam are not able to reproduce on tomato (Solanum lycopersicum), soy
(Glycyne max), or green beans (Phaseolus vulgaris), despite these species being reported as a
host of Mg [16,119,120].

5. Host Plants

In addition to the main host, rice, Mg has a wide range of alternative hosts, including
cereals and grasses, as well as dicotyledonous plants [15,120,121] (Table 2). Forty-six weeds
commonly growing in or around rice fields were assessed for host suitability and were
found to be moderate to good hosts of Mg [122]. Khan et al. [100] reported 17 weed species
and, in 2009, Rich et al. [15} reported 24, which supported the survival and multiplication
of Mg in the field, acting as a reservoir of nematodes when rice is not present during crop
rotations [15] (Table 3). Furthermore, it was believed that Mg caused yield losses only in
rice; however, a reduction of the root length of onion (Allium cepa) was observed, with
yield losses of 16–35% in the Philippines [76]. In Nepal, India, Pakistan, and Bangladesh, it
is considered a threat to wheat crops and to vegetables, such as aubergine (S. melongena),
tomato, and okra (Abelmoschus esculentus) [10,122–125].

Table 2. Cultivated hosts of Meloidogyne graminicola.

Family Species (Common Name) Reference Family Species (Common Name) Reference

Amaranthaceae
Beta vulgaris (Beetroot) [126] Malvaceae Abelmoschus esculentus (Okra) [124]

Spinacia oleracea (Spinach) [12]
Musaceae

Musa sp. (Banana) [127]

Amaryllidaceae

Allium cepa (Onion) [76] M. acuminate (Dwarf banana) [128]

A. tuberosum (Chive) [129]

Poaceae

Avena sativa (Oat) [5]
A. fitsulosum (welsh onion) [129] Hordeum vulgare (Barley) [23]

Apiaceae Coriandrum sativum (Coriander) [126] Oryza sativa (Rice) [5,6]

Asteraceae Lactuca sativa (Lettuce) [12] Saccharum officinarum
(Sugarcane) [12]

Brassicaceae
Brassica oleracea (Cabbage) [12] Sorghum bicolor (Sorghum) [12]

B. oleracea var. botrytis
(Cauliflower) [128] Triticum aestivum (Wheat) [10,123]

Cucurbitaceae Cucumis sativus (Cucumber) [12] Zea mays(Maize) [12]

Fabaceae

Glycine max (Soybean) [122]

Solanaceae

Capsicum frutescens (Chilli) [130]
Phaseolus vulgaris (Common bean) [5] C. annuum (Pepper) [124]

Vigna adiate (Green gram) [12] Solanum lycopersicum
(Tomato) [124]

V. unguiculata (Cowpea) [12] S. melongena (Aubergine) [124]
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Table 3. Weeds hosts of Meloidogyne graminicola.

Family Species (Common Name) Reference Family Species (Common Name) Reference

Alismataceae Alisma plantago (Common
water- plantain) [14] Oxalidaceae Oxalis corniculata [128]

Amaranthaceae

Alternanthera sessilis (Sessile joy
weed) [100] Papillionaceae Melilotus alba (Yellow sweet

clover) [23]

Amaranthus spinosus (Spiny
amaranth) [40] Plantaginaceae Scoparia dulcis (Licorice weed) [122]

A. viridis (Slender amaranth) [122]

Poaceae

Agropyron repens (Quack grass) [100]

Acanthaceae Rungia parviflora [128] Andropogon sp. (Beard grass) [130]

Apiaceae Centella asiatica (Spade leaf) [128] Alopecurus sp. (Foxtails) [120]

Apocynaceae Catharanthus roseus (Periwinkle) [12] A. carolinianus (Carolina foxtail) [5]

Asteraceae

Ageratum conyzoides (Billy-goat-
weed) [100] Brachiaria mutica (Buffalo grass) [100]

Blumea sp. [130] B. ramosa (Brown top millet) [100]
Eclipta alba (False Daisy) [130] Bothriochloa intermedia [100]

E. prostrata (Eclipta alba) [131] Cynodon dactylon (Bermuda
grass) [126]

Grangea ceruanoides [130] Cymbopogon citratus (Lemon
grass) [128]

G. madraspatensis [130] Dactyloctenium aegyptiu [100]
Sphaeranthus sp. [126] D. annulatum [23]

Sphaeranthus senegalensis [128] Digitaria filiformis (Crab grass) [126]
Vernonia cinerea [128] D. longifolia (False couch grass) [132]

Balsaminaceae Impatiens balsamina (Garden
balsam) [12] D. sanguinalis (Dewgrass) [100]

Brassicaceae
Brassica juncea (Brown mustard) [12] Echinochloa colona [130]

Brassica sp. [12] E. colonum [4]

Caryophyllaceae Spergula arvensis (Corn spurry) [23] E. crus-galli (Barnyard grass) [5]
Stellaria media (Chickweed) [122] E. indica (Goose grass) [130]

Commelinaceae

Cyanotis cucullata (Roth) [132] E. unioloides (Chinese love grass) [132]
Commelina benghalensis [132] Eleusine coracana (Finger millet) [126]

Murdannia keisak (Marsh dew
flower) [14] Eragrostis tenella [128]

Compositae Gnaphalium coarctatum [133] Imperata cylindrica (Spikegrass) [128]

Cyperaceae

Cyperus brevifolius (Kyllinga) [126] Ischaemum rugosum (Saramolla) [126]
C. compressus (Annual sedge) [105] Leersia hexandra [134]

C. difformis (Variable Flatsedge) [135] Oplismenus compositus [122]
C. imbricatus [126] Poa annua (Annual bluegrass) [40]

C. odoratus(Flats edge) [136] Panicum dichotomiflorum [40]
C. pilosus (Fuzzy flats edge) [128] P. miliaceum [122]

C. procerus [126] P. sumatrense [128]
C. pulcherrimus (Elegant s edge) [126] P. repens [40]
C. rotundus (Purple nutsedge) [100] Paspalum sanguinola [130]

Fimbristylis complanata [126] Paspalum scrobiculatum [126]
F. dichotoma [126] Pennisetum glaucum [128]

F. littoralis (Lesser fimbristylis) [126] P. pedicellatum [128]
F. miliacea [130] P. typhoides (Pearl millet) [122]

Fuirena ciliaris [126] Scirpus articulatus [126]
F. glomerata [126] Setaria italica (Foxtail millet) [12]

Schoenoplectus articulatus [128] Sporobolus diander [100]

Euphorbiaceae Chamaesyce hirta (Asthma herb) [136] Polemoniaceae Phlox drummondii (phlox) [12]

Phyllanthus urinaria [130]
Pontederiaceae

Heteranthera reniformis [14]

Fabaceae

Desmodium triflorum [122] Monochoria vaginalis [12]

Pisum sativum (Garden pea) [12] Portulacaceae Portulaca oleracea [122]

Trifolium repens (White clover) [12]

Solanaceae

Petunia sp. [12]
Trigonella polyceratia [23] Physalis minima [100]

Hydrocharitaceae Hydrilla sp. [132] Sida acuta (Broom grass) [132]

Juncaceae Juncus microcephalus [137] Solanum nigrum [128]

Lamiaceae Leucas lavandulifolia [128] S. sisymbriifolium [128]
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Table 3. Cont.

Family Species (Common Name) Reference Family Species (Common Name) Reference

Linderniaceae

Bonnaya brachiata [122,126] Sphenocleaceae Sphenoclea zeylanica [126]

Lindernia sp. [134] Ranunculaceae Ranunculus sp. (Buttercup) [105]

Vandellia sp. [130]
Rubiaceae

Borreira articularis [138]

Lythraceae Ammannia pentandra [126] Hedyotis diffusa [128]

Onagraceae Jussieua repens [130]
Ludwigia adscendens (Primrose) [134]

6. Identification Approaches: From Classical to Molecular Methods

The identification of Mg is complex and crucial to understand the host–parasite
relationships and to implement appropriate management strategies. Similar to the identifi-
cation of other Meloidogyne species, the classical methods are based on the symptoms (root
galls), morphology, biometrics, and differential host range tests [139–143]. The Meloidogyne
‘graminis-group’, the most defined group within the genus, with some species being mor-
phologically extremely similar, including M. graminicola, M. graminis, M. hainanensis, M. lini,
M. oryzae, M. salasi, and M. triticoryzae [48,144]. In studies performed by Pokharel et al. [16]
and Luo et al. [103], morphometrics among and within populations did not correlate with
the geographic origin. Pokharel et al. [35] mentioned that J2 from Bangladesh and the
United States were significantly longer and smaller than the Nepalese, and presented minor
variability among them. These morphometrical differences might be due to different geo-
graphical origin and intraspecific variability, or phenotypic plasticity commonly exhibited
by nematodes [16,69,145]. Morphological features, such as the female’s perineal patterns,
female excretory pore position in comparison to stylet length, the position of hemizonid
and tail shape in J2, as well as body, stylet, and tail measurements, are considered valuable
tools for Mg identification due to their low cost, but they need specialized technicians to
identify and measure these characters.

Other identification methods include enzymatic studies [146]. Isozyme phenotyping
has demonstrated that the major species of Meloidogyne (M. incognita, M. javanica, M. arenaria,
and M. hapla) can be differentiated by species-specific enzyme phenotypes, esterases (EST),
malate dehydrogenase (MDH), superoxide dismutase (SOD), and glutamate-oxaloacetate
transaminase (GOT), which can be revealed by polyacrylamide gel electrophoresis (PAGE)
and a specific staining technique [147]. Esterase activity has demonstrated to be highly
polymorphic and the most useful in the identification of the species. Furthermore, pro-
gresses in electrophoretic procedures have made possible and practical the detection of
different EST phenotypes of a single female [148]. The main drawback of this method
is that it requires adult females at a specific developmental stage for accurate diagnosis,
which hinders its use in routine examination of soil samples that often contain only J2
or males.

Esbenshade and Triantaphyllou [146] described, in 1985, in one population of M. oryzae,
an esterase phenotype designated as VS1 (very slow with one band), as having a large
drawn-out band of high enzymatic activity. The same phenotype with a slightly slower
band (Est VS1) was also detected in a population of Mg and two undescribed populations
isolated from rice, which were later described as M. salasi. Since the VS1 phenotype did
not characterize a single species, it remained the EST phenotype of these species. This fact
shows the inaccuracy of this technique when identifying closely related species with similar
phenotypes, such as M. salasi, M. graminicola, and M. graminis. Populations of M. oryzae
showed a pattern O1 in an integrative taxonomy study performed by Mattos et al. [149].
Other studies have shown a high variability on Mg populations [48,149,150], which poses
a risk of misidentification. Moreover, MDH enzymatic phenotype N1 is shared among
Meloidogyne species, i.e., M. chitwoodi and M. salasi [48,146].

In order to assist Mg identification, the application of molecular methods has been
used with partial success; in particular, sequences of nuclear ribosomal (rDNA) and mito-
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chondrial DNA (mtDNA) as molecular markers for sequence comparison [16,35,151,152].
In 2017, Salalia et al. [69] and Fanelli et al. [14] found high variability within isolates of Mg
from India and Italy, the USA, and China and, based on cytochrome oxidase subunit II
and 16S ribosomal RNA (COXII-16S rRNA) genetic analysis, considered the existence of
two groups of Mg: group A, which clusters the populations from the USA and Italy, and
group B with those from China. According to Pokharel et al. [35], the analysis of internal
transcribed spacer (ITS) sequences as genetic markers allowed the detection of two groups
in Mg Nepalese populations: group I, clustering with M. trifoliophila, and group II with
Mg from the USA. A new race of Mg from Florida, USA, which did not parasitize rice
was also identified by Pokharel et al. [16], based on the ITS region and morphological and
morphometric characters that are not species specific. Furthermore, Bellafiore et al. [119]
and Salalia et al. [69] detected great morphological variability among populations of Mg
from India and Vietnam, and using an ITS marker, concluded that all the isolates belonged
to Mg. Salalia et al. [69] even suggested the presence of cryptic species among Indian
populations. On the other hand, Htay et al. [152], when analyzing ITS-rDNA sequences,
from the same individual or from different nematodes from the same sample noted that
there was nucleotide variability. These differences could be attributed to variations among
copies of the ITS within an individual, or to errors arising through PCR amplification,
cloning, or sequencing [35].

Several molecular methods have been developed to detect Mg: (1) ITS-PCR-RFLP [14];
and (2) diagnostic SCAR marker [119,149,152] for rapid and reproducible identification of
Mg. However, Negretti et al. [48] and Soares et al. [150] showed inespecificity associated
with M. oryzae and M. ottersoni; (3) real-time PCR primers for the quantification of Mg
in soil [153,154], with the drawback that some primers amplifying DNA of the closest
non-target species (M. incognita and M. hapla) or not widely tested against other species;
and (4) mediated isothermal amplification [154].

7. Genomic and Transcriptomics

The mitochondrial genome of three Mg isolates from the Philippines, China, and
India has been sequenced [155–157]. Somvanshi et al. [157] included the first genome
draft from India, but, recently, Phan et al. [158] generated a highly contiguous reference
genome (283 scaffolds with an N50 length of 294 kb, totaling 41.5 Mb), with the highest
completeness scores currently published for Meloidogyne genomes. This genome assembly
constitutes a great improvement and represents a valuable molecular resource for future
phylogenomic studies and evolutionary history reconstruction. Somvanshi et al. [159]
improved the genome assembly of the Indian isolate IARI using long-read sequencing.
Comparison of both genomes displayed a high correlation between them, 35.9 Mb of
36.86 Mb assembly in the IARI isolate anchored onto the 41.5 Mb of the Mg VN18 assem-
bly [159]. However, there are important differences in the protein-coding genes between
both genome assemblies (14,602 (IARI) vs. 10,284 (VN18)), suggesting that the differ-
ent sequencing platforms used in both assemblies have captured unique features of the
Mg genome.

Genomic tools have been developed to help understand the molecular responses of
plants to nematode infection. Therefore, transcriptome analyses have become a useful tool
to profile the expression of several key genes throughout the infection process in the feeding
site, and systemically in the plant and nematode [82]. Previous research evidenced that
plant–nematode interactions affect the expression of genes associated with plant immune
response [80,89]. Differential expression of plant defense genes and other related changes in
host plants are mainly modulated by phytohormones, such as salicylic acid, jasmonic acid,
and ethylene. Research demonstrated that RKN represses the jasmonic acid pathway and a
few phenylpropanoid pathway genes during the establishment in the rice plants [160–162].

PPN can secrete effector T-proteins into the host tissue to facilitate their infection by
reprograming the host metabolism, or by preventing the plant defense responses. These
effectors also have a role on nematode migration inside the plant roots and are required
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to initiate and maintain the feeding sites [163,164]. Haegeman et al. [165] and Petitot
et al. [166] analyzed the transcriptome of Mg J2 to identify genes and its pattern of ex-
pression during infection of rice plants, leading to the identification of new candidate
effector genes: Mg40980 gene encoding a metallothionein; Mg12322 and Mg28330, encod-
ing Cys-rich proteins; and Mg11937 gene, encoding a venom allergen-like protein, among
others. Over the past years, novel Mg effectors playing a role in nematode parasitism were
functionally characterized, including pioneer genes [167,168], a C-type lectin [169], and
a protein disulfide isomerase [170]. In 2020, Petitot et al. [171] analyzed mRNA-seq data
derived from nematode-infected rice tissue to identify nematode transcripts specifically
expressed when the nematode resides inside the plant, through a comprehensive tran-
scriptome analyses of J2 and rice infected tissues until the development of young adult
females. Dash et al. [172] delivered a transcriptome comparison of nematode-resistant and
-susceptible rice plants in the same genetic background. Through RNA-seq, the molecular
mechanisms that confer resistance to Mg during early infection were identified. These
findings provide a global view of the genes expressed in the rice–Mg interaction, high-
lighting that Mg adapts its gene expression depending on the plant genotype. It may
also suggest that the initial resistance to nematode infection is mediated by nematode
recognition followed by the expression of plant defense genes and secondary metabolites.

Nevertheless, additional efforts are required to identify the underlying pathways and
mechanisms responsible for the resistance of rice to Mg, as well as important genes for
successful infection of the plant by Mg.

8. Management

The best strategy for management of Mg is to prevent the movement of plant and
soil that in some cases may adhere to machinery or tools. In a recent pest risk analysis
for Mg in Italy, it was concluded that the main ways of dispersion of this nematode are
likely to be through the movement of infected plants and infested soil, non-host plants that
may have grown near areas infested with Mg, and floating roots or plant material in the
water [121]. Migrant waterbirds, machinery, and travelers were considered a secondary
source of entrance. On the other hand, changes in the water regime (intermittent irrigation
or water shortages) in many parts of the world are also contributing to the spread and
infectivity of the nematode.

To minimize the losses resulting from Mg, management strategies are of extreme
importance, and studies have shown that a combination of methods is the best approach
to control this nematode in rice fields. The methods that have been applied to control Mg
include the use of synthetic nematicides, known as the most efficient strategy, cultural
methods, biological agents, and natural nematicides.

Some synthetic nematicides were, recently, strictly regulated or banned from the
market, due to the adverse impacts on the environment and human health, reducing the
alternatives for RKN control. Cultural methods (fallowing, soil solarization, crop diversifi-
cation and rotation, etc.) also appeared to have some efficacy. For instance, crop rotation
studies with non-host crops, like sweet potato (Ipomoea batatas), cowpea (Vigna unguiculata),
sesame (Sesamum indicum), castor (Ricinus communis), sunflower (Helianthus annuus), soy-
bean (Glycine max), turnip (Brassica rapa subsp. rapa), and cauliflower (Brassica oleracea
var. botrytis), showed to prevent Mg development [110,132,173]. Nonetheless, none of
these practices have gained importance among farmers, because of the high cost and
unsatisfactory results. Furthermore, as many weeds found in rice fields are hosts for Mg,
serving as nematode reservoirs for the next crops, a weed management programme must
be implemented to maintain a low nematode population in infested fields.

Alternative strategies, such as the “rice field flooding technique”, used by the Italian
National Plant Protection Organization (Ministerial Decree of 6 July 2017) to control Mg,
had some effect on the nematode population densities. Mg can still propagate under
flooding conditions, but the damage induced by this nematode is lower than in shallow
intermittently flooded fields [80,174]. Nevertheless, this method of control also has some
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limitations, as there are areas where this practice is not applicable due to the soil structure,
characterized by a low water retention capacity, or restriction in water use. Another
approach explored by Sacchi et al. [174] was the use of rice plants as trap crops. Preliminary
results indicate that trap cropping for the management of the rice RKN is efficient in most
rice-growing areas, especially those with water shortages. However, additional studies
are required to establish the most effective number of trap crop cycles that are necessary
to reduce Mg population density. Additionally, this technique, in our opinion, could be
highly influenced by climate in northern latitudes in order to sow rice in advance and the
cost of machinery and water.

The use of biological control agents, such as the fungi Paecilomyces lilacinus, Trichoderma
harzianum, T. viride, and other Trichoderma spp.; the bacteria Bacillus subtilis; and the rhi-
zobacterium Pseudomonas fluorescence, have shown promising results against Mg [175–178].
Studies by Amarasinghe and Hemachandra [178], in Sri Lanka, revealed that T. viride
reduces gall formation and production of egg masses, which represents a potential strategy
to be included in integrated pest management programs.

Similarly, the use of essential oils (EOs) has been explored to control RKN, as an
alternative to the synthetic nematicides. The nematicidal effects of EO from spices and
medicinal plants on RKN have been widely reported. The high effect of Cymbopogon
spp. EO (C. martini motia, C. flexuosusand, and C. winterianus) on J2 mortality has been
described [179–181]. Chavan et al. [182] stated that basil (Ocimum basilicum), peppermint
(Mentha×piperita), and lemongrass (Cymbopogon citratus) EOs have nematicidal proper-
ties against Mg. In order to confirm the efficacy of these EOs, the in vitro tests must be
complemented by in vivo soil-based experiments.

Host plant resistance is an environmentally friendly and cost-effective strategy to
mitigate damage caused by Mg. A promising alternative for the control of Mg is the
screening of germplasm for genotypes that are resistant/tolerant and the development of
resistant/tolerant cultivars [80,108,183]. Resistance sources against Mg have been identified
in African wild accessions of rice (O. glaberrima and O. longistaminata and O. rufipogon) [184],
and variability to a certain extent has been perceived [162]. Wild accessions that are partially
or fully resistant to Mg can therefore act as resistant donors for interspecific crosses with
Asian cultivars of rice [184,185]. Introgression of O. glaberrima into O. sativa has led,
for example, to the new rice for Africa, NERICA cultivars [186], but the introgression
has not been very successful [187]. Therefore, natural resistance in O. sativa cultivars is
potentially very important. In Asian rice, using the Bala and Azucena mapping population,
chromosomes 1, 2, 6, 7, 9, and 11 have been reported as having quantitative trait loci (QTL)
for partial resistance to Mg [111]. Mapping of Mg resistance on chromosome 10 in Asian
rice (cv. Abhishek), using bulk segregant analysis, was reported by Mhatre et al. [188].
A hypersensitivity-like reaction to Mg infection found in the Asian rice cv. Zhonghua
11 suggests that resistance to Mg was qualitative rather than quantitative, involving (a)
major gene(s) [189]. Galeng-Lawilao et al. [190] reported the main effect QTL for field
resistance in Asian rice on chromosomes 4, 7, and 9 plus two epistatic interactions (between
loci on chromosome 3 and 11, and between 4 and 8).

Few studies have used genome-wide association studies (GWASs) as a viable strategy
to identify novel QTLs for PPN resistance or susceptibility in different plants [191,192]. For
example, Dimkpa et al. [191] confirmed the robustness of GWAS to screen for rice–nematode
interactions and identified two resistant accessions (Khao Pahk Maw and LD 24). Studies
carried out, in India, by Hada et al. [193] allowed the identification of 40 highly resistant
accessions. Alternatively, the profiling of the defense response of 36 rice cultivars to Mg
infection revealed a variation in the expression of plant defense genes [194]. Among
all the selected plant defense genes, the expression of mitogen-activated protein kinases
(MAPK20), isochorismate synthase genes (ICS1), nonexpressor of pathogenicity expression
genes1 (NPR1), phytoalexin-deficient 4 (PAD4), allene oxidase synthase (AOS2), jasmonic
acid-inducible rice myb gene (JAMYB), and 1-aminocyclopropane-1-carboxylic acid oxidase
(ACO7) was upregulated, possibly providing resistance against Mg. This observation
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matches the insignificant expression in the susceptible genotypes. These outcomes are
significant and can be exploited for breeding purposes.

9. Conclusions

Climate changes and the trade activity are supporting the northerly movement of
pests, which means temperate agro-systems are likely to be affected. Higher temperatures
and moisture may result in an increasing rate of infection, development, and reproduction,
causing shifts in abundance and geographic distribution. Such is the case of Mg that has
recently been detected in Italy, posing a threat to EU rice production and other economically
important crops. Its adaptability to flooded conditions means that Mg can be found in
both upland (rainfed) and lowland (irrigated) rice, and in deep-water ecosystems. This
rice RKN is capable of completing several generations within a single growing rice season,
promoting the rapid build-up of damaging population densities and infection of more
than 150 plants. Besides, there are no effective and sustainable management strategies
available. Therefore, future research should be focused on the Mg distribution, biology,
and on new approaches for the identification and management of this RKN species, which
can be considered a threat to rice production.
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