
biology

Article

Convolutional Neural Networks and Geometric Moments to
Identify the Bilateral Symmetric Midplane in Facial Skeletons
from CT Scans

Rodrigo Dalvit Carvalho da Silva 1,2,* , Thomas Richard Jenkyn 1,2,3,4,5 and Victor Alexander Carranza 1,6

����������
�������

Citation: Dalvit Carvalho da Silva,

R.; Jenkyn, T.R.; Carranza, V.A.

Convolutional Neural Networks and

Geometric Moments to Identify the

Bilateral Symmetric Midplane in

Facial Skeletons from CT Scans.

Biology 2021, 10, 182. https://

doi.org/10.3390/biology10030182

Academic Editors: Alireza

Dolatshahi-Pirouz and

Magali Cucchiarini

Received: 3 January 2021

Accepted: 25 February 2021

Published: 2 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Craniofacial Injury and Concussion Research Laboratory, Western University, London, ON N6A 3K7, Canada;
tjenkyn@uwo.ca (T.R.J.); vcarranz@uwo.ca (V.A.C.)

2 School of Biomedical Engineering, Faculty of Engineering, Western University,
London, ON N6A 3K7, Canada

3 Department of Mechanical and Materials Engineering, Western University, London, ON N6A 3K7, Canada
4 School of Kinesiology, Faculty of Health Sciences, Western University, London, ON N6A 3K7, Canada
5 Wolf Orthopaedic Biomechanics Laboratory, Fowler Kennedy Sport Medicine Clinic,

London, ON N6A 3K7, Canada
6 School of Biomedical Engineering, Faculty of Engineering, Collaborative Specialization in Musculoskeletal

Health Research, and Bone and Joint Institute, Western University, London, ON N6A 3K7, Canada
* Correspondence: rdalvitc@uwo.ca

Simple Summary: The bilateral symmetry midplane of the facial skeleton plays a critical role in
reconstructive craniofacial surgery. By accurately locating the midplane, surgeons can use the
undeformed side of the face as a template for the malformed side. However, the location of the
midline is still a subjective procedure, despite its importance. This study aimed to present a 3D
technique for automatically calculating the craniofacial symmetry midline of the facial skeleton from
CT scans using deep learning techniques. A total of 195 skull images were evaluated and were found
to be reliable and provided good accuracy in symmetric images.

Abstract: In reconstructive craniofacial surgery, the bilateral symmetry of the midplane of the facial
skeleton plays an important role in surgical planning. Surgeons can take advantage of the intact
side of the face as a template for the malformed side by accurately locating the midplane to assist
in the preparation of the surgical procedure. However, despite its importance, the location of the
midline is still a subjective procedure. The aim of this study was to present a 3D technique using a
convolutional neural network and geometric moments to automatically calculate the craniofacial
midline symmetry of the facial skeleton from CT scans. To perform this task, a total of 195 skull
images were assessed to validate the proposed technique. In the symmetry planes, the technique was
found to be reliable and provided good accuracy. However, further investigations to improve the
results of asymmetric images may be carried out.

Keywords: craniofacial skeleton; cephalometric analysis; convolutional neural network; geomet-
ric moments

1. Introduction

Craniomaxillofacial reconstructive surgery is a complex and difficult multidisciplinary
technique due to the intricate anatomy of the skull. The aim of craniomaxillofacial recon-
struction surgery is to preserve the patient’s appearance, strengthen facial functions, and
regain the bilateral symmetry of the craniofacial skeleton. However, craniomaxillofacial
reconstructive surgery may lead to complications such as bone disorders, congenital defor-
mities, trauma, pathologies, genetic abnormalities, and cancers. A precise recognition of
the bilateral symmetry facial midplane is an imperative step for pre-surgical planning and
implant design techniques. For facial restoration, this midplane plays a major role when
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one side of the image is replicated and used as a guide to recreate the deformed or injured
side. The authors of [1] have established a widely agreed approach for defining the midline
of the craniofacial skeleton. To date, however, the most popular two-dimensional image
application method, or the midsagittal plane (MSP) for a three-dimensional object, is the
method introduced by [2].

There are a few approaches that aim to simplify the task of locating the midline plane
of the facial skeleton. One technique proposed by [3] describes a semiautomatic system that,
in conjunction with surface models reconstructed from computed tomography images (CT),
uses principal component analysis (PCA) and the iterative closest point (ICP) alignment
method. The first step is to determine the direction of the mirror plane correctly. This
was achieved by using PCA to match the replicated mesh and the initial mesh roughly.
Then, the ICP algorithm was described by a refined registration. The downside of this
approach was the dependency on the central point of the image for the approximation of
the symmetrical plane (obtained using the average of the vertices of the facial mesh). If
the central point was in the wrong position due to any external factors (such as imperfect
symmetry), this approach would lead to a symmetrical plane in the wrong direction and
position. In addition, this algorithm is not able to adjust and learn from previous images to
improve its performance, limiting its capabilities.

Alternatively, [4] determines the midline symmetry plane by using boney landmarks
to create a midline representing facial symmetry. For a stack of horizontal lines crossing
bilaterally through the facial skeleton containing boney landmarks, this approach essen-
tially measures the midline symmetry plane as a perpendicular midpoint. This approach
involves the manual collection of a variety of cephalometric boney landmarks in the dataset
by either specifically locating the landmarks on the plane (which requires great attention by
an expert user) or by using the midline as a reference and locating the landmarks at equal
distances from the midline. However, manual skeletal landmark selection is ineffective,
time-consuming, and reliant on an expert operator, resulting in errors in the measurement
of the symmetry plane [5] outlines an ICP-based process for automated symmetry plane
detection of 3D asymmetrically scanned human faces that uses particle swarm optimiza-
tion. This approach starts with a discrete 3D model. The symmetry plane is tested by a
tentative first attempt using a PCA algorithm. The model is then refined iteratively by
a Levenberg–Marquardt algorithm before its final prediction is obtained. This revised
version enhances the shortcomings of [6], but the current implementation also struggles to
integrate self-learning to maximize the result of the model and misses the ability to learn
from previous versions.

By minimizing the error-index of the symmetry plane, an automated method based
on an iterative process was recently proposed by [7]. To automatically correct the initial
symmetry plane, with a significant contribution to the use of the rotation matrix derived
from the registration process, this method performs analytical data analysis in 3D point
sets derived from CT images. First, the plane was divided into two groups by the initial
symmetry plane estimated by the PCA and the collection of skull points. Then, to match
two point-sets, the ICP registration method was used.

Most recently, ref. [8] introduced a novel automatic concept for determining the bilat-
eral symmetry midline of the facial skeleton based on invariant moments. This technique
creates a dataset from images aligned using cephalometric landmarks. The images are
then rotated from 14◦ to 15◦ with a resolution of 0.5◦. Then, after comparing different
feature extractors, pseudo-zernike moments were selected for having the best accuracy
using the k-nearest neighbors classifier. Finally, after detecting the rotation degree of the
image, the midpoint is calculated using geometric moments. However, this model still
has some limitations. For instance, this method uses 2D images with an image resolution
of 128 × 128 which becomes difficult in real applications on different image modalities
such as computed tomography and magnetic resonance imaging (MRI). Additionally, this
technique was not tested on non-symmetrical skull images which may affect its results.
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Thus, this study aims to present a 3D technique for automatically calculating the
craniofacial symmetry midplane from CT scans using convolutional neural network (CNN)
and geometric moments. Figure 1 shows the overview of the proposed method. First, using
3D U-net, the skull is removed from CT images to create a dataset. Then, based on the
cephalometric landmarks, the CT image is aligned in the coronal and transverse planes.
The image is then duplicated and two datasets of 441 images, per image, of 0.5◦ resolution
is created from −5◦ to 5◦. These sets of images are presented to a 3D rotate invariant CNN.
After CNN determines the rotation degree of these images in the coronal and transverse
planes, the skull midpoints are calculated using 3D geometric moments. Finally, by joining
the midpoints and grades described by the CNN, the midplanes can be constructed.
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Figure 1. Overview of the proposed method. CNN: convolutional neural network.

2. Materials and Methods
2.1. Data Processing

The dataset used to validate the proposed method was acquired from the qure.ai
CQ500 dataset [9]. From this dataset, 195 images with 512 × 512 and varied depths were
selected for training, validation, and test purposes. To create the ground truth labels,
CT images were imported into Mimics Medical Imaging Software (Materialise, Leuven,
Belgium). First, individual thresholding with manual corrections was applied for each of
the 3D volumetric CT images. Then, region growing was applied to create the 3D model
mesh. This process allowed for the creation of the standard tessellation language (STL) file
format which was converted into a matrix using voxelization method [10] so we can easily
process the file in MATLAB R2019b software (Mathworks, USA) (Figure 2).
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Figure 2. (a) Computed tomography (CT) scan, (b) thresholding applied, (c) region growing, and (d)
3D mesh model.

2.2. CNN Architecture and Implementation Details
2.2.1. CNN Framework for Biomedical Image Segmentation

The framework chosen in this paper for biomedical image segmentation was the U-
Net [11]. U-Net has been used in a number of biomedical image segmentation applications
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such as kidney segmentation [12], prostate and prostate zones segmentation [13], brain
tumor segmentation [14], brain segmentation [15], and so forth. Its name emerged from
the idea of a U-shape architecture where in the first step, downsampling path, the spatial
information is reduced while feature information is increased. In the next step, upsampling
path, contracting path concatenate high-resolution features with spatial information and
features. The result is a CNN that can work with few training samples and has the
possibility to apply large images. We adopted a 3D U-net modified version of the code [16]
initially implemented for brain tumor segmentation in MRI. The parameters adopted in
this work are presented in Table 1. These parameters were chosen to avoid computational
crash and error, while obtaining a good accuracy for the training set explored in this work.

Table 1. Skull CT segmentation implementation details.

Parameter Value

Optimizer Adam
Encoder Depth 4

Filter Size 5
Number of First Encoder Filter 6

Patch Per Image 4
Min Batch Size 128

Initial Learning Rate 10−2

2.2.2. CNN Framework for Rotation Invariant

By nature, CNNs are not rotation invariant, however, with a combination of convolu-
tional, max pooling, average pooling, relu, and fully connected layers, the CNN framework
can be transformed into rotation invariant. A number of papers have exploited the rotation
invariant [17–19], however, the adopted framework presented in Table 2 worked very well
in the dataset proposed using the Adam optimizer and a mini-batch size of 128.

Table 2. Rotation-invariant CNN framework adopted.

Layers Size Number Filter Stride

3D Conv 1 × 1 3 1
1 BN + Relu - - -

3D Max pooling 5 × 5 - 2

3D Conv 5 × 5 8 1
2 BN + Relu - - -

3D Max pooling 5 × 5 - 2

3D Conv 7 × 7 16 1
3 BN + Relu - - -

3D Max pooling 3 × 3 - 2

3D Conv 5 × 5 32 1
4 BN + Relu - - -

3D Max pooling 2 × 2 - 2

3D Conv 5 × 5 64 1
5 BN + Relu - - -

3D Average pooling 2 × 2 - 2

6 3D Conv 1 × 1 128 1
BN + Relu - - -

7 FC (25 neurons) - - -
Relu - - -

8 FC (50 neurons) - - -
Relu - - -

9
FC (labels neurons) - - -

Softmax - - -
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Both CNN models were performed on an Intel i7-9700 (3.00 GHz) computer with
64 gigabyte (GB) of ram memory, and two 8GB Video RAM graphics processing units
(GPUs) from NVIDIA (one RTX 2070 SUPER and one RTX 2080). The source code was
implemented and tested in MATLAB R2019b.

2.3. Model Performance Evaluation and Statistical Analysis

For biomedical segmentation evaluation, the Dice Similarity Coefficient (DSC) [20] is
the most popular metric to evaluate segmentation models. The DSC is a statistical method
to gauge the similarity between two sample sets. In biomedical segmentation, the DSC
measures the overlap between the ground truth and the predicted segmentation where
0 represents no overlap and 1 indicates complete overlap. Equation (1) defines the DSC,
where the area of overlap is divided by the total pixels combined (TP—true positives,
FP—false positives, and FN—false negatives).

DSC =
Area of Overlap

Total Pixels Combined
=

2TP
2TP + FP + FN

. (1)

Symmetric Volume Difference (SVD) [21,22] is the corresponding error metric.

SVD = 1 − DSC. (2)

Hausdorff Distance (HD) is a size-based method that describes the maximum distances
between the boundaries of the segmented regions and the ground truth. This metric can be
defined as:

HD = max(h(S, GT), h(GT, S)), (3)

where h(S, GT) = maxa∈Sminb∈GT||a− b|| [23].
To evaluate the performances of the CNN framework for rotation invariant, we im-

plemented the following measures: average difference (AD), image quality index (IQI),
Laplacian mean square error (LMSE), maximum difference (MD), mean-squared error
(MSE), normalized absolute error (NAE), normalized cross-correlation (NK), structural con-
tent (SC), and structural similarity index (SSIM). To evaluate the classification, a sensitivity
analysis was performed by using positive predictive value (PPV) and negative predictive
value (NPV) defined as:

Sensitivity =
TP

TP + FN
, (4)

Specificity =
TN

TN + FP
, (5)

PPV =
TP

TP + FP
, (6)

NPV =
TN

TN + FN
. (7)

2.4. 3D Geometric Moments

To avoid manual intervention, 3D geometric moments is applied for the automatic ex-
traction of the central point. Three-dimensional (p + q + r)th order moments of a digitally
sampled 3D image that has the gray function f(x, y, z) [24] is given as:

Mpqr = ∑
x

∑
y

∑
z

xpyqzrf(x, y, z), (8)

where p, q, r = 0, 1, 2, 3, . . .. As described in [25], the mass and area of the zeroth order
moment, M000, of a digital image is defined as:

M000 = ∑
x

∑
y

∑
z

f(x, y, z), (9)
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The center of mass of the image f(x, y, z) is represented by the two first moments:

M100 = ∑
x

∑
y

∑
z

xf(x, y, z), (10)

M010 = ∑
x

∑
y

∑
z

yf(x, y, z), (11)

M001 = ∑
x

∑
y

∑
z

zf(x, y, z), (12)

Thus, the centroid of an image can be calculated by:

X =
M100

M000
, Y =

M010

M000
, and Z =

M001

M000
. (13)

As best practice, the center of mass was chosen to represent the position of an image
in the field of view. The centroid of the image f(x, y, z), given by Equation (13), can be used
to describe the position of the image in space by using the point as a reference point

3. Results and Discussion
3.1. Skull Segmentation

The CT volumetric dataset and 3D mesh models were presented to the 3D U-Net
with the parameters described by Table 1. From the 195 images, 190 were used for train-
ing and 5 for validation/testing. Table 3 shows the DSCs, SVDs, and HDs, in terms of
mean ± standard deviation (SD) after being trained and tested 10 times, acquired from
the testing set. When using two GPUs as specified, the CNN took 57 min in 15 epochs
to converge.

Table 3. Skull and Background DSCs, SVDs, and HDs Values of 5 samples and their mean. DSC: Dice
Similarity Coefficient; SVD: Symmetric Volume Difference; HD: Hausdorff Distance.

DSC-Skull DSC-Background SVD-Skull HD-Skull

0.8993 ± 0.004 0.9927 ± 0.0003 0.1007 ± 0.004 67.7 ± 09.20
0.9093 ± 0.008 0.9948 ± 0.0005 0.0907 ± 0.008 27.81 ± 31.19
0.9150 ± 0.008 0.9941 ± 0.0006 0.0850 ± 0.008 38.78 ± 20.26
0.9349 ± 0.008 0.9958 ± 0.0005 0.0651 ± 0.008 49.92 ± 37.69
0.9362 ± 0.006 0.9953 ± 0.0004 0.8844 ± 0.006 39.99 ± 44.40

0.9189 ± 0.016 0.9945 ± 0.0012 0.0811 ± 0.016 44.73 ± 14.79

These results are close to those DSCs reported by [26] (mean DSC of 0.92), and slightly
lower than the results reported by [27] (mean DSC of 0.98). Regarding HD, its discrepant
values may be directly related to segmentation errors due to bright artifacts found in the
original image, which may be caused by dental filling and components of the CT scan
machine, as shown in Figure 3. However, any necessary modification was performed by
manual corrections after the segmentation. These predicted labels play an important role
in the coronal and transverse alignment.
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3.2. Transverse and Coronal Angles

To identify the transverse and coronal angles through the 3D CNN, 101 volumetric
images, from the 195 segmented images, were selected to create a database. The first step
was to identify cephalometric landmarks to help align the predicted labels Figure 3a. In
the coronal plane, we selected the 1-crista galli, 2-frontozygomatic suture, and 3-orbitale
while in the sagittal plane, we selected 4-lambda and 5-opistocranion. To identify these
points and make the necessary alignment, two grids were generated as a reference in
the transverse and coronal planes. A number of slices were verified, and the necessary
adjustments were performed (Figure 4b,c).

After the alignment, for each of the 101 images, a set of 441 images with inclination
angles from −5◦ to 5◦, with 0.5◦ increments, along the coronal and transverse planes was
created. In total, 44541 images were created and were divided into 21 labels. These labels
represented the 0.5◦ of variation in the coronal and transverse planes from −5◦ to 5◦, as
shown in Figure 5.

To reduce the computational and processing time, these images were reduced to
128 × 128 using the nearest neighbor interpolation method. Additionally, the volumetric
image was divided into four rectangular sub-cubes and only one-quarter of the whole
image space was used to predict the angles as shown in Figure 6. As this step aims to
identify the coronal and transverse angles in symmetrical skulls, these steps do not affect
the output image. Figure 7 summarizes this process.
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Figure 7. Flowchart representing the process of transversal and coronal alignment and database creation.

In this phase, we used the 3D rotation invariant CNN introduced in Section 2.2.2
and detailed in Table 2. To optimize the CNN convergence, computational time, and
accuracy, two identical datasets were created using the 44,541 images and represented by
21 labels. Thus, 21 labels represent the rotation in the transverse plane and 21 labels in the
coronal 201 plane. 90% of the dataset was used for training, and 10% for validation/testing.
Training and testing were performed 10 times. Table 4 shows the analytical performance
for these two. It took 30 min in five epochs for the transverse and 70 min in 12 epochs for
the coronal CNN to converge using two GPUs.
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Table 4. Statistical analysis of the coronal and transverse CNNs. PPV: positive predictive value; NPV:
negative predictive value; AD: average difference; IQI: image quality index; LMSE: Laplacian mean
square error; MD: maximum difference; MSE: mean-squared error; NAE: normalized absolute error;
NK: normalized cross-correlation; SC: structural content; SSIM: structural similarity index.

Index Ideal Value Coronal CNN Value Transverse CNN Value

Accuracy 1 0.9909 ± 0.0038 0.9947 ± 0.0034
Sensitivity 1 0.9811 ± 0.0170 0.9969 ± 0.0054
Specificity 1 0.9982 ± 0.0012 0.9994 ± 0.0005

PPV 1 0.9646 ± 0.0236 0.9892 ± 0.0106
NPV 1 0.991 ± 0.0009 0.9998 ± 0.0003
AD 0 0.0124 ± 0.0085 0.0004 ± 0.0095
IQI 1 0.9979 ± 0.0014 0.9994 ± 0.0004

LMSE 0 0.9926 ± 0.6717 0.9571 ± 0.0814
MD 0 11.667 ± 1.1547 9.3333 ± 5.6862
MSE 0 0.2710 ± 0.1883 0.0723 ± 0.0561
NAE 0 0.0030 ± 0.0018 0.0012 ± 0.0007
NK 1 0.9985 ± 0.0010 0.9998 ± 0.0004
SC 1 0.9982 ± 0.0008 1.0000 ± 0.0008

SSIM 1 0.9285 ± 0.0313 0.9523 ± 0.0290

As seen in Table 4, we can see that CNN performed well and can represent a rotation
invariant image descriptor for these scenarios. In fact, the accuracy reached ≈99% with
simple hyperparameter, which allows the construction of a simple 3D CNN. After the
discovery of the transverse and coronal deviation angles, the original image was then
rotated accordingly with these two found angles.

3.3. Geometric Moments Image Center

Finally, to calculate the center of the volumetric images, Equations (8) to (13) were
used. As there are no patterns to validate the accuracy of the center-point, visual evaluation
was used and compared with cephalometric landmarks. Figures 8 and 9 show the cross-
sectional plane created from the geometric moments. Figure 9a presents the perspective
view and Figure 9b shows the front view of one aligned sample with measured dimen-
sions of frontozygomatic suture and orbitale in the sagittal plane displayed in Materialise
MiniMagic software. We used [28] to convert from voxel into STL file format.
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3.4. Deformed Skull Test

To validate this method in deformed images, eight defected CT images were used
from two different datasets [29–32] found in the cancer imaging archive data collections
(TCIA) [33]. In the first step, STL files were generated by the 3D U-Net using the same
parameters as the Table 1. DSC, SVD, and HD results are presented in Table 5 and a sample
is shown in Figure 10.

Table 5. Skull and background DSCs, SVDs, and HDs values of the 8 defected skulls and their mean.

DSC-Skull DSC-Background SVD-Skull HD-Skull

0.8206 ± 0.080 0.9902 ± 0.0003 0.1794 ± 0.080 48.56 ± 03.69
0.8114 ± 0.005 0.9831 ± 0.0011 0.1886 ± 0.005 49.71 ± 06.21
0.8294 ± 0.012 0.9875 ± 0.0007 0.1706 ± 0.012 47.57 ± 08.61
0.8626 ± 0.016 0.9890 ± 0.0008 0.1374 ± 0.016 46.60 ± 07.76
0.8974 ± 0.011 0.9946 ± 0.0004 0.1026 ± 0.011 49.20 ± 10.86
0.8302 ± 0.011 0.9817 ± 0.0010 0.1698 ± 0.011 56.17 ± 07.55
0.7888 ± 0.010 0.9898 ± 0.0004 0.2112 ± 0.010 50.81 ± 09.57
0.8361 ± 0.014 0.9891 ± 0.0012 0.1639 ± 0.014 34.27 ± 14.06

0.8346 ± 0.033 0.9881 ± 0.0041 0.1654 ± 0.033 47.86 ± 06.21

The CQ500 database does not contain deformed images which may have caused the
discrepancy in the DSC results. Unfortunately, there are no databases of deformed skulls
for analysis. Furthermore, the 195 images used for training were not enough to improve
the 3D U-Net prediction. Reference [27] reported a 6% mean improvement compared
to [26] and associated the improvement with the size of the image dataset for training
purposes. Moreover, in the sampled image (Figure 10), part of the vertebral column and
small segmented parts that do not belong to the skull were segmented by mistake, which
generated the worst DSC value and high HD values. This is likely associated with the
C1 vertebrae labeled during the creation of the ground truth and small bright artifacts
on the outside of the skull in the CT scans. Even though it seems like an error, this can
be disregarded since Figure 10 shows that the ground truth and predicted label to be
very close.
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Finally, using the eight models predicted, transverse and coronal angles were calcu-
lated, and the center of the image was acquired using 3D geometric moments. Figure 11
shows the results for the deformed images.
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Figure 11. Results of the implemented method in deformed/asymmetric images.

The proposed method shows good results in obtaining the bilateral symmetric mid-
plane of regular/symmetric images. However, for deformed images, it failed to identify
the rotation for some images along with the image center. These errors are likely due to
some factors:

• the small database size, which is already reported in [27];
• to the best of our knowledge, there are no deformed CT database available which

restricts the possibility to train the system with deformed images;
• during the ground truth segmentation process and voxelization, a few regions of

interest (ROIs) may have not been incorporated in the 3D model. The first may be
caused by the manual selection of the ROI, performed by an expert, which leads to the
CNN generating the defects. Secondly, a quantity of information from the skull voxel
may be lost due to the smoothing of the edges and noise residuals removal performed
in the segmentation process;

• regarding the center of the 3D images, as reported by [8], when the image suffers from
a lack of symmetry, non-uniform brightness, deformation, interference, or incomplete-
ness, the calculation of the image center using geometric moments becomes complex
and finds some restrictions as this technique is a quantitative measure of an image’s
function or structure.
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It is possible to state that the proposed method obtained good results from symmetric
CT images datasets. However, for deformed images, an improvement is necessary to
achieve better results. For this purpose, an increase in the CT database size may be
performed as well as the inclusion of non-uniform and deformed CT images which may
also lead to an improvement in the detection of the transverse and coronal angles.

Finally, a modification in the method to identify the center of the image may be carried
out by creating a 3D U-net to segment the nasal bone instead of the presented geometric
moments technique. This method will allow for the definition of the center of the image
using the center of the nasal bone.

4. Conclusions

This study aimed to introduce a 3D automatic technique for determining the cran-
iofacial symmetry midplane from CT scans using the convolutional neural network and
gemetric moments. A total of 195 symmetric CT images were used to evaluate this method
using the CQ500 database while eight asymmetric CT images from TCIA database were
used to evaluate the performance in asymmetric images. For symmetric images, this
method obtained results close to 99%. However, for asymmetric images, the method needs
further development to improve its results. CNNs offer an effective alternative to the
pseudo-zernike moments method and conventional landmark-based symmetry scores that
depend on the general positions of cephalometric landmarks. CNNs are also an alternative
to PCA-ICP techniques, which depend on the manual selection of the central point which
cannot be improved. With the proposed technique, the central point could be found as the
centroid of an image, and then the symmetrical midplane can be constructed for symmetric
images. In this study, we have shown the proposed technique to be reliable and to provide
the midplane symmetry plane with great accuracy in symmetric images. This method can
be used as a tool to aid surgeons in reconstructive craniofacial surgeries.
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AD average difference
CNN convolutional neural network
CT computerized tomography
DSC dice similarity coefficient
FN false negative
FP false positive
GB gigabyte
GPUs graphics processing units
HD hausdorff distance
ICP iterative closest point
IQI image quality index
LMSE laplacian mean square error
MD maximum difference
MRI magnetic resonance imaging
MSE mean-square error
MSP midsagittal plane
NAE normalized absolute error
NK normalized cross-correlation
NPV negative predictive value
PCA principal component analysis
PPV positive predictive value
ROIs regions of interest
SC structural content
SD standard deviation
SSIM structural similarity index
STL standard tessellation language
SVD symmetric volume difference
TP true positive
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