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Simple Summary: Oxygen is one of the most abundant atoms in the body. Biomolecules, including
most proteins, contain a significant number of oxygen atoms, contributing to the maintenance of
the structural and functional integrity of biomolecules. Despite these favorable attributes, detailed
characterization of these atoms has been challenging, particularly because of the lack of an appropriate
analytical tool. Here, we review recent developments in biomolecular 17O nuclear magnetic resonance
spectroscopy, which can directly report the physicochemical properties of oxygen atoms in proteins
or related biomolecules. We summarize recent studies that successfully employed this technique
to elucidate various structural and functional features of proteins and protein complexes. Finally,
we discuss a few promising benefits of this methodology, which we believe ensure its further
development as a novel and powerful tool for investigating protein structure and folding.

Abstract: Oxygen is a key atom that maintains biomolecular structures, regulates various physiologi-
cal processes, and mediates various biomolecular interactions. Oxygen-17 (17O), therefore, has been
proposed as a useful probe that can provide detailed information about various physicochemical
features of proteins. This is attributed to the facts that (1) 17O is an active isotope for nuclear magnetic
resonance (NMR) spectroscopic approaches; (2) NMR spectroscopy is one of the most suitable tools
for characterizing the structural and dynamical features of biomolecules under native-like conditions;
and (3) oxygen atoms are frequently involved in essential hydrogen bonds for the structural and
functional integrity of proteins or related biomolecules. Although 17O NMR spectroscopic investi-
gations of biomolecules have been considerably hampered due to low natural abundance and the
quadruple characteristics of the 17O nucleus, recent theoretical and technical developments have
revolutionized this methodology to be optimally poised as a unique and widely applicable tool for
determining protein structure and dynamics. In this review, we recapitulate recent developments
in 17O NMR spectroscopy to characterize protein structure and folding. In addition, we discuss the
highly promising advantages of this methodology over other techniques and explain why further
technical and experimental advancements are highly desired.

Keywords: 17O NMR spectroscopy; protein structures; protein folding; oxygen-17

1. Introduction

Our bodies are mainly composed of several biomolecules, including proteins, nu-
cleic acids, polysaccharides, and lipids, along with a large amount of water [1]. These
biomolecules maintain complex yet delicately balanced interactions to modulate nearly
infinite physiological processes within the body. Among these biomolecules, proteins
are essential biological macromolecules that perform a wide range of functions such as
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structural support for the cells, defense against foreign molecules, cellular communication,
and catalytic activity facilitating chemical reactions [2]. These functionalities of proteins
are directly related to their three-dimensional structural features. The atomic-resolution
structure determination of proteins is one of the most intriguing and important issues
to be addressed by modern biology [3]. To date, numerous structural features of pro-
teins have been elucidated using diverse multidisciplinary techniques. Among these
techniques, X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, cryo-
electron microscopy, or their combinatory applications have contributed significantly to
our understanding of the structural features of various proteins and protein–biomolecule
complexes [4–8]. These techniques complement each other; however, NMR spectroscopy
has a unique position here owing to its evident advantages and limitations [7].

Traditionally, the NMR techniques for observing 1H, 13C, and 15N nuclei have been
utilized to obtain structural information about proteins with selective isotopic labeling of
respective nuclei. The sole or combined NMR methodologies for the 1H, 13C, and 15N nuclei
have made a tremendous impact on studying the structure and dynamics of proteins [9–11].
Although hydrogen, carbon, and nitrogen are undoubtedly the major constituents of the
body, the most frequently observed atoms are oxygen [12]. It is estimated that 65% of
the total human body mass comes from oxygen (carbon, hydrogen, oxygen, and nitrogen
atoms constitute more than 95% of the human body mass), indicating that understanding
the chemical and biological features of oxygen is critical for appreciating the structural and
biological features of biomolecules [12]. It is also noteworthy that one of the most important
non-covalent forces for maintaining the structural integrity of biomolecules and mediating
biomolecular interactions is the hydrogen bond, a significant portion of which involves
oxygen atoms. For example, structural units of nucleic acids, such as base pairing in
DNA and RNA helical structures and tetraloop structures of RNAs, involve many oxygen-
mediating hydrogen bonds [13,14]. Most secondary structures found in proteins, such as
α-helices and β-sheets, are formed from at least one oxygen-mediated hydrogen bond per
residue. Tertiary and quaternary structures of proteins are also frequently stabilized by
extensive hydrogen bond networks, the perturbation of which often results in misfolding
and loss of proteostasis mechanisms. The catalytic centers of many enzymes often comprise
oxygen-containing functional groups, which mediate protein –substrate interactions or
facilitate enzymatic reactions.

Therefore, NMR studies on oxygen nuclei have a great potential to provide additional
information about biomolecular structures and interactions. However, the NMR-active
stable isotope for oxygen is 17O, and it has a very low natural abundance of only 0.037%
(more predominant oxygen nuclei, 16O and 18O, are NMR-silent) [15–17]. In addition, 17O
has quadrupolar nuclei with a spin quantum number of I = 5/2, and quadrupolar nuclei
often show much larger quadrupolar interactions. This results in severe line broadening
in the 17O NMR signals, especially when measured in the solution state, owing to its free
molecular tumbling motions in the solution.

Several notable trials have been conducted to circumvent these technical challenges
of 17O NMR spectroscopy. First, it was shown that severe line broadening in 17O NMR
signals could be circumvented to some extent by employing magic angle spinning (MAS)
solid-state NMR technologies [16]. In addition, modern superconducting magnets and
probes with novel developments in 17O-labeling protocols have enabled us to record
high-quality 17O NMR spectra even from relatively large protein complexes in either a
liquid or a solid state [17]. Notably, over the decades following a few initial trials, the
use of solution-state 17O NMR methodology for investigating large biomolecules was
not preferred, based on the misconception that 17O signals might not exhibit sufficient
sensitivity and resolution for large macromolecules in a liquid state due to efficient 17O
quadrupole relaxation. However, recent reconsideration of the theoretical framework of
nuclear quadrupole relaxation, along with further advanced instrumental development
of NMR methodology, has enabled us to record the solution-state 17O NMR signals of
large biomolecules with sufficient sensitivity and resolution [18,19]. When a half-integer
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quadrupole nucleus is placed under an ultra-high magnetic field, it shows three distinct
exponential components: the central transition (CT), the first satellite transition (ST1), and
the second satellite transition (ST2). The relaxation theory predicts that the transverse
relaxation rate for ST1 and ST2 increases monotonically with ωoτc. However, although
the transverse relaxation rate for CT first increases with ωoτc, it reaches a maximum at
ωoτc = 1, and subsequently decreases again in the regime ofωoτc > > 1 [19]. This indicates
that the corresponding CT signal can be narrow under a slow-motion condition, and that it
may be feasible to obtain high-resolution signals for half-integer quadrupolar nuclei, such
as 17O, of a large slow-tumbling biomolecule, even in an aqueous solution [18,19].

Herein, we briefly summarize the developments and applications of biomolecular 17O
NMR spectroscopy with regards to characterization of protein structure and misfolding
and discuss its future directions. In particular, we focus on recent contributions of 17O
NMR spectroscopy to reveal structural features, related functions, and folding processes of
various proteins. As Gang Wu and his colleagues published a comprehensive review of
recent developments in 17O NMR spectroscopy on organic and inorganic molecules [17],
we concentrate on discussing recent trials to characterize the structure and misfolding of
proteins and protein complexes, as well as their physiological implications.

2. Solution- and Solid-State 17O NMR as a Probe for Studying Protein Structure

Novel advancements in 17O NMR techniques provide unprecedented means for prob-
ing site-specific inter- and intra-molecular interactions of macromolecules in both aqueous
and solid-state conditions. In this section, we briefly recapitulate notable developments and
applications of 17O NMR spectroscopy for studying biological macromolecules. Figure 1
summarizes the developments and timeline of 17O NMR studies; particular marks have
been added to studies regarding protein structure and folding.
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Figure 1. The timeline of notable developments in the field of 17O nuclear magnetic resonance (NMR) spectroscopy for
biomolecular investigations [15,17,20].

2.1. Early Solution-State 17O NMR-Based Studies for Biomolecules

In 1951, Alder and Yu [21] observed the first 17O NMR signal with several oxygen-
containing solvents such as water, methanol, ethanol, and acetic acid. Since then, the 17O
NMR technique has established its position over two decades as a superior and unique
tool for examining the physical and chemical properties of various organic and inorganic
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compounds [15,17,22]. In 1983, Wisner et al. [23] first applied solution-state 17O NMR to
study adenylate kinase enzyme–substrate complexes. However, their solution-state 17O
NMR spectra were severely broad because of the highly efficient quadrupolar relaxation
of the 17O nuclei. In the same year, Lee et al. [24] collected the solution-state 17O NMR
spectra of the C17O-bound forms of ferrous horseradish peroxidase isozymes A and C and
ferrous chloroperoxidase at a pH range of 4.5–9.5. From these analyses, all three proteins
were identified to exist in two distinctive forms, acidic and basic, which also experienced
reversible acid-base-induced transitions. This suggests that the same ionizable groups
might have been involved in the acid-base transition processes of all three proteins. In
addition, their results clearly demonstrated that the acidic form exhibited a 17O NMR
signal at approximately 7 ppm up-field compared to that of the basic form. Moreover, they
measured the exchange rate between the acidic and basic forms of the peroxidases and
found that the exchange took place on a millisecond time scale. Interestingly, they also
acknowledged that the exchange rate was faster for the CO-bound chloroperoxidase than
for the CO-bound horseradish peroxidase isozymes A and C, implying that the CO-bound
chloroperoxidase was more flexible and had a different proximal configuration around
the heme cofactor. In addition, Lee and coworkers [25] measured the solution-state 17O
NMR spectra of the C17O-bound forms of sperm whale myoglobin, human hemoglobin
(hHbC17O), and rabbit hemoglobin (rHbC17O) at 8.45 and 11.7 T, from which they were
able to obtain relatively narrow 17O NMR signals. Two well-resolved l7O NMR signals
were identified in these observations, each of which originated from the α and β chains of
rHbCO. However, hHbCO signals from the α and β chains were indistinguishable. This
implied that the chemical environments of the C17O ligands bound to the α and β chains
of hHbCO were similar, while the C17O ligands bound to the α and β chains of rHbCO
were different.

Subsequently, the binding of the dioxygen (O2) molecule, one of the most important
ligands for heme-containing proteins (hemoproteins), was investigated using solution-
state 17O NMR spectroscopy, in which more physiological behaviors of proteins could be
visualized. In 1989, Gerothanassis et al. [26] attempted to obtain 17O NMR signals from
several synthetic oxygenated hemoprotein models in aqueous conditions. Although they
could observe two well-resolved signals from the heme-bound 17O2 molecules, rigorous
measurements of chemical shifts and electric field gradient tensors were not amenable.
Furthermore, the exchange rate of O2 was higher in solution, hindering spectral measure-
ments over a wider range of temperatures than that in solid-state NMR approaches. On
the other hand, Oldfield and coworkers [27] obtained the first solid-state l7O NMR spectra
of oxygenated heme group model, oxy-myoglobin, and oxyhemoglobin. Their results
revealed that the 17O NMR spectra of all three model systems were highly similar at 77 K;
additionally, they could obtain information about the oxygen rotation and estimate the
Fe-O-O bond angle.

2.2. Solid-state 17O NMR-Based Approaches

Owing to its several advantages over the solution-state NMR approaches, significant
efforts have been devoted to the technical development of solid-state 17O NMR spec-
troscopy, which has enabled researchers to obtain high-quality solid-state l7O NMR spectra
from small organic molecules as well as large biological macromolecules [18,28–40]. A
number of initial trials of solid-state 17O NMR spectroscopy have focused on investigating
the structural features and dynamics of small molecules such as organic, inorganic, crys-
talline amino acids, short polypeptides, and nucleotide units [41–43]. After a decade-long
accumulation of initial studies along with technical developments, in 2004 Lemaître and
coworkers [44] measured solid-state 17O NMR spectra from a transmembrane peptide,
which was synthetically labeled with 17O and then introduced into hydrated vesicles. They
confirmed that this approach was effective enough to accurately follow subtle changes in
C=O bond length. Furthermore, Hu et al. [45] synthesized 17O-[D-Leu10]-labeled grami-
cidin A and incorporated it into a biomimetic lipid bilayer environment. They could align
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their proteins by reconstructing lipid bilayers between 30 µm thick glass slides, from which
static solid-state 17O NMR spectra were obtained to estimate the isotropic/anisotropic
chemical shift and quadrupolar coupling information from the carbonyl 17O of D-Leu10.
Subsequently, the static solid-state 17O NMR spectra of 17O-[D-Leu10]-gramicidin A were
compared in the presence and absence of K+ ions, and a 40-ppm signal shift was observed,
which was attributed to ~40% occupancy of K+ ions. This study demonstrated that 17O
NMR spectroscopy is a highly sensitive tool for monitoring the physical and chemical
states of membrane proteins. In 2008, Wong et al. [46] characterized the phospholemman
(PLM) transmembrane domain using solid-state 17O MAS NMR spectroscopy at a low (less
than 40%) 17O enrichment level and high lipid/peptide ratio (25:1). They analyzed the 17O
MAS NMR signal line-shape of a 17O-glycine residue in the transmembrane region and
found that the spectral features could not be explained by one symmetric oxygen atom in
the glycine residue. As PLM constitutes a tetrameric complex in a lipid bilayer membrane
condition, they concluded that the rotational symmetry of this complex may be C2 or C1 to
the lipid bilayer axis.

More recently, technical and methodological advancements in solid-state 17O NMR
techniques have facilitated their application in challenging yet biologically important
issues. In 2010, Zhu et al. [47] obtained high-quality solid-state 17O MAS NMR spectra
for two robust protein–ligand complexes, the egg-white avidin–[17O2]biotin complex (the
estimated size: 64 kDa) and the ovotransferrin–Al3+–[17O4]oxalate complex (OTf-Al3+-
[17O4]oxalate; 80 kDa), at 21 T with 90% 17O enrichment. This work opened up a new
possibility for using solid-state 17O NMR applications to study protein–ligand complexes
as large as 300 kDa per ligand. Tang et al. [48] explored the utility of solid-state 17O MAS
NMR for studying the highly unstable acyl-enzyme intermediates of chymotrypsin. This
work was the first attempt to trap the highly unstable acyl-enzyme intermediates of a serine
protease by quickly freeze-drying the solution and then performing solid-state 17O NMR
measurements. They analyzed the 17O NMR spectra for three acyl-enzyme intermediates,
all of which showed significant impacts on the 17O chemical shift due to the different
hydrogen bonding environments in the oxyanion hole in the acyl-enzyme intermediates.

So far, the application of 17O NMR to biological molecules that are solely enriched
with 17O has been discussed. However, similar to solid-state 13C and 15N NMR het-
eronuclear correlation spectroscopy, heteronuclear couplings between 17O and 15N can be
demonstrated by the use of 17O REDOR and 15N REAPDOR-type experiments. Gullion
et al. [49] used a 13C-17O REAPDOR technique to measure intermolecular distances in the
parallel and antiparallel β-sheet structures of tripeptides (L-alanyl-alanyl-alanine) that
were site-specifically labeled with 13C and 17O. Hung et al. [50] also employed 17O-15N
REDOR and 15N-17O REAPDOR techniques to experimentally determine the 13C-17O and
15N-17O dipolar couplings with glycine and uracil model molecules that were isotopi-
cally labeled with 13C, 15N, and 17O. More recently, Antzutkin et al. [51] applied 15N-17O
REAPDOR to study a hydrogen bonding network in amyloid-β (Aβ) fibrils. They synthe-
sized two selectively 15N- and 17O-labeled Aβ fragments, namely, Ac-Aβ(16–22)-NH2 (Ac-
KLV18(17O)FF20(15N)AE-NH2) and Aβ(11–25) (EVHHQKLV18(17O)FFA21(U–13C,15N)EDVG)
amyloids. They observed that two different fibril structures could be formed depending on
the pH of the incubated solution. At a low pH (pH 2.4), the antiparallel β-sheet structure
adopted the 17+k↔ 22–k register (k = −3, −2, . . . , 8), whereas at a high pH (pH 7.4) it
exhibited a register of 17+k↔ 20–k (k = −5, −4, . . . , 8). Further, they calculated the inter-
strand C = 17O ··· H-15N hydrogen bond distances and showed a typical O ··· N distance of
2.7 Å. Subsequently, Wei et al. [52] investigated the polymorphisms exhibited by Aβ pep-
tides, using the solid-state 15N REAPDOR and advanced mass spectrometry techniques.

2.3. Recent Developments in Solution-State 17O NMR Spectroscopy for Large Proteins

In 2009, Zhu et al. [18] applied a quadrupole central transition 17O (17O QCT) NMR
technique and obtained high-resolution 17O NMR spectra from 17O-labeled palmitic acid
bound to human serum albumin (66 kDa) and 17O-labeled oxalate bound to ovotransferrin
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(OTf-Al3+-[17O4]oxalate) in aqueous solution. Notably, the 17O QCT NMR signal was
significantly narrower at 21.14 T than that at 11.74 T. From this study, they found that
six molecules of palmitic acid could bind to HSA in a deprotonated state. They also
acknowledged that the two oxygen atoms (O1 and O2 in Figure 2) maintained asymmetric
interatomic distances with the aluminum center of OTf, as indicated by two separate
17O signals and their different parameters (Figure 2). This work well exemplified that
17O NMR is a versatile and powerful tool for characterizing various types of bonding
interactions involving oxygens. Moreover, this study opens up new possibilities for the
use of solution-state 17O QCT NMR applications to study reasonably large protein–ligand
complexes at sub-millimolar concentrations under a high magnetic field. Notably, in their
subsequent work on solid-state 17O MAS NMR study for the OTf-Al-[17O4]oxalate complex,
they confirmed that the solid-state NMR data were highly consistent with the solution-
state data, indicating that this protein–ligand complex sustained similar structural states
regardless of their phase [47]. Subsequently, the authors extended a comprehensive 17O
QCT NMR study to three ligand–protein complexes whose molecular sizes were even larger
than those used in their previous trials, such as avidin-[17O2] biotin, OTf-Al-[17O4]oxalate,
and pyruvate kinase-Mg-ATP-[17O4]oxalate (a tetrameric complex, total ~240 kDa) [19].
In addition, they determined the value of τc for the ligand–protein complexes at 298 K,
and the observed value τc was in qualitative agreement with the theoretical prediction.
Furthermore, they suggested that 17O QCT NMR can be applied to even larger proteins or
protein complexes up to 400–500 kDa [19].
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In 2013, Hanashima et al. [53] applied the solution-state 17O-NMR approach to detect
the oxidized side chain of cysteine residue from a human Cu, Zn-superoxide dismutase.
They specifically oxidized a cysteine thiol side chain by applying 17O2-gas to the protein
sample and found from the resultant 17O NMR spectra that cysteine oxidation caused
structural and dynamical changes in this protein. This method of 17O enrichment can
be applied to various proteins whose Cys or Met residues are prone to oxidative stress.
Recently, Young et al. [36] applied solution-state 17O QCT NMR to study the enzymatic
intermediates of tryptophan synthase (143 kDa), a pyridoxal 5′-phosphate-dependent
enzyme that mediates the biosynthesis mechanism of L-tryptophan. They measured 17O
QCT spectra of the E(Q3)indoline intermediate, which were formed by supplying [17O]-
L-Ser as a substrate, at multiple magnetic strengths of 11.7, 14.1, and 16.4 T (Figure 3).
They observed a field-dependent shift of 17O signals from the bound substrate and also
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identified two signals for the distinctive oxygen atoms from the carboxylate group of this
intermediate (Figure 3a). Intriguingly, they acknowledged that the extracted isotropic
chemical shifts of these signals were out of the expected range; they were up-field shifted,
indicating more electronic shielding effects around the carboxylate group of E(Q3)indoline.
Prior to this work, it had been proposed that the acidic form of E(Q3)indoline among three
different chemical states is a catalytically important state (Figure 3b); however, this could
not sufficiently explain the abnormal 17O chemical shift values in this study. Subsequent
quantum chemical calculations, along with the experimental chemical shift data of several
intermediates, concluded that the percentage of the acid form was noticeably lower than
that obtained using the previously proposed method, whereas the experimental observation
was more consistent with the predominance of the phenolic tautomer.
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Another recent and important advancement in the field of biological 17O NMR spec-
troscopy is the development of an efficient 17O isotope labeling protocol for biomolecules,
which remains a challenge to overcome. Notably, Lin et al. [20] recently reported an effec-
tive procedure incorporating 17O in an amino-acid-specific way to yeast ubiquitin, which
was produced recombinantly in E. coli (Figure 4). By cultivating auxotrophic strains of
E. coli in a minimal medium supplemented with 17O-incorporated amino acids [9,55], they
successfully demonstrated 17O labeling at the Gly, Tyr, and Phe residues of yeast ubiquitin.
Notably, they were able to observe sharp 17O signals from the carboxylate group of the
C-terminal G76 (Figure 4, top). This implied that the C-terminal carboxylate group was
in fast local motion, thus placing it in the ωoτc < < 1 regime [19]. On the other hand,
the signals from backbone oxygens of glycine residues were only observable in the 20%
glycerol, where the backbone oxygen atoms could cross over the regime of ωoτc > > 1.
Furthermore, this approach was effective for observing the 17O signal from a side chain of
Tyr (Figure 4), thereby opening a new gateway for measuring the pKa of the hydroxyl group
of Tyr with a novel probe and for studying its structural and functional characteristics in
both aqueous and solid states.
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3. Conclusions and Future Directions

Despite receiving less attention than other NMR spectroscopic applications, 17O
NMR spectroscopy has evident advantages and great potential to cover a wide range
of applications, which may contribute to resolving various challenges in biomolecular
studies. For example, hydrogen bonding is one of the most important non-covalent
interatomic interactions modulating biomolecular structures and functions, yet its direct
characterization is still a challenging task, particularly because of the shortage of general
and efficient experimental techniques [56]. Along with X-ray and neutron crystallographic
approaches [57,58], NMR spectroscopy has been a major tool for investigating the atomistic
details of various hydrogen bonds; however, it has often been inferred from indirect
observations, such as chemical shift perturbations [59]. As many biomolecular hydrogen
bonds are mediated by oxygen atoms, 17O NMR spectroscopic approaches may provide
direct and sensitive information for the accurate characterization of hydrogen bonds.
In particular, as discussed above, direct measurement of the pKa of oxygen-containing
groups in biomolecules can be a highly promising approach not only for hydrogen bond
characterization but also for speculating its physiological features.

On the other hand, it should be noted that most biomolecules are surrounded by an ex-
cess amount of water molecules, and many physiological processes are dependent on their
active participation. In particular, proteins often harbor several internal water molecules
within their hydrophobic core, for versatile purposes such as stability modulation, func-
tional regulation, catalysis, transport, and interaction with other biomolecules [60–63]. The
detailed appreciation of this order of water is sometimes critical for modulating biomolecu-
lar interactions or designing novel drug molecules targeting water-filled sites [64–66]. One
representative example includes the X-ray crystallographic study of the human A2A adeno-
sine receptor bound to its endogenous agonist adenosine, where several ordered water
molecules were found with adenosine around the ligand-binding cavity [67]. In addition,
hemoglobin, the hetero-tetrameric oxygen transporter, is a well-known example of water
molecules in its subunit interfaces [62,68]. Ligand binding to this protein strongly affects
the ordered water cluster at the subunit interface, which may contribute to allosteric confor-
mational changes in hemoglobin [68,69]. 17O NMR spectroscopy is a promising approach
to reveal the interaction network and dynamic features of these water molecules. Also,
understanding the physiological events associated with these structured water molecules
may contribute to developing novel modulation strategies for therapeutic purposes.

One notable advancement in the field of 17O NMR spectroscopy is, as discussed above,
the development of novel 17O incorporation protocols for proteins [20]. Extension of the
current amino-acid-specific labeling protocol to additional versatile procedures enabling
more diverse labeling schemes will be an important step to widen the application range
of 17O NMR techniques. In particular, heteronuclear correlation spectroscopy of 17O with
other nuclei, such as 1H, 2H, 13C, and 15N, may become an invaluable tool for appreciating
biomolecular structures and functions that could not be elucidated before. Likewise, the
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development of novel 17O labeling procedures may also have a profound impact on other
spectroscopic studies, such as electron paramagnetic resonance and infrared spectroscopy,
concomitantly advancing our fundamental understanding of biomolecules. We believe
that, together with ongoing theoretical and technical progress, 17O NMR spectroscopy may
soon become a unique and indispensable tool for characterizing biomolecules.
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