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Simple Summary: The neuronal circuits are essential for memory, recognition, and behavior but
are too complex to be examined with ordinary, global labeling methods. Moreover, the role of each
protein/gene in forming circuits is one of the biggest open questions in modern biology. Single-cell
labeling methods are potent approaches for examining neuronal structure and circuits. Single-cell
transgenic methods also enable single-cell gene knockout and modulation of neuronal activity, which
can reveal their functional roles. This review summarizes the details of single neuronal labeling
methods of non-transgenic and transgenic strategies and their contributions to our understanding of
neuronal structures and functions.

Abstract: The brain network consists of ten billion neurons and is the most complex structure in the
universe. Understanding the structure of complex brain networks and neuronal functions is one of
the main goals of modern neuroscience. Since the seminal invention of Golgi staining, single-cell
labeling methods have been among the most potent approaches for dissecting neuronal structures
and neural circuits. Furthermore, the development of sparse single-cell transgenic methods has
enabled single-cell gene knockout studies to examine the local functions of various genes in neural
circuits and synapses. Here, we review non-transgenic single-cell labeling methods and recent
advances in transgenic strategies for sparse single neuronal labeling. These methods and strategies
will fundamentally contribute to the understanding of brain structure and function.

Keywords: single-cell labeling methods; neuron; synapse; morphology; neural circuit; cre recombinase;
single-cell gene knockout; fluorescent protein; neuronal activity; single-cell silencing and activation;
single-cell activity manipulating analysis

1. Introduction

The rodent brain consists of one hundred million neurons that form complex neural
networks via synaptic connections. The brain performs essential functions pertaining to
memory, recognition, behavior, and survival. Understanding the structure and function of
the rodent brain is one of the main goals of neuroscience research.

In 1873, Camillo Golgi developed the non-transgenic single cell-labeling Golgi staining
method [1], which enabled the sparse and random visualization of the morphology of
single neurons. For more than 100 years, Golgi staining has been a standard method for
dissecting the morphological structures of neurons and neuronal networks [1–3]. Although
Golgi staining is a non-transgenic method, it is one of the seminal methods in the history
of life science. However, it does have several experimental limitations, such as a lack of
cell-specificity and multicolor staining, and the impossibility of live imaging or examining
relationships with functionalities [3]. From the 1950s to the 1970s, revolutionary progress
was achieved in molecular biology and molecular genetics [4]. Then, the method for
generating transgenic mice [5] and the first gene knockout mouse were developed [6]. Fur-
thermore, the discovery of green fluorescent proteins (GFPs), multiple fluorescent proteins,
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and their transgenic applications in rodents have induced revolutionary progress in biology
with fluorescent proteins [7,8]. Since these landmark studies, various transgenic methods
have been developed in the field of life sciences and neuroscience using rodent model
animals [9,10]. Of these, single-cell labeling methods are among the most powerful tools
for dissecting complex neuronal synaptic networks and their local functions. Furthermore,
single-cell gene knockout strategies were developed to dissect local functions of neural
circuits [11,12]. In addition, sparse single-cell transgenic methods enable the manipulation
of local neuronal activity to understand activity-dependent mechanisms of neuronal circuit
formation [13]. In this manuscript, we review the current progress in the field of neuro-
science, with a focus on the strategies and methods in single-cell labeling, single-cell gene
knockout, and single-cell activity manipulation analyses.

2. Non-Transgenic Methods for Sparse Single-Cell Labeling

For Golgi staining, brain slices are fixed with chromic and osmic acids. The brain
slices are then incubated with solutions containing silver nitrate (Figure 1A) [3]. After
these treatments, single neurons are sparsely visualized in the brain slices (Figure 1A,C) [3].
An example of the successful application of Golgi staining is the discovery of synapses
by Ramon y Cajal [2]. This has been one of the most significant discoveries in neuro-
science [2]. Nevertheless, Golgi staining has several experimental limitations, such as the
lack of cell-specificity and multicolor staining, incompatibility for combinational use with
immunohistochemistry, and the impossibility of live imaging or examining relationships
with functionalities [3].
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Figure 1. Sparse single-cell labeling using non-transgenic methods. (A) Illustration showing sparse
single-cell labeling using the Golgi staining method. (B) Illustration showing the sparse single-cell
labeling using microinjection of tracer molecules and DiOlistic labeling using gene gun. (C) Illustrations
showing the characteristics of non-transgenic single-cell labeling methods. The right panel shows
illustrations of mono-color and multicolor single-cell labeling.

Various single-cell labeling methods have been developed to overcome these limita-
tions (Figures 1C and 2). These single-cell labeling methods comprise both non-transgenic
(Figure 1C) and transgenic methods (Figure 2). Non-transgenic methods of single-cell
labeling are mainly based on the microinjection of traceable tag molecules inside cells
using a sharp glass micropipette electrode, application of physical pressure, or diffusion.
Horseradish peroxidase (HRP), biocytin, neurobiotin, biotinylated dextran amine, and vari-
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ous fluorescent dyes (including lucifer yellow) are microinjected for visualizing single-cell
morphologies (Figure 1B,C) [12,14–25]. These non-transgenic single-cell labeling methods
have been applied to dissociated cultured neurons, acute brain slices, cultured brain slices,
and neurons in vivo [12,14–25]. The signals of traceable tag molecules are specifically ampli-
fied using enzymatic reactions or secondary antibodies with traceable tags or biotin–avidin
complexes (Figure 1B,C). Unlike Golgi staining, microinjections of traceable tags can be
used for immunohistochemical staining. Thus, they enable the examination of endogenous
protein distributions in neuronal structures, such as spines or axonal terminals. The re-
lationship between cell morphology and cellular diversities can also be examined using
antibodies that are specific to synaptic marker proteins and marker proteins of cellular
diversities [12,14–25].
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Biology 2023, 12, 321 4 of 15

Furthermore, microinjections of traceable tags can be performed in conjunction with
in vitro and in vivo electrophysiology, such as patch clamp recording, intracellular record-
ing, and juxta-cellular recording [12,14,15,22–26]. These advantages enable the examination
of the relationship between cellular diversities and functionalities or morphologies and
functionalities by combining microinjections of traceable tags with various electrophysio-
logical methods. A seminal example of applying this technique is the discovery of cell- and
subclass-specific firing patterns of hippocampal interneurons using electrophysiological
microinjections of biocytin [22–25].

In addition, the Diolistc labeling method using a gene gun and fluorescent dyes also
enables the sparse visualization of single neuron morphologies (Figure 1C) [27].

3. Physical Transgenic Methods for Sparse Single-Cell Labeling

As a result of advanced developments in the field of molecular biology and genetics [4],
various transgenic strategies and methods have been developed for single-cell labeling
(Figure 2). Physical transgenic methods using microinjection or biolistic gene gun have
been developed as simple transgenic methods for single-cell labeling [12,28–31].

Microinjection methods use sharp glass micropipettes or electrodes to deliver DNA
plasmids, which constitutively express fluorescent proteins such as GFP into the nuclei of
single neurons in vitro (Figure 2) [29–31]. Previously, neurotrophic factors were considered
“absolute retrograde acting molecules.” However, with the success of single-cell transgenic
microinjection, this strong dogma has been drastically revised [29]. At the same time,
brain-derived neurotrophic factor (BDNF) is transferred to cortical postsynaptic neurons in
an activity-dependent manner [29].

In contrast, biolistic methods use gene guns to deliver DNA plasmids of fluorescent
proteins using physical air pressure and gold particles (Figure 2) [12,28]. As both methods
sparsely deliver transgenes into single cells among many non-transfected cells, the mor-
phologies of single sparse neurons, such as dendrites, axonal terminals, and spines, can be
clearly visualized [12,28–31]. Using a biolistic gene gun, brain BDNF was found to regulate
the dendritic growth of cortical neurons [28]. Microinjection methods have been applied to
dissociated neuronal cultures and organotypic slice cultures in vitro and neurons in vivo.
Biolistic methods are mainly applied to dissociated neuronal and organotypic slice cultures
in vitro.

4. Sparse Single-Cell Labeling Using Electroporation Methods and by Injection of
Diluted Viruses

In utero electroporation is a transfection method that delivers transgene plasmids
into embryos using electrodes [32–38]. Transgenic strategies that use in utero electropo-
ration enable sparse single-cell labeling [39,40]. Other methods using electroporation can
also induce sparse single-cell visualization [41–44]. An example of researchers applying
sparse single-cell labeling using in utero electroporation was the discovery that two dis-
tinct cell groups with different birthdates in the cerebral cortex send differential axonal
projections [45]. However, skilled technicians are required to perform the electroporation.

Injections of diluted transgenic viruses expressing fluorescent proteins also enable
sparse single-cell labeling in the brain [46–50]. Using diluted transgenic sindbis viruses,
projection patterns and dendritic morphologies of the posterior thalamic nuclei were
uncovered [51].

However, as some viruses are known to have toxicities towards neurons, experimental
time windows are limited in some cases [46,49].

5. Photoactivatable Fluorescent Proteins Mediated Sparse Single-Cell Labeling

Since the discovery of GFP, various types of fluorescent proteins have been devel-
oped [7,8]. Photoactivatable fluorescent proteins have interesting characteristics, such as
ultraviolet (UV) light-activated enhancement of fluorescence [52,53]. Nevertheless, photo-
convertible fluorescent proteins also have unique characteristics that show conversion of
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the fluorescence wavelength after illumination with light of specific wavelengths [54–57].
Both types of fluorescent proteins can be used for single-cell labeling using local illumi-
nation with light of specific wavelengths (Figure 2). For example, transgenic mice were
generated with the ability to express Kaede, which is a photoconvertible fluorescent protein,
enabling the monitoring of cell movement of various cells in the entire mouse body using
photoconvertible labeling [58].

However, long-term illumination with UV light is necessary for visualizing the entire
cell morphology.

6. Photoactivatable and Drug-Activatable Cre Recombinase Mediated Sparse
Single-Cell Labeling

Cre recombinase is a major genetic tool in the field of life science.
Recently, photoactivatable Cre recombinase systems were developed. In these systems,

Cre recombinases are split into two fragments: N-terminal and C-terminal [59–64]. Then,
the N- and C-termini of Cre recombinase are fused with light-sensitive proteins that induce
dimerization after light illumination (e.g., cryptochrome 2, CIB1, Magnets, and Vivid),
which then induces recombination and the Cre-dependent expression of transgenes [59–64].
On the other hand, single-chain photoactivatable Cre recombinase was also developed by
using the LOV domain of protein VVD [65]. Therefore, local and transient illumination of
light-induced sparse recombination and sparse single-cell labeling with fluorescent proteins
is achieved (Figure 2). Recently, transgenic mice constitutively expressing photoactivatable
Cre recombinase have been generated [66]. In fact, applying sparse single-cell labeling to
the entire mouse body is possible [66].

To achieve drug-induced sparse single-cell labeling, the Cre recombinase-fused estro-
gen receptor Cre-ER was used [67–70]. Cre-ER is activated using tamoxifen treatment. The
transient applications of tamoxifen-induced sparse single-cell labeling in the brain region
(Figure 2) include the use of Cre-ER-mediated sparse single-cell labeling to visualize the
memory engram cells, which helped discover the functionally distinct memory engram cell
groups in the brain [71].

7. A Leaky Expression-Dependent Sparse Single-Cell Labeling Method: Supernova

The TetO promoter is activated by tTA and is known to exhibit weak, leaky expression
in the absence of tTA [72,73]. Supernova is a transgenic system that was developed using
the leaky Cre recombinase expression from the tetO promoter [35,74]. In this system, the
leaked expression of Cre recombinase is followed by an amplified feedback expression of
tTA. This combination of leaky and feedback expression induces sparse single-cell labeling
(Figure 2). Using Supernova, the dendritic morphologies of cortical layer four neurons were
found to be regulated by NMDA receptor activation during developmental reorganization
of thalamocortical connectivity [74]. The Supernova method has the advantage of a high
level of transgene expression because of its feedback system. Furthermore, combining the
Supernova system with retrograde viruses enabled projection-specific sparse-single-cell
labeling [75].

8. A multicolor Sparse Single-Cell Labeling Method: BATTLE 2.0

Previously, developing methods that enable the split-tunable expression of transgenes
was challenging. To overcome this problem, a strategy called BATTLE was developed
by applying the concept of battle of transgenes [76,77]. In the BATTLE method, multiple
recombinases are genetically designed to compete with each other and induce split-tunable
expression of transgenes. Furthermore, BATTLE 2.0 was developed using battles of triple
recombinase, Cre, FLPO, and Dre (Figure 2). It enabled multicolor and mutually exclusive
sparse single-cell labeling and strong transgene expression, which visualizes the morpholo-
gies of dendrites and axonal terminals of single neurons (Figure 3) [76].

Although visualizing the structure of the entire synapses using light has been chal-
lenging, the BATTLE method enables high-resolution imaging of whole structures of both
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pre- and post-synapses in the mouse hippocampus with simultaneous visualization of
endogenous synaptic proteins [76,77].
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9. MADM, MORF, and SPARC

The mosaic analysis with double markers (MADM) was developed using split fluo-
rescent proteins (split GFP and split RFP) and inter-chromosome recombination using Cre
recombinase [78–81].

By crossing MADM transgenic mice with various Cre transgenic mice, single neurons
were sparsely visualized using GFP, RFP, or both GFP and RFP (Figure 2). MADM enables
multicolor sparse single-cell labeling (Figure 3A). The MADM method helped elucidate the
genetic functions of Lis1 and Ndel1 in neuronal migration [82].

The strategy using mononucleotide repeat frameshift (MORF) is based on stochastic
frameshift mutations, which are rare [83].

In these mice, a frameshift mutation was inserted into the N-terminus of the fluo-
rescent reporter mNeonGreen-F, which contains a frameshift mutation that is designed
to be expressed in a Cre-dependent manner. Therefore, when crossing MORF transgenic
mice with various Cre transgenic mice, single neurons were sparsely visualized using
mNeonGreen-F in the brain (Figure 2).

The SPARC strategy is based on differences in recombination efficacy between the
recombinase recognition sequence and its truncated mutant sequence [84]. Using the
SPARC strategy, single neurons were sparsely visualized in the brains of certain transgenic
flies (Figure 2).

10. SLENDR

The SLENDR method was developed by applying CRISPR-Cas9 technology to rodent
brains [85–87]. The efficacy of gene editing using CRISPR-Cas9 is very low in vivo in the
brain. Therefore, the insertion of small tags, such as Hemagglutinin (HA), into various
endogenous genes using CRISPR-Cas9, results in the sparse expression of endogenous
genes conjugated with the small tag [87,88]. The morphology of sparse single neurons was
visualized using immunohistochemistry with an antibody against a small tag (Figure 2).
However, it is necessary to select highly expressed endogenous proteins, such as actin or
CaMKII, for the small tag’s insertion site to visualize the morphology of neurons [87,88].
Using the SLENDR method enables easy examination of synaptic loss in aged mice by
visualizing postsynaptic spines [88]. Rodent brains are densely packed with many neurons;
hence, performing single-cell immunohistochemistry in the brain region is challenging.
The SLENDR method is unique and enables the sparse single-cell immunohistochemistry
of endogenous proteins in the brain.
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11. Functional Analysis Using Single-Cell Gene Knockout

To examine gene functions, a seminal method known as gene knockout was developed
by Mario Capecchi [6]. The first-generation methodology of gene knockout was applied to
the entire bodies of animals, but examining the gene functions in the local areas of neural
circuits was challenging (Figure 4B). The second-generation region-specific gene knockout
methods were developed using region-specific Cre transgenic mice and floxed knockin
mice with two loxP sequences flanking the target genes [89–92]. These methods induced
region-specific knockout of target genes and enabled the examination of the gene functions
in some local regions. Furthermore, to examine the gene functions in the context of cell–cell
local interactions and neural circuits, third-generation gene-knockout and single-cell gene
knockout methods have been developed (Figure 4C) [11,12]. In single-cell gene knockout
methods, Cre recombinase is sparsely delivered into single cells using a biolistic gene gun
or transgenic virus. In one of the pioneering studies on single-cell gene knockout methods,
BDNF was sparsely deleted in organotypic slice cultures of the visual cortex [12]. At the
same time, BDNF was shown to have local positive functions in the synaptic formations of
inhibitory neurons [12]. Furthermore, research using the single-cell gene knockout method
has uncovered the local functions and developmental processes of various genes. NAPS4
has been revealed to regulate the inhibitory synaptic formation in the hippocampus [93,94].
The functional roles of NMDA receptors in the developmental processes of synapse and
synaptic formation were discovered [74,95]. The subunit composition of AMPA receptors
and the synaptic targeting mechanism of AMPA receptors have been revealed [96–98]. Some
mechanisms underlying synaptic plasticity and memory have also been revealed [99,100].
The functional roles of AMPA and NMDA receptors in neuronal morphology and inhibitory
synaptic formation have been reported [101]. The functional roles of LGI1 and adam22 in
synaptic maturation have been previously reported [102]. Thus, biolistic gene gun, in utero
electroporation, drug-activatable Cre system, photo-activatable Cre system, Supernova,
BATTLE 2.0, MADM, and SLENDR are applicable for single-cell gene knockout (Figure 2).

Biology 2023, 12, x FOR PEER REVIEW 7 of 15 
 

 

genes conjugated with the small tag [87,88]. The morphology of sparse single neurons was 
visualized using immunohistochemistry with an antibody against a small tag (Figure 2). 
However, it is necessary to select highly expressed endogenous proteins, such as actin or 
CaMKII, for the small tag’s insertion site to visualize the morphology of neurons [87,88]. 
Using the SLENDR method enables easy examination of synaptic loss in aged mice by 
visualizing postsynaptic spines [88]. Rodent brains are densely packed with many neu-
rons; hence, performing single-cell immunohistochemistry in the brain region is challeng-
ing. The SLENDR method is unique and enables the sparse single-cell immunohistochem-
istry of endogenous proteins in the brain. 

11. Functional Analysis Using Single-Cell Gene Knockout 
To examine gene functions, a seminal method known as gene knockout was devel-

oped by Mario Capecchi [6]. The first-generation methodology of gene knockout was ap-
plied to the entire bodies of animals, but examining the gene functions in the local areas 
of neural circuits was challenging (Figure 4B). The second-generation region-specific gene 
knockout methods were developed using region-specific Cre transgenic mice and floxed 
knockin mice with two loxP sequences flanking the target genes [89–92]. These methods 
induced region-specific knockout of target genes and enabled the examination of the gene 
functions in some local regions. Furthermore, to examine the gene functions in the context 
of cell–cell local interactions and neural circuits, third-generation gene-knockout and sin-
gle-cell gene knockout methods have been developed (Figure 4C) [11,12]. In single-cell 
gene knockout methods, Cre recombinase is sparsely delivered into single cells using a 
biolistic gene gun or transgenic virus. In one of the pioneering studies on single-cell gene 
knockout methods, BDNF was sparsely deleted in organotypic slice cultures of the visual 
cortex [12]. At the same time, BDNF was shown to have local positive functions in the 
synaptic formations of inhibitory neurons [12]. Furthermore, research using the single-cell 
gene knockout method has uncovered the local functions and developmental processes of 
various genes. NAPS4 has been revealed to regulate the inhibitory synaptic formation in 
the hippocampus [93,94]. The functional roles of NMDA receptors in the developmental 
processes of synapse and synaptic formation were discovered [74,95]. The subunit com-
position of AMPA receptors and the synaptic targeting mechanism of AMPA receptors 
have been revealed [96–98]. Some mechanisms underlying synaptic plasticity and 
memory have also been revealed [99,100]. The functional roles of AMPA and NMDA re-
ceptors in neuronal morphology and inhibitory synaptic formation have been reported 
[101]. The functional roles of LGI1 and adam22 in synaptic maturation have been previ-
ously reported [102]. Thus, biolistic gene gun, in utero electroporation, drug-activatable 
Cre system, photo-activatable Cre system, Supernova, BATTLE 2.0, MADM, and SLENDR 
are applicable for single-cell gene knockout (Figure 2). 

 
Figure 4. Illustrations comparing global-and single-cell gene knockout. (A) The illustration shows a 
representative brain region of wild-type mouse. Red particles represent target proteins. (B) The il-
lustration shows a global gene-knockout mouse. (C) The illustration shows a single-cell gene knock-
out in a representative region. The green color indicates the neuron in which the target protein was 
specifically knocked out. Green fluorescent protein (GFP) visualizes the neuronal morphology of 
this neuron, whereas the neighboring neurons show normal expression of the target proteins. Red 
particles represent target proteins. 

Figure 4. Illustrations comparing global-and single-cell gene knockout. (A) The illustration shows
a representative brain region of wild-type mouse. Red particles represent target proteins. (B) The
illustration shows a global gene-knockout mouse. (C) The illustration shows a single-cell gene
knockout in a representative region. The green color indicates the neuron in which the target protein
was specifically knocked out. Green fluorescent protein (GFP) visualizes the neuronal morphology of
this neuron, whereas the neighboring neurons show normal expression of the target proteins. Red
particles represent target proteins.

12. Single-Cell Silencing and Activation

The co-expression of ion channels using a single-cell labeling vector would enable
the examination of the effect of neuronal activity modulation at the single-cell level
(Figure 5A,F). Neuronal activity is essential for neural development and plasticity [13], and
previous studies have shown that single-cell selective neuronal suppression differs from
global suppression. For instance, the focal application of an acetylcholine receptor blocker,
α-bungarotoxin, induced synapse loss at the neuromuscular junction, whereas global appli-
cation did not [103]. Single-cell labeling, combined with whole-cell patch-clamp recordings,
revealed that activity suppression led to a reduction in synaptic inputs to hippocampal
neurons [104] and dendrite arborization [105]. Thus, single-cell activity-modulating tech-
niques are quite useful, and numerous innovative papers have been published. In an initial
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trial, G protein-gated inward rectifier K+ channels (GIRK) were overexpressed using the
adenoviral vector, and this overexpression inhibited potential firing action [106] (Figure 5B).
GIRK channels are activated by the stimulation of G protein-coupled receptors (GPCR),
such as GABAB and metabotropic glutamate receptors, resulting in the efflux of potassium
ions and hyperpolarization of the cell membrane potential. Currently, three methods are
commonly used to modulate neuronal activity, each of which differs in the duration of
modulation and manner of stimulation.
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Figure 5. Illustrations of ion channels applied for single-cell silencing and activation. The expression
of the following ion channels enables the modulation of neuronal activity at the single-cell level.
(A) The illustration shows single-cell silencing in the brain. (B) The illustration of the initial silencing
trial, in which GIRK channels were overexpressed. The binding of endogenous ligands to GPCR
activates the GIRK, resulting in neuronal silencing. (C) Kir2.1 channels always conduct outward
current except when strongly depolarized, leading to silencing. (D) DREADD-based silencing: the
mutated GPCRs are activated only by the administration of artificial ligands, not by endogenous
ligands, leading to time-controllable silencing. (E) Halorhodopsin is activated with the yellow light
and conduct of inward currents of Cl ion, resulting in precise temporal control of neural silencing.
(F) The illustration shows single-cell activation in the brain. (G) NaChBac channels, which open
voltage-dependently, conduct extremely long-lasting inward currents. (H) The ligand binding to
the hM3Dq receptor stimulates Gαq protein that inhibits the KCNQ channel, leading to neuronal
activation. (I) Channelrhodopsin is activated with the blue light and conducts inward and outward
currents, resulting in precise temporal control of neural activity.

First, Kir2.1 is often used as a tool for suppressing neuronal activity (Figure 5C). as
it is a strongly inwardly rectifying K+ ion channel [104,107]. The Kir2.1 ion channel does
not require stimulation by GPCR and constantly conducts the K+ current at resting and
modestly depolarized potential, resulting in constant suppression. In fact, viral expression
of Kir2.1 suppressed neuronal activity and decreased firing, with a hyperpolarizing shift
in the resting membrane potential and shunting effect [107]. In addition, Kir2.1 is sub-
stantially not toxic, whereas weakly inwardly rectifying the K+ channel, ROMK, induces
apoptosis [108]. This lack of toxicity is probably attributed to the strong inward rectification,
which reduces the efflux of K+ ions, K+ loss [108], and ATP consumption [109]. Viral vector-
mediated expression of Kir2.1 affects the phenotype of neurotransmitter choice [110] and
the survival of newborn neurons [111] indicating the significant role of neuronal activity
in development. Conversely, neuronal activity can be increased through the expression
of the bacterial Na+ channel, NaChBac [111] (Figure 5G). Although the I-V relationship
of NaChBac is similar to that of mammalian TTX-sensitive Na+ channels, a key feature
of a neuronal activator is its extremely long opening duration of up to several hundred
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milliseconds [112]. Indeed, retroviral vector-mediated expression of NaChBac increases the
survival rate of newborn neurons [111].

Second, designer receptors exclusively activated by designer drug (DREADD)-based
chemogenetics allow neuronal activity to be modulated in a drug-induced manner
(Figure 5D). Since GIRK channels are stimulated by GPCRs, the overexpressed GIRK
channels open with stimulation by endogenous neurotransmitters, such as GABA, making
it impossible to control the timing of suppression. To rectify this, DREADD-based chemo-
genetics have been developed. DREADDs are genetically mutated GPCRs that do not
react with the original endogenous ligands and are activated only by artificial ligands [112]
(Figure 5D). Therefore, neuronal excitability can only be suppressed when a specific ligand
for DREADD is administered. DREADD technology can also activate neurons through a
mutated muscarinic receptor, hM3Dq, which stimulates the Gαq protein. The stimulation
can inhibit outward KCNQ channel current, which is known as M current, and lead to
neuronal activation [112] (Figure 5H).

Third, optogenetics, a method for modulating neuronal activity with light-responsive
proteins, was reported in 2005. These are light-responsive proteins, such as channel-
rhodopsin and halorhodopsin, which are a cation channel and ion pump, respectively
(Figure 5I,E). These proteins can depolarize or hyperpolarize a neuron through irradiation
of the target neurons using light of specific wavelengths, leading to millisecond-scale
modulation of neuronal excitability. Optogenetics successfully modulates neuronal activity
both in vitro and in vivo [113]. Although optogenetics is a technique with high temporal
and spatial specificity, it requires the implantation of laser optic fibers.

Each of these three modulation methods has unique characteristics, which should be
considered when choosing the method to use along with single-cell labeling. For example,
the expression of Kir2.1 is suitable for the examination of chronic effects, DREADD for
modulation on an hour-to-minute basis, and optogenetics for modulation on a second-to-
millisecond basis.

13. Discussion

Sparse single-cell labeling methods are essential to understand the structure and
function of the brain. In addition, the rodent brain is genetically programmed to develop
from a fertilized egg to a complex neuronal structure encompassing the whole brain and
the entire body [9]. Sparse single-cell labeling methods are helpful tools for examining
the mechanisms underlying the developmental processes and programs [114–116]. Using
single-cell labeling methods, various morphologies of presynaptic axonal terminals, den-
drites, postsynaptic spines, and cell bodies can be visualized, monitored, and traced at
various developmental stages. In addition, sparse single-cell labeling methods and strate-
gies also visualize the morphologies of non-neuronal cells such as microglia, astrocytes,
and oligodendrocytes [83,117].

Furthermore, applying single-cell labeling methods to global gene-knockout mice for
various genes will enable the analysis of gene functions in cell morphology and synaptic
formation, which are not detectable with ordinary methods.

The use of global gene knockout methods to examine the local interactions of proteins
and their functions is challenging [12]. Sparse single-cell gene knockout methods enable
the dissection of the local functions of releasable proteins. As many genes have essential
roles in developmental stages, global gene knockout of such genes often results in lethal
phenotypes and prevents the examination of gene functions. In such cases, the single-
cell gene knockout method is one of the best approaches to overcome the challenge and
examine the functions of these genes. Studies using single-cell gene knockout methods
must first compare gene knocked-out single neurons with control neurons. Therefore,
multicolor sparse single-cell labeling methods are appropriate for these purposes (Figure 3).
Biolistic gene guns, in utero electroporation, BATTLE 2.0, MADM, and SLENDR methods
can achieve multicolor sparse single-cell labeling and single-cell gene knockout (Figure 2).
If used in tandem with the revolutionary CRISPR/Cas9 technologies [85–88], single-cell
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gene knockout methods would become standard tools in various life science fields. As
sparse single-cell labeling methods can potentially be applied in studies of various diseases
using disease model mice, these methods will fundamentally contribute to understanding
various disease mechanisms [88]. In the future, the new invention of revolutionary single-
cell labeling strategies that can be applied to human postmortem brains is anticipated.
This will accelerate the understanding of various neural circuits and neural cell types in
the human brain and fundamentally contribute to life science, medical science, and drug
discovery. Single-cell labeling enables the comparison of the phenotype and morphology
of single neurons. Particularly, the neuronal activities that are genetically modulated
can be compared with that of the neighboring non-modulated or differently modulated
cells. As mentioned earlier, single-cell modulation is different from global modulation and
is more comparable to in vivo conditions, where the neurons are competitive with each
other [118]. Furthermore, BATTLE2.0 and other multicolor single-cell labeling techniques
are expected to reveal the relationship between increased or decreased neural activity,
neuronal phenotype, and neural connections. Additionally, the role of the pattern and
timing of firing in the neuronal phenotype needs to be clarified [119], as synaptic plasticity
depends on small differences in the timing of presynaptic and postsynaptic spikes [120].
Finally, single-cell labeling is a promising technique to elucidate the co-expression of
different types of ion channels.

14. Conclusions

We have summarized the features of various sparse single-cell labeling methods.
The non-transgenic staining, e.g., Golgi, HRP, and biocytin, significantly contributed to
the visualization of single neuron morphologies. With the development of GFP and
related fluorescent proteins, single-cell transgenic technologies have significantly advanced
research in this area. Especially the BATTLE 2.0 technique enabled the multicolor and
mutually exclusive single-cell labeling and transgene expressions. This technique indeed
allowed the high-resolution imaging of the fine structures of both pre-and post-synapses.
The expression of recombinases and gene editing enzymes can achieve single-cell gene
knockout, which uncovers the functional role of the gene of interest. The co-expression of
ion channels can achieve single-cell activity manipulation, of which the effect differs from
the global manipulation. The contribution of this technology to neuroscience research is
expected to be even more significant in the future.
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