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Simple Summary: Pessoa postulates that bran anatomy associated with the processing and expres-
sion of emotion-laden content, such as the amygdala and limbic cortices, is resource capacity-limited.
Thus, brains require multichannel or parallel structure-function connectivity to effectively perceive,
motivate, integrate, represent, recall, and execute cognitive-emotional relationships. Pessoa employs
2D graph network theory to support his views on distributed brain organization and operation,
concluding that brains evolve through dual-process competition and cooperation to form highly
embedded computational architectures with little structure–function compartmentalization. Low-
dimensional graph theory has become a popular mathematical tool to model, simulate, and visualize
evolving complex, sometimes intractable, brain networks. Graph theory offers advantages to study
and understand various biological and technological network behaviors and, for Pessoa, it permits
a framework that accounts for structure–function features thus far poorly explained by perhaps
“traditional” perspectives, which advocate for the mapping of structure–function relationships onto
well-localized brain areas. Pessoa nonetheless fails to fully appreciate the significance of weak-
to-strong structure-function correlations for brain dynamics and why those correlations, caused
by differential control parameters such as Hebbian and antiHebbian neuronal plasticity, are best
assessed using neural field theories. Neural fields demonstrate that embedded brain networks opti-
mally evolve between exotic computational phases and continuum limits with the accompaniment
of some network partitioning, rather than unconstrained embeddedness, when rendering healthy
cognitive-emotional functionality.

Abstract: In The cognitive-emotional brain, Pessoa overlooks continuum effects on nonlinear brain
network connectivity by eschewing neural field theories and physiologically derived constructs
representative of neuronal plasticity. The absence of this content, which is so very important for
understanding the dynamic structure-function embedding and partitioning of brains, diminishes
the rich competitive and cooperative nature of neural networks and trivializes Pessoa’s arguments,
and similar arguments by other authors, on the phylogenetic and operational significance of an
optimally integrated brain filled with variable-strength neural connections. Riemannian neuro-
manifolds, containing limit-imposing metaplastic Hebbian- and antiHebbian-type control variables,
simulate scalable network behavior that is difficult to capture from the simpler graph-theoretic
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analysis preferred by Pessoa and other neuroscientists. Field theories suggest the partitioning and
performance benefits of embedded cognitive-emotional networks that optimally evolve between
exotic classical and quantum computational phases, where matrix singularities and condensations
produce degenerate structure-function homogeneities unrealistic of healthy brains. Some network
partitioning, as opposed to unconstrained embeddedness, is thus required for effective execution of
cognitive-emotional network functions and, in our new era of neuroscience, should be considered a
critical aspect of proper brain organization and operation.

Keywords: classical and quantum computation; classical and quantum networks; functional brain
connectivity; Hebbian and antiHebbian-type rules; neural field theories; preferential attachment rules;
structural brain connectivity; synaptic scaling; topographic network theory

1. Introduction

In The cognitive-emotional brain: From interactions to integration, Luiz Pessoa [1] tries to
convey to readers the emergent higher-order performance benefits of embedded structure-
function relationships that form across distributed brain loci which traditionally have
been thought to specialize in cognitive and/or emotional processing. Pessoa’s conceptual
framework, a contemporary derivative of Karl Spencer Lashley’s equipotentiality [2,3] and
Rafael Lorente de Nó’s pleuripotency [4], follows the more-or-less trending movement in
the neurosciences that seeks to replace outdated, restrictive notions of cognition, emotion,
attention, memory, and other brain functions as being strictly isolable to brain regions [5–7].
He instead identifies the (primate) brain’s cytoarchitecture as a familiar set of discrete
areal and laminar networks capable of modifiable dedicated functions which increase
their combinatorial and computational complexity (see Glossary of Terminology) via short-
to-long-range neural, humoral, and additional sorts of spatiotemporal interactions [8–12].
Irrespective of the contemporariness and general accuracy of his exposition, Pessoa offers
few new insights about the principles and quantification of network behavior, and fur-
ther disappoints us by failing to satisfactorily discuss limit-imposing deterministic and
probabilistic structure-function primitives or control functions detailing real oft-interacting
physiological phenomena, such as bidirectional synaptic (meta)plasticity [10,13,14], cell
fate and migration [15,16], directed axonal/dendritic growth and pruning [17–20], and
trophic, immunological, and developmental neuronal modulation [21–24]. The absence of
this content, which is so very important for understanding the dynamic structure-function
embedding and partitioning of brains, diminishes the rich competitive and cooperative,
or author-coined “push-pull” and “working-together”, nature of neural networks, thus
trivializing Pessoa’s own arguments on the phylogenetic and operational significance of
an optimally powerful integrated brain filled with both strong and weak neural connec-
tions [25]. Indeed, commenting on this material, for which a large amount of support
exists in the literature [5,7,26,27], can only enhance one of Pessoa’s secondary propositions
advocating the improbability of one-to-one smooth mappings between brain structure and
function–mappings that need to be addressed in our new era of neuroscience.

2. What Is the “Standard Network View” of Brain Structure and Function?

Pessoa devotes entire chapters and ancillary passages to elaborate (un)directed graph
theory descriptions of scalable node and path characteristics in cognitive-emotional net-
work topography. However, his premise that functional connectivity or embeddedness is
“the influence elements have on the activity of other elements, which depends on structural
embeddedness, in addition to other synaptic and cellular properties, ongoing activity,
neuromodulators, and the like” [1] (p. 216) highlights a broader viewpoint left unexplored
throughout his book. Perhaps these oversights originate from Pessoa’s narrow modern em-
phasis on topographic network theory, where the importance of structural and functional
neural networks of any scale as units of brain processing is superior to local computational
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features of, for example, individual neurons, glia, and macromolecules. Or, perhaps they
originate from his interest in clarifying controversial and believed-to-be physically indeter-
minate model-free correlative functional networks [28], which are interpreted as effectively
connected networks that remain regularly independent of structural change and brain
parenchyma presumably unassociated with task performance and motivational contexts
(see [1], p. 209, 212, and 216). Nevertheless, inattention to transient-to-enduring plastic
(sub)cellular contributions to brain organization and operation seemingly leads Pessoa
to curious and somewhat ironic conclusions about what he calls the “standard network
view” of robust cognitive-emotional brain functionality. Such functional networks emerge
from weak-to-strong structural network connectivity, and Pessoa [29] (p. 27) obfuscates
this data-supported conclusion with his marginally validated dismissal of the imprecise,
function-obscuring experimental practices of binning. Binning is a popular method usu-
ally performed to improve analytical and numerical tractability or signal detection power
within the spatiotemporal sampling-error and threshold limits of nonstationary noisy
brain images and other forms of high-throughput digitized data functions [5,30]. When
applied to weakly correlated or (experimenter-defined) subthreshold resting-state neural
activity, binning may yield binary or fuzzy structure-function classification intervals that
are less sensitive to functional event detection [31]. This drawback, however, represents
technical constraints on executing practical, precise quantification, and is not one of method-
ology conceptualization, leaving suprathreshold resting-state activity also susceptible to
mischaracterization depending on implemented binning parameters.

Pessoa [29] (p. 27) further criticizes the “standard network view” in the Précis of The
cognitive-emotional brain as being one in which “network states depend on strong structural
connections; conversely, weak connections have a relatively minor impact on brain states,”
assertions which he later rightly acknowledges conflict with fairly recent experimental
findings [32] demonstrating that “weak pairwise correlations are capable of generating strongly
correlated network states”. Though Pessoa agrees with Mantini et al. [33] and Tyszka et al. [34]
that massive polysynaptic projections and bioamine modulatory systems can account for
cognitive-emotional functional connectivity, he inadequately appreciates these and other
forms of intra- and internode communication (e.g., astrocyte support networks, trophic
biochemical systems, genetic/epigenetic/somatic regulatory networks, etc.), which may
dramatically elevate or reduce the degree and, accordingly, the strength of structure-
function embeddedness through numerous (convergent and divergent) neural and aneural
pathways (see [1]) (p. 177, 184, and 204). For Pessoa to also insist that weaker anatomical
connections and labile subthreshold (resting or intrinsically connected) network-state
correlations, for instance, are routinely assumed by a quorum of neuroscientists to exert
little-to-no influence on network (structure-function) status is misleading and contrary to
the data-driven postulates of experience-dependent plasticity championed by theorists and
empiricists alike for nearly seven decades [35–41]. Credited as being an early, if not the
first, pioneer of local plasticity rules for synapses and neurons, Donald Hebb [38] (p. 66),
relying on Lorente de Nó’s previous insights, contemplated the idea that pairwise weakly
correlated (subthreshold, threshold, suprathreshold, or combinations of each) activity at
local neurons (i.e., transient “activity trace”) may prime proportionally stronger functional
macroscopic cell assembly correlations in shared neighboring and distant fields. Many
similar experimentally authenticated claims, such as that regarding synaptic scaling, by
both noted and largely forgotten scientists, further challenge Pessoa’s notions about what
is the true accepted “standard” perspective of brain network behavior and the role of
structural change in structure-function embeddedness [28,42–44].

3. Scalability of Local Bidirectional Metaplasticity in Neural Fields

At particular issue, given Hebb’s (albeit older and incomplete) rationale and Pessoa’s
denunciation of the so-called “standard network view” stressing strong connections over
weak ones, is what Pessoa [1] (p. 209) refers to as effectively connected dynamic functional
networks dependent on task and motivational contexts “without concomitant modification
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of structure.” Pessoa here self-inconsistently ignores possibilities that weak connections and
structural embeddedness could actually contribute to network behavior. To illustrate his
hypothetical construct, he cites, among other cases, the example of the increased coherent
functional integration of potent affective information by early retinotopic human visual
areas measured with haemodynamic-sensitive fMRI [45]. However, the evoked-response
magnitude also intensified during functional integration, as reported by Damaraju et al.
and, in contrast to Pessoa’s interpretation of unaltered gross brain anatomy, this probably
caused and/or was caused by unquantified (instead of indeterminate) activity-dependent
structure-function modifications at embedded sublevels of neuronal compartments (e.g.,
soma, dendrites, and axon) and microcircuits. Different, oftentimes interacting, local bidirec-
tional plasticity rules account for such effects [46–49], including preferential Hebbian- and
antiHebbian-type rules and additional physiologically derived axioms appropriate for the
interactions and integration of scalable brain networks. For (natural and artificial) neurons
obeying diverse special classes of Hebbian- and antiHebbian-type rules, mechanisms of
functionally meaningful local structural change are well-known to be induced, maintained,
and/or modulated across timescales of milliseconds to days by certain intensity-dependent
processes associated with arousing catecholamines and peptide compounds that were
likely active during testing by Damaraju et al. [45]. These kinds of local structural changes,
such as those belonging to nonlinear Hebbian [41,50–53], dynamic stochastic synapse [54],
spike timing-dependent plasticity [37,39,55], and quantum bidirectional plasticity learn-
ing models [10,13], are capable of mediating weak local correlative activity, which can
impact global network organization and operation of, for instance, cortical sensory maps
important for hierarchical, overlapping, coupled, and (semi)modular cognitive-emotional
embedding [56–59].

An attractive manifestation of such scalable local bidirectional neuronal plasticity is
synaptic scaling [60,61], where Hebbian-like synaptic remodeling of comparatively discrete
dendritic volumes, which alone are incapable of effecting persistent overall changes in
neuron discharge rates and patterns, either increases or decreases the short- to long-term
responsiveness of the entire dendritic network (and, consequently, the cell and linked cell
groups) through co-stimulated homeostatic protein synthesis, gene regulation, and cellular
trafficking. Synaptic scaling emerges to assist in normalizing the thermodynamically-
sensitive exotic (classical or quantum) statistical destabilization of competitive and coopera-
tive compartmental interactions (e.g., winner-takes-all, fit-get-rich, first- mover-advantage,
etc.) observed for integrate-and-fire neurons associated with Hebbian rules [10,13,21,60–64].
Through these more-or-less local processes involving both excitatory and inhibitory feed-
back/forward regulation, initially weakly correlated distributed dendritic and subthreshold
somatoaxonal activity at one or a few neurons may begin to selectively drive stabilizing co-
operative and competing structure-function variations in larger neuronal populations. Such
processes, in turn, profoundly affect widespread information conduction under emotional
or motivational contexts, as exemplified by reinforced spike timing [48,65,66], potenti-
ated neuron signal tone [48,67,68], and resting membrane and action potential threshold
sliding [46,58,69].

4. Local Parameters force Continuum Limits on the Partitioning and Embedding of
Cognitive-Emotional Neural Fields

The normalizing effects of local bidirectional metaplastic events on neurons and mi-
crocircuits help to tune and constrain the performance advantages of embedded cognitive-
emotional brain networks. The current state of knowledge about these structure-function
continuum limits remains poor, a fact unrecognized by Pessoa [70–74]. Powerful neural field
theories [62,75–80], equally worthwhile for data conditioning, analysis, and simulation, may
be employed to interrogate the impacts of local control variables, extrapolating far more
cutting-edge biological conclusions and testable predictions about cognitive-emotional
networks than is possible with simpler graph-theoretic analyses of brain activity. The high-
dimensional Riemannian construction of field theory models, including neuromanifolds
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mapped by mean field, relativistic Shannon-Einstein, and quantum field theories, has long
held favor among computational neuroscientists due to its embodiment of the essential
local/global organization and (functional) activity of natural neural networks [25,75,79].
Model success relies on the systematic inclusion of multiscale, physiologically relevant
known and hidden neural control parameters, such as metaplastic Hebbian and antiHeb-
bian rules or other probabilistic controls, as elements in embedded local structure-function
subspaces. Distributions of weak-to-strong network connections, and therefore of perfor-
mance optimization and degrees of network partitioning and embeddedness, for various
computational phases progress between thermodynamic bounds set by the energy or fit-
ness level of each node that are contained within a neuromanifold, where learning rules
determine information storage capacity, processing efficiency, associativity, sparseness,
modularity, and other critical structure-function specifications of random, small-world, and
scale-free brain systems [5,8,10,13,81–86].

Depending on learning rate, network behavior may evolve during classical or quan-
tum computational states [8,10,13,75,81–84,87–91]. Only for continuum extremes of proba-
bilistic quantum or symmetry-associated deterministic classical behavior do synaptic or
nodal clusters reach compacted densities that lead to large, sustainable, peak-degenerate
structure-function map homogeneities unrepresentative of actual neural networks and
healthy brains [8,13,62,63,75,76,84,91,92]. Such conditions signify deficient or absent meta-
plastic control, as observed with traditional two-variable nonstochastic Hebbian-type
rules [54,56,93], that plague natural and artificial macroscale networks with excessive synap-
tic densities, insufficient information-storage capacities, and numerous pattern-retrieval
errors. These and additional field theory attributes of (non)random variation in neuronal
activity and hidden layers reveal the organization of structurally ambiguous functional con-
nectivity [94–96] and imply that some network partitioning, as opposed to unconstrained
embeddedness, is required for the maximum execution of cognitive-emotional network
functions, such as fast and accurate memory searches and retrieval, learning fuzzy and
discrete categories, cogency and soundness of inferences, and computational complexity of
insight and analysis problem-solving [8,10,13,62,76,83,84,86,91,96,97].

5. Continuum Limits on a Hybrid Classical-Quantum Model of Neural Fields

Neural fields and the cognitive-emotional attributes of such fields may be derived through
the statistical mechanics of natural emergent classical and quantum computation [8,10,13,84]. A set
of well-known conditions, termed preferential attachment rules, emulate the Hebbian-like and
nonHebbian-like synaptic or nodal plasticity rules represented in natural and artificial systems,
and are thus suitable for the present purposes [8,81,82,84,98,99]. Preferential attachment
rules of complex technological networks [87–90] and biological networks [81,82,98,99] obey
classical Maxwell-Boltzmann, quantum Fermi-Dirac, and quantum Bose-Einstein statistics,
which dictate continuum limits on the system comprised of classical and quantum neurons
and synapses [100–108].

5.1. Local Control Parameters limit Structure and Function of Hybrid Classical-Quantum
Neural Fields

Hebbian-like and nonHebbian-like fitness models designate a unique local fitness
parameter, ηi, for each network node, i: {` = 1, 2, . . . , i}. The fitness parameter, ηi, along
with the number of existing links, ki, gained previously by node i, describe that node’s
probability, Πi, of acquiring new links, m, where:

Πi = (ηi ki)/(Σ` η` k`) (1)

Each node is also assigned a unique, fixed local energy or fitness level, εi, defined as:

εi = − (1/β)log ηi, (2)
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where β = 1/T and absolute temperature T (or population size or time corresponding to
the metaphorical treatment of temperature) operates as a control variable for transitions
between Bose-Einstein condensate and “fit-get-rich” computational phases. Lower εi levels
tend to collect more links. Connections between any two different nodes correspond to non-
interacting, inert particles packing the energy level of each node, so that 2m particles become
equally distributed at some time ti of the network’s evolution. The partition function Zt,
relating system microstates to thermodynamic parameters, yields an occupation number,

ki(εi, t, ti) = m(t/ti)
(εi), (3)

specifying the number of connections a node arising at time ti with energy εi has amassed
by a later time t. As such, the partition function Z behaves in a manner similar to Hebbian
and antiHebbian rules, normalizing nodal energy and occupation across the composite,
macrostate, or grand canonical ensemble probability distribution [109]. In standard classical
Hebbian theory for nonhomosynaptic and nonhomeoplastic events within discrete or
continuous training epochs,

wij = (1/p)
k=1

∑
p=1

xk
i xk

j (4)

where weight wij is the strength of the connection between neuron j and neuron i, p is
the number of iterative training, and k is the number of neuron inputs for training set x.
Temporal changes in w may be represented as correlation or covariational matrices with the
rate of change driven by the typical linear combination of neuron inputs. Improved, more
general forms of Equation (4) have been built to account for nonlinear and antiHebbian
learning traits. These include a reformulated weighting rule stated as an activation or
activity function z,

± zi =
N−1

∑
i=0

wixi + b (5)

where N is the input neuron, wi is the connection weight for output neuron xi, and b is the
nonlinear bias associated with neuron function. A quantum neuron, e.g., Ref. [110], also
may be developed from Equations (4) and (5) with the activation function z:

z ≡
〈
ψx

∣∣ψw,b
〉
= (

→
w ·→x + b)/(N + 1) (6)

where classical orthogonal variables from Equation (5) are represented as quantum state
vectors having modifiable probability amplitude coefficients residing in matrices or on
quantum spheres [111]. For the hybrid classical-quantum model, which may involve
classical and quantum neurons, the rate at which a node increases its network links proceeds
via a power law established from the exponent,

f (εi) = e−β(εi−µi), (7)

where µ equals the chemical potential associated with free energy, and helps define energy
states, gradients, and transition or switching thresholds between cognitive-emotional states,
macrocircuits, microcircuits, and nodes. The power law determines continuum boundaries
on the neural field which are forced through local control parameters capable of epitomizing
hetero- and homosynaptic plasticity, excitatory and inhibitory plasticity, and meta- and
homeoplasticity. When ƒ(εi) = 1, Bose-Einstein statistics hold [112,113], generating the
occupation number for particles or connections populating level εi,

n(εi) = 1/(eβ(εi−µi) − 1). (8)

These constraints compel node i to maintain its vast proportion of network links. Such
quantum synaptic or nodal clustering can render highly compacted densities leading to
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large, sustainable structure-function map homogeneities or unconstrained embeddedness
unrepresentative of biological neural networks and healthy brains. Extremely strong net-
work connections, if persistent, become pathological, preventing flexible structure-function
compartmentalization and, therefore, the dynamic structure-function behavior needed for
adaptive brain anatomy and processes. Neuropsychiatric conditions presenting persever-
ation, such as obsessive–compulsive disorder, offer biological instances of dysfunctional
homogeneities involving local-to-global brain organization and operation. For ƒ(εi) << 1,
the Bose-Einstein statistical distribution switches to one described by classical Maxwell-
Boltzmann statistics [112,113], resulting in the occupation number:

n(εi) = 1/eβ(εi−µi). (9)

Classical statistics characterize “fit-get-rich” and “first-mover-advantage” computational
phases for classical neurons and synapses which approach zero connectivity in the ther-
modynamic limit [87]. Like extremely strong network connectivity, zero connectivity also
might be pathological when occurring over protracted durations, perhaps contributing
to overly heterogeneous structure-function relationships often linked to neuropsychiatric
conditions presenting disorganized or fragmented thought patterns, such as schizophrenia.
In addition, the occupation number defined by Fermi-Dirac statistics [112,113],

n(εi) = 1/(eβ(εi−µi) + 1). (10)

appears when ƒ(εi) >> 1. Common features of Fermi-Dirac-governed networks include
degenerate collections of quantum synapses and nodal groups and activity patterns capable
of supporting effective multistable cognitive-emotional brain representation and operation.
Importantly, although neural fields may perform better (or worse) under certain statistical
conditions, hybrid classical-quantum fields promote the greatest opportunities for highly
adaptive structure-function connectivity and improved cognitive-emotional outcomes
when they are permitted to shift between their respective classical and quantum statistical
continuum limits. Such lability, in contrast to the modeled network dynamics favored by
Pessoa, enables scalable network partitioning and behavior reliant on both strong and weak
nodal links and correlated activity observed and predicted for nervous systems.

Parameters included in Equations (1) through (10) satisfy the conditions for brain
reorganization accompanied with learning. Each node may incorporate into networked
patterns of different fitness or utility for cognitive-emotional representation and expression.
Separate patterns and their partitioning may emerge for unique contexts that demand
highly homogeneous to highly heterogeneous structure-function relationships. New nodes
may be added to an evolving macro- or microcircuit, storing a set of nodes below the
resource ceiling. Learning processes allocate a fitness parameter, η, for each node from a
distribution ρ(η) holding values proportional or weighted to the net optimal or suboptimal
gain of advantage perceived to be available from learning experiences. For some node i, ηi
is expressed as:

ηi = |piPi|. (11)

Argument pi in Equation (11) denotes the Bayesian probability that a node i is chosen
and added to a network over other possible nodes in the larger neural field. A learner’s
perceived or expected net payoffs, Pi, relate experiential benefits and costs determined
from arbitrary context-dependent probabilities [81,82,98,99], and bear a resemblance to,
respectively, purely classical and quantum free-energy-based active inference models of
decision-making and behavior [114,115].

Nodes compete and cooperate for cognitive-emotional circuit states of different fit-
ness content, represented as network connections. Modal states are network solutions
chosen more frequently by agents, and the nodes associated with those states, as well as
others, accumulate new or newly recurrent connections, m, at each step n in the manner
articulated by Equation (1). Recurrent connections in this definition differ from earlier treat-



Biology 2023, 12, 352 8 of 24

ments [81,82,87,98,99] to permit nodes to be revisited during cognitive-emotional process-
ing without violating Equation (1). Positive or negative exponential changes in probability,
Πi, for node i to accumulate new links indicates that use of the cognitive-emotional state
corresponding to node i has become sensitized or habituated. Moreover, Cov[Πi,Πj] confers
a practical determinant of connection strength between any two joined network nodes i and
j and their respective cognitive-emotional state. Rising positive covariance between nodes
implies escalating coupling strength resulting from learning mediated with Hebbian-like
processes [8,13,81–84,98,99]. Rising negative covariance between nodes implies declining
coupling strength that results from either extinction or inhibitory learning mediated with
respective Hebbian- or nonHebbian-like processes. Former classes of adjustments in the
strength of connections are analogous to active processes of memory suppression, instead
of passive processes regulating normal or pathological memory decay. Furthermore, since
an agent’s cognitive-emotional state might stay unchanged or might switch to another state
of different fitness, state lability can be regarded as a transition between competing logic
states or cognitive-emotional structures and functions, with Equation (12) agreeing with
Landauer’s principle for memory storage devices [8,13,83,84,111,116,117],

εi = −(1/β)ln2ηi, (12)

where β = 1/kBT, kB is Boltzmann’s constant and T is the absolute temperature of the local
ambient environment.

Because of the mathematical relationship between informational and physical degrees
of freedom, energy level εi in this context correlates with the minimum, although phys-
ically imprecise, energy absorbed and expended to “reset” or “erase” the state of node
i [117]. Living or artificial agents may exist as endotherms, isotherms, and exotherms with
their proximal environs, so modifications in energy level εi mirror the composite system’s
computational effort when shifting between nodes across an arbitrary time interval. This
detectable thermal macroscopic energy matches the missing information or structural en-
tropy tied to the precise internal microstate of node i and may be restated using Landauer’s
principle without term T needed to manifest energy exchange [111,118]. Discrepancies in
the value of εi caused by distinctive informational and physical degrees of freedom may be
corrected with limited satisfaction by universal and holographic entropy bounds. Bounds
can be calculated, for instance, for a cell and its cellular compartments of definite physical
dimensions and density [81,82,98,99], such as a neuron and its dendrites, soma, and axon.
As an outcome of the preceding computational characteristics, network node i with lower
εi acting under recurrent autofeedback, such as an agent persistently selecting the same
cognitive-emotional state, captures more links by maintaining higher Πi, higher positive
Cov[Πi,Πi], and closer to perfect actual thermodynamic efficiency. This convention suits
over-learned cognitive-emotional states computed by an agent that progressively burns
less metabolic energy and tunes sparser structural resources than when computing under-
learned cognitive-emotional states [81,82,98,99]. A nontrivial corollary then follows from
this significant result. Network node i with higher εi acting under recurrent autofeedback,
such as an agent continuing to select the same cognitive-emotional state, begins to capture
more links by also sustaining higher Πi, higher positive Cov[Πi,Πi], and improving actual
thermodynamic efficiency. Such a scenario reflects the instance of cooperating weak nodal
and microcircuit activity, which may prime and otherwise facilitate synaptic plasticity, con-
tradicting Pessoa’s [1,29] belief that weak neuronal connections effect little-to-no influence
over cognitive-emotional network structure and function.

5.2. State Transitions and Modularity of Hybrid Classical-Quantum Neural Fields

Transitions between network nodes and microcircuits accompanying changes in
cognitive-emotional states can be construed as endothermic or exothermic chemical reac-
tions, as alluded to above. Switching from a state of higher fitness, and hence lower εi,
to one of lower fitness, and hence higher εi, absorbs energy computationally equivalent
to endothermic reactions (Figure 1) [82]; whereas, switching from a state of lower fitness,
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and hence higher εi, to one of higher fitness, and hence lower εi, dissipates energy com-
putationally equivalent to exothermic reactions (Figure 1) [82]. Mathematical relations
between state transitions and physicochemical processes, e.g., Refs. [81,82,98,99], affirm
that thermodynamic independent quantum effects occurring with cognitive-emotional
information processing will become exposed by nonlinear Arrhenius kinetics [82]. The
Arrhenius equation ascertains the rate of a first-order reaction and assumes the formula:

k = Ae−Ea/RT , (13)

where k equals the rate constant, A equals a proportionality constant related to Boltz-
mann’s and Planck’s constants, Ea equals the activation energy, R equals the gas constant,
and T equals the absolute temperature. When considering classical reactions, plotting lnk
versus 1/T produces a linear function. Conversely, plots between the same two variables
yield a nonlinear function for reactions involving quantum tunneling [82,119]. The biocom-
putational utility and relevance of the Arrhenius equation has attracted interest from several
researchers who cleverly adapted the equation to examine and characterize the behavior
and decision-making of thermally sensitive living organisms [82,120–123]. To execute such
applications, the equation may be rewritten to take on the subsequent appearance:

k = (kBΓ/h)ƒ(εi), (14)

where kB equals Boltzmann’s constant, Γ equals the “critical tunneling field strength”, h
equals Planck’s constant, and ƒ(εi) equals the energy-dependent exponent determining
network-node connectivity. The control or annealing parameter, Γ, substitutes absolute
temperature T to be in alignment with published findings, e.g., Refs. [81,82,98,99], and is
directly related to the critical condensation temperature TC by ΓC = (TCkB)/(n/ζ(3/2))2/3,
where kB is Boltzmann’s constant, ζ is the Riemann zeta function, and n is the “particle”
density. Harnessing this interpretation of the Arrhenius equation dissociates classical
from quantum computational phases in the operation and organization of complex net-
works, allowing for identification of cognitive-emotional processes based on free-energy
values for work and state transitions. In such scenarios, activation energy Ea signifies
the intuition-deliberation activation energy, or threshold, analogous to that described by
De Neys [124]. It is a set of discrete values Ea = {εai |i = 0, . . . , ∞} defined by differential
energy or fitness levels εi covering a set of values that partitions or gates network nodes
N = {ni|i = 0, . . . , ∞} with the corresponding one-to-one mapped energy or fitness levels
E = {εi|i = 0, . . . , ∞}, as determined from Equation (1) through (10). The traditional Arrhe-
nius equation, Equation (13), enables cognitive-emotional system switching, where changes
in system heat H, temperature T, and energy E again obey Landauer’s principle and lib-
erate free energy, Efree = H − TS, to perform classical work W through the work-energy
theorem [84,125,126],

W = ∆E = ∆Efree = ∆H − T∆S. (15)

Equation (15) provides the foundation for a hybrid classical-quantum work-energy theorem,

W = ∆E = ∆Efree = ∆H − Γ∆S, (16)

also capable of enabling cognitive-emotional system switching by replacing T with the
annealing parameter Γ. Recovery or maintenance of computational states, constituting
classical to quantum Markov processes and a Szilárd engine-like model [84,126], occurs
when lowering or raising entropy S drives respective “refrigeration” and “power” strokes
from the input information (i.e., entropy defined in arbitrary information units) or energy
reservoir to the output information (i.e., entropy defined in arbitrary information units)
or energy reservoir, where entropy associated with prior stored information serves as a
reference for error checking, and is then dissipated or extracted upon decision execution.
Fidelity or trace distance between the two reservoirs, in accordance with the Second and
Third Laws of Thermodynamics, connotes free energy for cognitive-emotional processing
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and the amount of entropy extracted and/or rejected to perform error-syndrome diagnosis
and correction with power P = ∆W/∆t, (heat engine) efficiency Φ = W/Einput, and (refriger-
ation engine or heat pump) coefficient of performance COP = Eoutput/W [82,84,111,114,115].
The thermodynamic-sensitive classical limit reduces to classical power, efficiency, and
performance functions; whereas, the thermodynamic-independent quantum limit relates
work, power, and efficiency via the quantum work-energy theorem [127,128].
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Figure 1. Model potential energy diagrams and Arrhenius plots for the rate or kinetics of cognitive-
emotional state change. (a) Preferential attachment rules permit switching from one cognitive-
emotional network node of higher fitness to another node of less fitness. Such computations may
require “energy absorption” tantamount to endothermic chemical reactions. The initial fitter node,
interpreted as a reactant (Rs), maintains a lower potential energy. Forward transformation to a less
fit node, interpreted as a product (Ps), of higher potential energy may progress over or through the
reaction barrier. A transition state (Ts), also known as a reaction intermediate, mediates crossings
over the reaction barrier. This scenario represents a classical reaction needing activation energy (Ea)
and a change in the system’s heat (∆H). Tunneling through the reaction barrier represents a quantum
reaction. Arrhenius kinetics (inset) for classical reactions (black) form linear relationships between the
kinetics of node switching (k) and the inverse of the system’s temperature (1/T). Quantum reactions
(grey) render nonlinear Arrhenius kinetics between the same variables. (b) State transitions may
also entail “energy dissipation” tantamount to exothermic chemical reactions. The initial less fit
cognitive-emotional network node (Rs) of higher potential energy transforms to a fitter node (Ps) of
lower potential energy with classical or quantum principles described for (a). Arrhenius kinetics
(inset) of exothermic reactions return plots identical to those of endothermic reactions. Figure 1 and
caption reproduced from [82] with permission.

By re-envisioning Equation (7) with respect to Equations (13) to (16), the limits of work
W may be scaled to Ea of different computational regimes. The value of Ea then decides
the bounds for free energy needed to activate switches within and between regimes. In
keeping with Equations (13) and (14), consider Ea formulated as:

Ea = nl(((kBΓ/h)ƒ(εi))/A)−RT, (17)

and recall that when ƒ(εi) = 1, a quantum Bose-Einstein computational phase dominates.
Similarly, ƒ(εi) << 1 and ƒ(εi) >> 1 specify, respectively, classical Maxwell-Boltzmann and
quantum Fermi-Dirac computational phases. The function ƒ(εi) precisely and accurately
determines Ea thresholds for computational transitions and the ∆Ea required to overcome
gating mechanisms, leaving Equation (16) to now read:
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W = ∆Ea = ∆Efree = ∆H − Γ∆S. (18)

In this form, W is the amount of energy expended or absorbed by cognitive-emotional
processes to resolve conflicts between competing structure-function outcomes. Cognitive-
emotional networks are embedded as modular microcircuits (Figures 2 and 3) in the
global neural field of an agent effecting cognitive-emotional states and behavioral patterns.
Work associated with ∆Ea permits the system to switch between network nodes that
define certain cognitive-emotional states. Larger amounts of available energy result in
sudden, sizeable state transitions representative of discontinuous problem restructuring
typically corresponding to cognitive-emotional intuition or insight [84]. Smaller amounts of
available energy result in gradual, incremental decision transitions typically corresponding
to cognitive-emotional deliberation or analysis [84]. While intuition processes may need
a big initial investment and expenditure of energy to perform solution discovery, slower
deliberation processes may demand greater total energy to reach solution discovery over
more processing iterations. Levels of deliberative processing efficiency maintain predictable,
direct relationships to time T and annealing parameter Γ, so that energy costs wasted on
protracted, unsuccessful trail-and-error processing accumulate with each minor stepwise
solution search, temporary processing stoppage, and solution pathway error correction.
Risks inherent in this sort of processing mode only become offset when more rudimentary,
automatic intuition attains an indefinite solution-discovery impasse for complex, hard
cognitive-emotional problems [8,81–84,98,99,126].

In addition to energetics- or entropy-based network partitioning imposed by statistical
mechanical or computational limits, topological and categorical traits may affect geometric
network partitioning and embeddedness, and those traits may reciprocate to influence
network function. Cognitive-emotional computational networks may be considered to be
computational spaces, departing from Pessoa’s [1,29] simpler and perhaps conventional
2D graphical representations of cognitive-emotional networks. A finite homological group
space, S1, is algebraically invariant from another finite homological group space, S2, of
equal Euler characteristic,

χ(S) = Σ(−1)iBi(S), (19)

where Bi(S) is the ith Betti or connectivity number of S. Here, S is any cognitive-emotional
network in 3D Riemannian state space and S1 and S2 are compared state spaces. Orga-
nizing centers with two degrees of freedom for 3D state space dynamics may be assessed
by Poincaré or fundamental groups, a set of loops in space S forming invariant topology.
Different elementary groups within a state space indicate a manifold forms from nonsimply
connected paths. Elementary groups of different homologies correspond to path connected
or grouped strategies. Further, the trajectories connecting nodes represent the sequence
of transitions or computations made during cognitive-emotional processing. Euler char-
acteristics and internal angles for sets of 3D graph-like networks (Figure 2) indicate that
hybrid quantum-classical networks may produce both unknotted and knotted geometric
patterns as activity trajectories organize local and global networks over time [82–84,98,99].
The complexity of state-space structures proves sensitive to initial conditions without being
fully reconstructed from those conditions. Qualities of this kind distinguish quasiperiodic
Wolfram Class IV computations capable of emulations, such as universal Turing machines,
cellular automata, and quantum machines [98,129,130]. Displays of periodic to quasiperi-
odic network activity correspond with respective Wolfram Class I, II, and IV computations.
Such outcomes become crucial distinctions, as endpoint or thermostatic network topologies
can yield identical Euler characteristics through different preceding cognitive-emotional
processing dynamics. Thus, identifying periodic, quasiperiodic, and chaotic dynamics
of network paths helps sort the types of cognitive-emotional computations executed by
agents [129,130].
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Figure 2. Some predictable topological features of evolving modular cognitive-emotional networks.
(a) Nodes of 3D cognitive-emotional networks may self-organize into structure-function forms with
several types of homology groups similar to simpler 2D graphical neural networks discussed by
Pessoa. Nodes with weighted sum coordinate values of 1 or less represent prudent savings with
lower fitness and bioenergetics resource availability. Those with weighted sum coordinate values
of two or more represent conspicuous consumption with higher fitness and bioenergetics resource
availability. Such diametric weighting profiles agree with neuroeconomic principles of cognitive
computation [10,86]. Topologically invariant groups or manifolds of tetrahedral-like (T) (top row)
and pyritohedral-like (Th) (second row) symmetry store different information of uniform categorical
fitness for cognitive-emotional structure-function states in Riemannian space. Groups or manifolds
storing information of mixed or fuzzy category fitness may transition between nodes signifying
prudent savings and conspicuous consumption (third row). An incomplete network used by an agent
evolving from embedded prudent-savings network groups or manifolds to conspicuous-consumption
network groups or manifolds during learning experience (bottom row). (b,c) Examples of multistable
architectures with embedded groups transforming over time, sn, into 3D computational networks
with eight different nodes. The same agent built, searched, and employed both networks. Edges
between computational network nodes in panels (a) through (c) denote an agent’s decision to switch
between nodes. Recurrent cognitive-emotional processing overlap and might be obscured in network
representations. Figure 2 and caption reproduced from [81] with permission.
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Figure 3. Predictable statistical mechanics properties of cognitive-emotional neural field partitioning
and embeddedness. (a) Potential landscape with potential V(x,y) equaling energy level ε for each
node in Riemannian space R. 3D structure of the network was transformed into an isomorphic
xy (or x1×2) configuration for visualization of the landscape. Landscape attained deepest well at
reconstructed coordinate (0, 0), which mapped onto modal node 000 with lowest ε. (b) Average final
connectivity (kF) for evolving field nodes created a fourth-order polynomial distribution (black line).
Most links amassed in the lowest average potential well of node 000. Bose-Einstein (BE) condensation
for new connections emerged below the approximate “critical tunneling field strength”, App. ΓC.
Average initial Γ (grey line) was proportional to ε, but diminished when energy levels gathered more
links. Field nodes collecting about 20 connections changed from computational phases sensitive
to thermodynamic limits into a BE condensate. (c) Precise plotting of |µ| against Γ established
that ΓC for node 000 was an order of magnitude lower than App. ΓC in (b). Inset shows exploded
view of area within grey-shaded box. (d) Rate, f (ε), at which the network modal node acquired or
associated new connections showed the field began condensed on a single nodal solution located
within the critical interval, f (ε)Γ. Learning or short-term sensitization (STS) reset BE computational
phase to one dictated by Maxwell-Boltzmann statistics and other nodes with weights corresponding
to conspicuous consumption fundamental groups. The abrupt conversion from quantum to classical
computational models with different continuum limits is consistent with discontinuities in problem
processing and restructuring of problem representation characteristic of intuitive problem-solving
schemes. Learning offset accompanied return to f (ε) for BE statistics and preferred activity of node
000. Transitions from nodes of prudent savings to those of conspicuous consumption showed the field
executed combinatorial and computational reorganization to effect context-dependent processing
advantages. (e) Average residual energy, εRES (black dotted line), revealed annealing coincided with
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repeated associative trial-and-error nodal searches (TES) typical of deliberative problem solving. The
field started at deepest average εRES common for condensation on a single node solution. STS reset
AVG εRES to higher levels when average number of active nodes in the field grew (grey dotted line).
TES annealed εRES to a minimum value near App. ΓC with STS offset. Late onset BE condensation
decreased average number of active network nodes until a prudent savings solution was chosen at
quantum-search efficiencies. Returning to nodes of fundamental group prudent savings elevates
labile context-dependent structure–function advantages. Figure 3 and caption reproduced from [81]
with permission.

To determine 3D cognitive-emotional network dynamics, each subspace can be treated
as a set of dissipative coupled X, Y, and Z (or corresponding arbitrary x1, x2, and x3) oscil-
lators driven by finite cognitive-emotional processes. Both global (i.e., an entire network
state space) and local (i.e., regions of a network state space) structure-function trajectories
and their fundamental groups may be calculated from differential equations, or a proce-
dure [131] justified by Takens’ embedding theorem [132] that relies on winding numbers
and translation-invariant trajectory actions (i.e., winding number ratios). Frequencies may
be established from discrete sections set at peak amplitudes of sinusoids for X, Y, and Z
network dimensions, with winding numbers defined as,

W = fn,X:fn,Y:fn,Z, (20)

where fn,X, fn,Y, and fn,Z are spline-smoothed sinusoids of n-fundamental frequency for
each respective state space dimension. Trajectories show periodic behavior when W has
rational values and show either quasiperiodic or chaotic behavior when W has irrational
values [7]. Nonlinear coherence or coupling strength between oscillators,

K = |CXYZ|/|AX|*|AY|*|AZ|, (21)

where CXYZ equals the cross-spectrum between state space dimensions and AX, AY, and
AZ equal autospectra for individual dimensions, differentiate quasiperiodic from chaotic
activity [7]. For an absolute coupling strength interval of [0, 1] (i.e., maximum desynchro-
nization at zero and maximum synchronization at one), chaos emerges for K > 0.25 [7].
Coherence values often fall well below that critical value, e.g., Ref. [98], giving networks
with global irrational winding numbers an overall quasiperiodic computational structure
with emergent strange nonchaotic attractors. By not developing chaotic structure-function
patterns, agents maintain a remarkable capacity to avert maladaptive indeterminable (i.e.,
chaotic) Wolfram Class III computations that would force erratic cognitive-emotional net-
work organization and behavior. Betti and primitive winding numbers, here winding
numbers of fewer than three degrees of freedom, and their relationship to higher-order
winding numbers, further show that certain families of network trajectory loops organize
superposed dynamics of greater complexity. Fundamental groups, not considering torsion
groups, of cognitive-emotional networks contain multiple elements and, therefore, signify
non-simply connected spaces (i.e., manifolds) constructed from continuous closed paths.
Closed paths represent the continual transition of one node to another and form geometries
that reduce combinatorial and computational complexity by grouping and parsing nodes
of similar categorical consumption demands, such as prudent savings or conspicuous
consumption, together within computational space (Figure 2). Categories predictably aid
in integrating relationships into canonical cognitive-emotional information, computations,
and physical brain networks and their elements.

The hybrid classical-quantum cognitive-emotional networks discussed above map
onto single-layer, flat Riemannian neural fields that may transform to deep and spherical
neural fields, e.g., Ref. [133]. Mappings (Figure 3) illustrate distinct field characteristics
which arise from the statistical nature and geodesics or trajectories of network structure-
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function evolution previously summarized for 3D graphical networks. Neural field dynam-
ics may follow the given geodesic path:

dσ2 = ∑gijdxidxj, (22)

where scalar dσ equals the distance between two neighboring nodes i and j, with respec-
tive arbitrary energy or fitness levels εi and εj at respective arbitrary coordinates (x1, x2,
x3) and (x1 + dx1, x2 + dx2, x3 + dx3) in Riemannian space R [134]. Here, R represents a
potential surface, field, or landscape, where nodal energy or fitness levels create varying
topological contours with local maxima and minima indicating the connectivity strength
of a cognitive-emotional network obeying classical or quantum statistical behavior. Field
contours, and thus network partitioning and embeddedness, are affected by the contin-
uum limits of Bose-Einstein, Fermi-Dirac, and Maxwell-Boltzmann statistics, leading to
adaptive or maladaptive structure-function reorganization of cognitive-emotional neural
fields. Deep-welled fields nearing nodal condensations or singularities of highly com-
pacted connections, such as those common to Bose-Einstein computations, may engage
in fast, efficient, gradient-descent solution discovery for cognitive-emotional problems
via diminished combinatorial and computational complexity. However, very strong co-
herence and periodicity can overly entrain macro- and microcircuits (e.g., fundamental
groups or metrical neuromanifolds), locking local-to-global Wolfram class operations into
inflexible attractor states and uncontrolled partition erosion into a large macrostate. If
left unconstrained, such states may result in permanent system dysfunction or pathology
uncharacteristic of healthy brains, adaptive natural or biological neural networks, and
effective cognitive-emotional processing.

These aspects of brain structure and function, determined from neural field theory
treatments, stress and complement other findings regarding the analytical insufficiencies
and vulnerabilities common to graph-theory procedures, including the introduction of
artifacts through invalid structure-function representational parcellation (or discretization)
and activity correlation thresholds, often due to missing or improper physical constraints,
dimensionality, and/or distinctions between scalar, vector, and tensor quantities [25]. Typ-
ical examples of graph-theoretic insufficiencies may be observed in resting-state fMRI
and diffusion MRI signals fitted to classical entropic landscapes, similar to that shown
in Figure 3, where regions of interest localized to brain default mode, frontoparietal, and
cingulo-opercular networks exhibit connectivity and dysconnectivity associated with brain
activity defined by maximum and pseudomaximum likelihoods or minimum probability
flow methods [135]. Because hybrid classical-quantum local control parameters are sac-
rificed for higher-level deterministic spatiotemporal activity frequencies, statistical and
energetic or entropic distributions of brain behavior other than Maxwell-Boltzmann ones
become overlooked. Constructionist, generative field theories derived from more complex
graphical representations thus better respect and rectify the physical nature and dimension-
ality of brains, retaining correct continuum limits and permitting diagrammatic analyses via
nonstatistical and phenomenological eigenfunction-based coordinate and spectral domains
unattainable with graph-theoretic measures. Such formulations may or may not resolve to,
for example, neuronal, glial, or subcellular compartments, depending on the specified scale
or gauge of parameter space and the method for normalizing (e.g., mean-field theory) over
neural populations to obtain equations for local competitive-cooperative and weak-strong
quantities, such as afferent activity, soma potentials, and firing rates [25]. For varying scale
descriptions, activity across cortical convexities may be approximated with spatial structure
eigenmodes governed by wave equations that notably solve the Helmholtz equation,

∇2u(r) = −k2u(r) (23)

where r designates spatial location, and spatial eigenmodes u(r) of brain activity are eigen-
functions of the Laplace-Beltrami operator ∇2 with eigenvalues k2, e.g., Refs. [136,137].
Low and high spatial frequencies, respectively, correspond to globally uniform and lo-
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cally discrete structure-function features. Refinement of scale for higher spatiotemporal
resolution, and ultimately cellular and subcellular representation, may be achieved with
embedded state vectors that define local activity coupling and signal transmission along
geodesic trajectories.

6. Summary

By ignoring neural field theories and physiologically derived constructs representative
of neuronal plasticity, Pessoa, in his The cognitive-emotional brain [1], takes a dangerous,
trending position in the neurosciences which disregards continuum effects on linear and
nonlinear brain-network connectivity [133,138–143]. Although it is perhaps imperfect for
some neurocognitive applications [144], absence of this content, so very important for
understanding the dynamic structure-function embedding and partitioning of healthy and
diseased brains, diminishes the rich competitive and cooperative nature of neural networks
and consequently trivializes Pessoa’s arguments, and those made by like-minded contempo-
raries, e.g., Refs. [145–148], on the phylogenetic and operational significance of an optimally
powerful integrated brain filled with both strong and weak neural connections. Riemannian
neuromanifolds, containing limit-imposing (meta)plastic Hebbian- and antiHebbian-type
control variables and other spatiotemporal neural parameters, simulate and model scalable
network behavior difficult to capture from the simpler graph-theoretic analyses of im-
aged brain structure-function favored by Pessoa [1,28]. Field theories suggest partitioning
and performance benefits of embedded cognitive-emotional networks optimally evolve
between thermodynamics-sensitive exotic classical and quantum computational phases,
where matrix singularities and condensations produce degenerate structure-function homo-
geneities dominated by strong connectivity unrealistic of healthy brains. When sustained
for long periods of time in the quantum continuum limit of Bose-Einstein statistics, such dis-
tributed, over-entrained macrostate patterns of cognitive-emotional brain dynamics become
inextricably driven by excessive, strong local neural connections and correlated activity,
juxtaposing with Pessoa’s belief that embeddedness tends to maximize brain organization
and operation. Instead, multistable network partitioning across and within classical and
quantum statistical regimes, in comparison to unconstrained embeddedness, is required
for effective cognitive-emotional network structure and function, and this phenomenon
requires greater attention in our new era of neuroscience.

One topic of particular interest for current and future neuroscience is connectome
research, such as is being produced at the NIH Human Brain Project and the Blue Brain
Project, as well as other related high-throughput computational work [149–151]. Growing
ambitions and the proliferation of brain connectome research has inspired, over decades,
expanded use of simpler, albeit scalable, graph-theory approaches for the more-or-less
tractable structure-function mapping and analyses of micro-, meso-, and macroscale ner-
vous system connectivity. The computing- and data-intensive nature of connectome studies,
as well as their positive contributions to the understanding and treatment of human dis-
ease and injury [145,149,152], to some extent justify, and even dictate, the development
and application of 2D or 3D graphs to characterize multilevel, distributed brain archi-
tectures, pathways, topographies and topologies, and functions. However, as discussed
throughout this paper, these paradigm conventions come with substantial deficits in theory-
and experiment-backed details revealed with clinical and laboratory techniques includ-
ing imaging, electrophysiological, histological, bioinformatics, and other methods. These
deficits include the failure to adopt spatiotemporal (meta)plastic control parameters and
multi-omics data elements (e.g., connectomics, genomics, epigenomics, transcriptomics,
proteomics, metabolomics, exposomics, etc.) necessary for accurate, precise, and meaning-
ful creation and interpretation of brain models and simulations, e.g., Refs. [25,153,154].

Accordingly, ongoing efforts seek to either adapt graph-theoretical constructs or to
replace them with more sound neural fields which better incorporate realistic biophysi-
cal properties and mechanisms, physical structure, and spatial geometry into brain con-
nectomics parameters [152,155–160]. Newer connectomic parameters now employed to
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enhance graph-theoretic brain structure-function models include wave-particle-defined
neural conduction and entropy-quantified activity patterns. These sorts of parameters help
normalize the brain connectome across network scales, while also proffering physiolog-
ically relevant explanations for neurocognitive processing speeds and the emergence of
frequency-specific network cores, such as localized normal and pathological brain rhythms
and coupled oscillations. State-of-the-art neural field frameworks nevertheless often exceed
the cruder capabilities, descriptive validity, and power of graphical brain representations.
For instance, trends in spectral factorization of brain fields enable unrivaled systematic rep-
resentation and analyses of local-to-global neural connectivity and dynamics. Advantages
include the promotion of testable predictive and attributional inferences about connectome
eigenmodes and activity indices, such as electromagnetic spectra, evoked responses, activ-
ity coherence and propagation, self-connectedness, and causal mechanisms significant for
brain function and (re)wiring, as well as the diagnoses, monitoring, and treatment of brain
diseases and injury. Lastly, the use of eigenmodes to portray brain structure and function
grants a precise, accurate, and flexible means of mapping resting and stimulus-induced spa-
tiotemporal dynamics within the continuum limits of fine- to course-scale fields, yielding
discrete to dispersed canonical or summed patterns of neural organization and operation.
Such mathematical depictions of brain connectomes, as before illustrated with the hybrid
classical-quantum neural field model, show that complex brain structure-function relation-
ships may be neither reduced to one simple fundamental mapping nor expanded to infinite
fundamental mappings. Rather, the healthy brain connectome and its behavior reside in
a delicate structure-function balance, directed and bounded by continuum limits set by
physiological constraints usually unappreciated by ordinary graph theories (Box 1).

Box 1. Summary Highlights.

What are the main findings?

• Neuromanifolds with metaplastic control variables simulate scalable network behavior.
• Simulations identify structure-function limits unresolved by graph analysis of imaged brains.

What is the implication of the main finding?

• Embedded brain networks optimally evolve between exotic computational phases.
• Exotic phases yield degenerate structure-function homogeneities unrealistic of healthy brains.
• Some network partitioning, not unconstrained embeddedness, maximizes brain functionality.
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Glossary

• Classical and Quantum Computational Phases are computational states of complex systems, such
as natural or technological neural networks, which obey respective classical or quantum statisti-
cal mechanics.

• Classical Networks are complex biological and technological networks whose connectivity tends
to follow Maxwell-Boltzmann classical statistics rather than Bose-Einstein or Fermi-Dirac quan-
tum statistics.

• Combinatorial and Computational Complexity are classes of complexity defined or measured by a
system’s structural (e.g., degree of embeddedness or partitioning) and processing features (e.g.,
resource allocation and capacity, processing speed, etc.).

• Degenerate Homogeneity is a limiting condition of network structure-function which converges
onto a single state, value, or distribution.
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• Deterministic Singularity is the operational and/or organizational convergence of a complex
biological or technological classical network onto one indistinguishable macroscopic state. The
connectivity of these classical networks obeys Maxwell-Boltzmann, Shannon-Einstein, and other
classical statistics when nodal strength is described as separate fitness or energy levels and
nodal links take on the identity of particle states functioning under associative-like preferential
attachment rules. In such cases, a thermodynamic control parameter dictates system behavior
and is often represented with a computational annealing parameter, such as space or time.
Singularity occurs in the thermodynamic limit.

• Effectively Connected Network is a brain network showing correlated activity supported by known
anatomical connectivity.

• Eigenfunctions are a type of eigenvector with nonzero functions acted on by linear functions
(e.g., matric operators) in a defined function space which render scalar eigenvalues designating
amplitudes for eigenfunctions.

• Equipotentiality is neurophysiological and behavioral phenomena, often attributed to Karl
Spencer Lashley, which enable intact cortical brain areas to perform functions, such as memory,
lost by other cortical brain areas due to physical damage. The concept of equipotentiality
supports and is consistent with overlapping or embedded distributed parallel networks capable
of plastic reorganization and functional redundancy. Originally, equipotentiality and the Law
of Mass Action were presented as counterarguments to observed structure-function relation-
ships strictly localized to discrete brain areas, such as speech production and comprehension
associated with brain language centers.

• Euler Characteristic or Number, named after Leonard Euler, is an algebraic topological measure of
spatially invariant structures with a various properties, including, but not limited to, properties
for summation, products, fibration, and covering.

• Fitness Level is the nodal weighting parameter for networks governed by associative-like prefer-
ential attachment rules.

• Geodesics are paths in Riemannian space that connote spatiotemporal changes in field properties,
such as energy or entropy levels which shape field contours and other topological features.

• Graph Theory is the mathematical application of graphs and their properties to describe the
behavior and organization of computational objects, such as natural and artificial neural net-
works. These objects comprise a collection of nodes or vertices connected by directed or
undirected edges.

• Hebbian Learning Rules, named after Donald Hebb, are iterative adaptive control mechanisms
utilizing activity-dependent bidirectional or dual-processes associative learning rules to either
strengthen or weaken nodal connections of an associative (biological or technological) net-
work. The set of learning rules (e.g., cooperativity, coactivity or associativity, synaptic or nodal
efficacy/weight, etc.) governing this kind of feedback/feedforward regulation, whether at
neuronal synaptic junctions or other nodal forms of computational circuitry, may fall under
different subclassifications, such as nonlinear and nonstochastic Hebbian learning, dynamic
stochastic synaptic plasticity, spike timing-dependent plasticity, and quantum bidirectional
plasticity. When natural or simulated synaptic plasticity occurs that violates Hebbian rules, it is
said to be antiHebbian in nature.

• Metaplasticity is the modulation of synaptic plasticity caused by neuromodulatory chemicals
and cellular processes.

• Model-Free Functional Network is a biological or technological network organized by activity
correlations without presumptive physical connectivity.

• Multistability refers to the activity of a dynamic system with topological minima and maxima
representative of different, adaptive system combinatorial and computational states. Systems
that are multistable maintain a capacity to organize and operate in states of differential fitness
to try to maximize system outcomes under varying contexts.

• Neural Field Theory represents a broad class of mathematical or computational models of brain
network organization and operation. This class of models, including mean field theory, relativis-
tic Shannon-Einstein theory, quantum field theory, and other models, employs physiologically
relevant control variables, such as synaptic plasticity rules, to approximate the full dynamic
range of neural structure-function evolution across different spatiotemporal (neuromanifold)
scales. Besides successfully modeling biologically observed local and global brain behavior via
relativistic and quantum physics, field theories remain unmatched in their capacity to predict
the outcomes of control variable perturbation on brain state.
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• Neuroeconomic Principles of Cognitive Computation enlist cellular energetics and organismal bioenerget-
ics concepts and metrics to determine energy or entropy savings and consumption associated with
the respective thermodynamic or informational work of scalable cell-based cognitive processes.

• Pleuripotency, sometimes reported as being first described by Rafael Lorente de Nó, is neurophys-
iological phenomena similar to equipotentiality that endow brain cells, particularly neurons,
and circuits, such as cortical columns, with the ability to perform in highly plastic multifunc-
tional capacities which assume traits found for various other cell types and different local brain
circuitry. Pleuripotency depends on the nature of structure-function connectivity and may adapt
to both weakly and strongly correlated neuronal activity.

• Poincaré or Fundamental Groups, named after Henri Poincaré, are topologically algebriac classes
of homotopic space, such as Minkowski spacetime isometries, that define, for example, simply
connected (or continuous path-connected), nonsimply connected, and disconnected Riemannian
space through invariant or equivalent loop structures.

• Probabilistic Condensation is the operational and/or organizational convergence of a complex
biological or technological quantum network onto one indistinguishable macroscopic state. The
connectivity of these quantum networks obeys Bose-Einstein statistics when nodal strength is
described as separate fitness or energy levels and nodal links take on the identity of particle states
functioning under associative-like preferential attachment rules. In such cases, a thermodynamic
control parameter dictates system behavior and is often represented with a computational
annealing parameter, such as space, time, or the “critical tunneling field strength”. Condensation
occurs in the thermodynamic limit.

• Quantum Networks are complex biological and technological networks whose connectivity tends
to follow either Bose-Einstein or Fermi-Dirac quantum statistics rather than Maxwell-Boltzmann
classical statistics.

• Quantum or Bloch Spheres, named after Felix Bloch, are quantum-mechanical geometric visualiza-
tions mapped onto a unitary 2-sphere Riemannian space with mutual orthogonal basis state
vectors serving as antipodes (or poles). Spheres correspond to 2D Hilbert spaces, with surface
points being pure quantum states and interior points being mixed ones.

• Resting State or Intrinsically Connected Neural Activity is correlated spontaneous wakeful brain activity.
• Riemannian Neuromanifold, named after Bernhard Riemann, is a neural field or matrix that

conforms to Riemannian geometry of curved space, such as positive and negative curvature, not
explained by flat 3D Euclidean geometry. The structure-function relationships of such manifolds
are simplified and more fully captured by expanding the Pythagorean theorem to arbitrary
dimensions with a metric tensor that describes relative local and global properties of a field.

• Small-World and Scale-Free Networks are classes of complex biological and technological networks
with unique structure-function properties, such as the distribution, number, and local size of
nodal neighborhoods, the length of connecting paths, and network growth rates. The global
behavior and organization of a complex network tends to evolve according to a logarithmic law
of connectivity for small-world objects and to a power law of connectivity for scale-free objects.

• Structure–Function Embedding and Partitioning is the respective encapsulation, comparmentaliza-
tion, discetization, or parcellation of a biological or technological network into structural and
functional units.

• Thermodynamic Bound is the structure-function limit forced by a control parameter on a biological
or technological system, such as natural and artificial neural networks. Control parameters may
be actual absolute ambient temperature or computational annealing parameters, such as space,
time, or the “critical tunneling field strength”.

• Topographic Network Theory is the physical or logical description of network structure and
function using various mathematical models, including, among other frameworks, mean-field,
Shannon-Einstein, and quantum theories.

• Wolfram Complexity Classes, named after Stephen Wolfram, are a set of four computational
complexity classes numbered in ascending order of complexity. Class I complexity displays
simple behavior, with nearly all initial conditions driving the system toward the same uniform
final state. Class II complexity returns many different final states, with each containing a certain
set of simple structures that either always remain the same or cycle through structural iterations
after repeated computational steps. Class III complexity shows more complicated behavior,
appearing almost random with some simple small-scale structural elements always present.
Class IV complexity presents a mixture of ordered and random behavior, with local simple
structures which interact in a highly complex manner.
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