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Simple Summary: The circadian clock is a prominent regulator of physiology. Most studies so far
have investigated its role in health and disease in adult subjects and animals. However, circadian
clock characteristics change over one’s lifetime. This review describes how the clock develops during
pregnancy and infancy, how it evolves in childhood and adolescence and, finally, how its function is
impacted by aging, with a special focus on the female reproductive system. Understanding those
changes can contribute to adapting behavioral and medical interventions to the patients’ age and
sex-specific needs.

Abstract: Most lifeforms on earth use endogenous, so-called circadian clocks to adapt to 24-h cycles
in environmental demands driven by the planet’s rotation around its axis. Interactions with the
environment change over the course of a lifetime, and so does regulation of the circadian clock
system. In this review, we summarize how circadian clocks develop in humans and experimental
rodents during embryonic development, how they mature after birth and what changes occur during
puberty, adolescence and with increasing age. Special emphasis is laid on the circadian regulation of
reproductive systems as major organizers of life segments and life span. We discuss differences in
sexes and outline potential areas for future research. Finally, potential options for medical applications
of lifespan chronobiology are discussed.
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1. Introduction

An organism needs to interact with its surroundings in search of nutrition, to protect
itself from predation, and to seek mates. In addition to reacting to environmental changes,
anticipation of such conveys survival benefits. Most lifeforms on earth are subjected to a
24-h day-night cycle driven by the planet’s rotation around its axis. An intrinsic biological
timing tool, called the circadian clock, keeps track of this rhythm. Mechanistically, the
circadian clock is generated by a transcriptional–translational feedback loop. The exact
players vary between species, but in mammals the core clock loop consists of the brain and
muscle ARNT-like 1—circadian locomotor output cycles kaput (BMAL1-CLOCK) dimer as
positive regulator and Period (PER1-3) and Cryptochrome (CRY1/2) complexes as negative
regulators. Additional proteins such as Reverse erythro-blastoma (REV-ERBα/β), RAR-
related orphan receptor (RORα-γ), D-box binding PAR bZIP transcription factor (DBP) and
Nuclear factor, interleukin 3 regulated (NFIL3) form stabilizing loops [1]. Together with
inputs through post-translational modifications of these clock proteins involving Casein
kinase 1 and Sirtuin 1 (CK1δ/ε and SIRT1, respectively, refs. [2,3]) they create a ~24-h
oscillation. The main circadian pacemaker is located in the suprachiasmatic nucleus (SCN)
of the hypothalamus, but functional clocks are expressed in almost all tissues and cells [4,5].
While principally autonomous, this clock network receives signals from the environment
that realign its oscillations with the external light-dark cycle on a daily basis in a process
called entrainment. Light is the most potent entrainment signal (or zeitgeber, reviewed
in [6,7]), but others—e.g., food intake, exercise—also synchronize the clock [8–10].
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Most circadian research on mammals has been conducted on adults—usually between
3–6 months of age in rodents or 20–40 years in human subjects. However, it is known that
the properties of the circadian clock vary with age. Both phase and strength (amplitude) of
the clock change over one’s lifetime. As circadian dysfunction is implicated in the patho-
physiology of numerous diseases, including obesity, cancer, mood and neurodegenerative
disorders [11–13], understanding the function of the clock at different stages of life can
contribute to improving treatments and developing novel preventive strategies. In this
review, we follow the circadian clock through the circle of life.

2. Prenatal and Infancy

Prenatal period—A first description of circadian clocks during development was
provided by Reppert and Schwartz in 1983 [14], who elucidated daily changes in glucose
utilization in mouse embryos three days before gestation. These glucose rhythms reflected
the maternal phase. Subsequent studies on mothers with Bmal1 deficiency and SCN lesions
confirmed this finding [14–16]. Intriguingly, studies on female mice with double clock gene
mutations showed that the fetal clock rhythm remains unchanged [17]. This indicates that
the pups are capable of developing autonomous circadian rhythms even without central
and maternal clocks and the maternal clock helps to synchronize the fetal clock during
gestation. Hence, the development of the embryonal clock relies strongly on the maternal
circadian system to set the environmental context and relay time of day information [18,19].
From the start of fertilization, the embryo relies on maternal nutrition and communication
via several signals, including hormones, to be best prepared for life outside of the utero.
To meet the required conditions for the developing fetus, changes in maternal physiology
during pregnancy are necessary. These changes involve release rhythms and concentrations
of hormones, e.g., glucocorticoids (GCs) and melatonin, which are conveyed via and,
in part, controlled by the placenta (Figure 1) (the interface between fetal and maternal
circulatory systems) [18,20,21].

Melatonin—To date, melatonin and GCs are the best studied hormones in relation to
communication of circadian rhythms between mother and fetus. For instance, pregnant
rats exhibit elevated melatonin levels in the night phase compared to non-pregnant females.
They return to non-pregnant levels on the second day of parturition. A similar change in
profile has been shown for human melatonin patterns [22]. Administration of radio-labeled
melatonin to pregnant rats revealed that it is conveyed to the fetus through umbilical
circulation [23]. How long melatonin is stable in the fetus requires further investigation.
There is, however, strong evidence that maternal melatonin can influence fetal circadian
rhythms by binding to melatonin receptors on embryonic day 18 (E18) in rats, one day
before neogenesis in the SCN [24], and in humans during the 19th week of gestation [25].
In rats, melatonin receptors are spread throughout fetal tissues and the placenta [26,27].
Studies on melatonin deficient mouse models as well as on pregnant females with lesioned
pineal glands [28–30], however, show that the embryonal circadian rhythm is still syn-
chronized to the maternal rhythm. This suggests that additional signals are sufficient to
synchronize the developing circadian clock in the absence of melatonin.

Glucocorticoids—GCs have been shown to have significant circadian entrainment
functions in adult animals [31] and to play an important role in the maturation of numerous
fetal organs, in particular of the lung [32–34]. High cortisol levels are associated with ele-
vated blood pressure, an increased risk of major depression, and metabolic changes [35–38].
Similar health effects have been observed in humans and animals when pregnant females
were stress challenged. Paradoxically, and similar to melatonin, GC levels gradually in-
crease in pregnant females until the last day of gestation [39]. The maternal levels of GCs in
the fetus seem to be precisely controlled by the placenta, as too high and too low GC levels
may result in diseases in adulthood [40,41]. The placenta can protect the embryo from
excessive GC exposure via 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), which
catalyzes inactivation of GCs [42]. Expression of the glucocorticoid receptor (GR) in the em-
bryo is highly region specific and changes dynamically along the period of gestation. This
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dynamic leads to altered local sensitivity of embryonic tissues to GC stimulation [43–47].
In addition to this, certain events can persistently alter GR sensitivity in the developing
embryo. Such GR programming may, for example, be caused by elevated stress [48–50].
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Figure 1. The Role of the Maternal Clock in Synchronizing the Clock of the Embryo and Infant. Ma-
ternal signals, such as melatonin and glucocorticoids, gradually increase during the gestation period
and synchronize the circadian clock of the embryo. These hormones are transmitted through and
controlled by the placenta, which serves as the interface between the fetal and maternal circulatory
systems. Their function is to adapt the developing embryo to the external environment, ensuring
optimal preparation for life outside the womb. Central and peripheral clocks exhibit different devel-
opmental states, with the central clock exhibiting rhythmicity as early as E13, while the peripheral
clocks only become rhythmic at developmental age of E18.After birth, the infant is no longer di-
rectly synchronized by the maternal suprachiasmatic nucleus (SCN), but relies largely on its own
independent clock, which can be directly synchronized by light. However, breast milk, illustrated
by a blue drop, contains hormones such as melatonin and glucocorticoids that can modulate the
synchronization of the infant’s clock, particularly in the first few days after birth. Once the infant’s
retina is fully developed at P13, light becomes a stronger synchronizer than maternal milk. Created
with BioRender.com.

Recent work by Astiz et al. [51] in mice at E17 sheds new light on how GC sensitivity
of the fetal hypothalamus can be programmed. The researchers show that hypothalamic
diurnal expression rhythms of GR and REV-ERBα, a clock protein that also reduces GR
stability [52], are anti-phasic in wild-type and absent in clock deficient mice, implying that
the fetal GR response to GCs is controlled by the fetal clock. Interestingly, the presence of
GR in the SCN decreases within the first week after birth, just before the animals display
robust circadian gene expression in peripheral tissues [53], and the adult SCN no longer
responds to GCs [53,54]. This leaves the question as to whether GC levels can influence
the stability of the central clock during embryonic development, which may then have
implications for the SCN’s response to environmental signals in adulthood.

Cecmanova et al. [55] reported that GCs increase the spontaneous development of
rhythmicity in the fetal SCN and entrain the embryonic clock of PER2::LUC circadian
reporter mice. The mechanism underlying the effect of GCs on the immature SCN clock is
largely unknown. However, it has been suggested that GCs may not use the canonical GR
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pathway via transcriptional activation through glucocorticoid response elements (GRE),
but rather signals via non-genomic cAMP response element-binding protein (CREB)-related
signaling pathways that induce c-fos expression [55,56]. Long-term GC induced changes
in the circadian clock may involve epigenetic modifications. Maternal treatment with
synthetic GCs and prenatal stress during late gestation leave long-lasting changes in
gene expression in the offspring, associated with changes in promoter methylation and
acetylation at corresponding loci [50,57–59]. Intriguingly, these changes are different from
those induced by natural GC surges [57,59] implying that synthetic and natural cortisol
may differ in their capacity to affect the epigenome.

In adult animals and humans, the adrenal glands receive rhythmic signals from the
SCN that, in turn, orchestrate the rhythm of GC secretion [60–62]. Similar to adult peripheral
oscillators, fetal adrenal clocks receive maternal zeitgeber input through GCs [63]. In
capuchin monkeys, the expression of Per2 and Bmal1 genes in the adrenal gland resembles
respective expression rhythms in the fetal SCN, suggesting that the phase of fetal adrenal
gland and SCN are controlled by the same oscillator, namely the maternal SCN. The
superiority of the maternal SCN as a synchronizer of the fetal circadian system has been
underscored by lesions of the maternal SCN in pregnant rodents. Loss of the SCN leads
to desynchronization of behavioral and physiological rhythms in the pups after birth [64].
The successful restoration of wheel running activity in adult rodents with SCN lesions
through embryonic transplantation of SCN grafts or cells from mid-gestation provides
further evidence of the full functionality of the embryonic SCN clocks [65,66].

Clock gene expression—While the SCN is fully developed during early gestation, clock
gene expression in other tissues is at low levels at E15. The fetal pineal gland, for instance,
does not express the Per2 but does express Bmal1, Clock, and Cry2 [67]. On the other hand,
the fetal liver expresses all clock genes, but only Rev-erbα shows oscillation [65]. In contrast
to the clock gene expression in fetal tissues, tissue explants of PER2::LUC reporter mice
at E15 measured in vitro reveal self-sustained circadian rhythms [68,69]. These rhythms
become stronger as the fetus approaches term [67]. Due to these ambiguous results assessed
both in vivo and in vitro, it is difficult to conclude whether the detected rhythms reflect
the actual circadian clock rhythm in the embryo or if they are a result of the experimental
manipulation. Moreover, to what extent these clock genes in various tissues, including
the SCN, represent functional circadian clocks is currently unknown. Given that various
clock deficient mouse models can be born and live to adulthood with various metabolic
and sleep disorders [70–75], it can be assumed that the integrity of the circadian system
plays an important role in a number of physiological functions, e.g., metabolic balance and
sleep homeostasis [64]. The extent to which these physiological mechanisms work in the
fetus still has to be shown.

Infancy—While during gestation the embryonal clock is directly synchronized by the
maternal SCN, this direct communication is lost after birth. Therefore, right after birth the
infant relies on the development of its own independent central clock (or external time
signals mediated, e.g., through the mother’s milk—see below). In the first week after birth,
the central clock is relatively immature and contains 13% of the adult number of arginine
vasopressin (AVP) expressing neurons and only few cells positive for vasointestinal peptide
(VIP) [76]. At this developmental stage, the circadian system is substantially vulnerable to
environmental and maternal influences. During the first week, the infant brain undergoes
extensive changes in neuronal and glial networks into functional circuits [77]. Importantly,
core elements of the circadian system, such as the Per, Cry, Bmal1 and Clock genes, are
already expressed in the fetal SCN but do not show a clear circadian rhythm [78–81]. On
day 10 after birth, a clear oscillation of these genes and their proteins is observed [82,83].

Light entrainment—During synaptogenesis, the terminals of the retino-hypothalamic
tract (RHT) innervate the ventrolateral region of the suprachiasmatic nucleus (SCN). This
process takes place shortly after birth [84]. Intrinsically photosensitive retinal hypothalamic
ganglion cells (ipRGCs), which are a key for measuring light irradiance, integration of
signals coming from retinal receptors, and their mediation to the SCN, are already detectable
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at around mid-gestation (E11) in mice [85]. Hence, infants may already receive light
information immediately after birth. However, due to their broad distribution in the retina
that does not yet contain any classical photoreceptors, image forming vision is not present
in mice until postnatal age (P10) [86]. The presence of ipRGCs containing melanopsin,
however, enables new-born pups to show negative phototaxis as early as P6 [86–89],
implying that light may also control physiological functions, sleep-wake rhythms, alertness
and cognitive functions of infants immediately after birth. In humans, the RHT is detectable
at week 36 of gestation [90,91]. This was confirmed in new-born babies kept under constant
darkness (DD) or light-dark cycles of 24 h (LD) in the first few days after birth. The plasma
of babies kept in DD revealed elevated plasma melatonin levels compared to those kept
under LD conditions. This suggests that the neonate is sensitive to light immediately after
birth and a connection between RHT, pineal gland and SCN is established. However,
whether these light signals induce protein kinase cascades and Per induction in the SCN,
as it is the case in adult animals [6,92], is not known to date.

Maternal milk—In addition to light, breast feeding in humans or lactation in rodents
is a further important synchronizing parameter of the infant’s circadian system in the
first days after birth [93]. Human studies have shown that maternal milk contains several
components, which may serve as regulators of the infant’s circadian. Breast milk contains
high concentrations of cortisol, tyrosine and immune factors, e.g., cytokines, during the
light phase, whereas leptin, melatonin and tryptophan are high during the night phase
(Figure 1) [94–98]. Consequently, formula-fed children might show a different development
and phase of their circadian clock due to a lack of the maternal humoral components men-
tioned above. There are only few studies showing that maternal hormones in breast milk
may serve as regulators of circadian clock maturation or have an impact on the synchroniza-
tion of the infant’s clock. Existing studies address the impact of milk supplemented with
cortisol or melatonin only. They demonstrate a significant impact of both hormones on the
infant’s sleep rhythms, sleep fragmentation and duration [99]. Cubero et al. [100] found that
formula-fed children have lower levels of 6-sulfatoxymelatonin in their urine compared to
breast-fed infants. This suggests that maternal melatonin secreted into the bloodstream
and transferred into maternal milk [97] crosses the infant’s intestinal barrier [101]. Whether
melatonin supplementation of formula milk improves sleep in infants via an action on their
circadian clock, however, remains unexplored.

Delivery of maternal cortisol to the infant via breast milk has been demonstrated in
humans and rodents, showing that not only the diurnal rhythm of maternal cortisol, but
also its concentration, is similar in infants [102–105]. Studies on adult humans and animals
reveal that increased GC levels induced by stress or through external administration result
in sleep disruption, changed metabolism and stress responsiveness [106–108]. Intriguingly,
similar effects of cortisol can be observed in infants when maternal milk containing high
cortisol levels is consumed [109–113]. This implies that maternal cortisol may play an
important role in regulating circadian rhythms and physiological processes in infants.
Studies in adult rodents and humans have already demonstrated that GCs affect the clock
phase in peripheral oscillators [113]. Moreover, GCs can also directly influence synaptic
plasticity [114,115].

3. Childhood and Adolescence

Childhood—One of the most prominent physiological outputs of the circadian clock
is the sleep/wake rhythm. This has been intensively studied in humans and rodents alike.
Sleep is regulated by two processes, the circadian process (process C), and the homeostatic
process (sleep pressure or process S). The circadian component of sleep is SCN dependent
but also relies on the hormone melatonin, produced in the pineal gland during the dark
period. Dim-light melatonin onset (DLMO), which is the start time of melatonin production
when decoupled from external light cues, is considered the gold standard for assessing
the circadian pacemaker phase in humans [116]. Another tool used by chronobiologists
to assess the general clock phase is the Munich chronotype questionnaire [117]. This es-
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timates clock phase by tracking voluntary sleep schedules. Both tools have been used in
young children and have been shown to be a reliable measure of circadian rhythms. Young
children and toddles differ from adults, as they are predominantly morning chronotypes
(i.e., showing earlier bedtimes) [118] with earlier DLMO [119]. They also tend to follow
a biphasic sleep pattern, the disappearance of which is one of the milestones of early
childhood [120]. Unsurprisingly, regular napping leads to kids falling asleep approx. 1 h
later at night, with higher sleep latency and shorter sleep duration when compared to
non-napping toddlers [121]. While the children transition out of the biphasic sleep pattern,
they may be experiencing sleep loss, as exemplified by an increased slow-wave activity of
toddlers deprived of a nap [120]. Children (and teenagers, as we will discuss below) are
often forced to function according to their parents’ schedule, or that of their preschool. Mis-
alignment of one’s intrinsic clock and such social schedules—which is usually followed by
elongated and shifted sleep schedules during free days, resembling short transcontinental
trips on sleep logs—is termed social jetlag (SJL). In fact, kids attending preschool experience
higher rates of social jetlag than their home-staying peers (differences of 26.3 vs. 17.6 min
in sleep phase between weekdays and weekends) with a quarter of kids’ SJL being greater
than 30 min [122]. While larger SJL correlates with health problems [123,124], such a con-
nection has not yet been definitively described for young kids. For example, SJL in children
has no significant negative effects on temperament [122]. However, young children entrain
to light with high individual sensitivity [125] and, similarly to adults, will phase advance
their rhythm when in more natural environments (camping, low light pollution, ref. [126]).
This light entrainment may have adverse effects when mistimed, as children sleeping near
a screen tend to get around 20 min less sleep [127].

Adolescence—While alterations in sleep patterns of young children may be a cause
for concern for their parents, the weekly shifts in sleep patterns seen in many teenagers
are significantly worse. As many as 45% of US adolescents may not be getting adequate
sleep [128] and as many as 16% may suffer from delayed sleep phase disorder characterized
by increased daytime sleepiness and inability to sleep at normal times [129,130]. This
is mostly caused by a rapid phase-delay in chronotype which accompanies the onset
of puberty and reaches its peak at around 20 years of age [131,132]. While the end of
puberty is marked by the cessation of bone growth, the end of adolescence, as proposed
by Roenneberg et al. in 2004, could be defined as the point of one’s latest chronotype. Its
timing also shows a sex difference, with girls reaching it approx. 1.5 years earlier than
boys [132], in line with the earlier onset and completion of puberty in females. Considering
that these delays in phase correlate with secondary sex development [131–133] and both
sleep and the circadian clock are modulated by steroids [134–137], one could infer a cause–
effect relationship. Physiologically, the shift to later chronotypes seems to be caused by a
combination of slower sleep pressure build-up and a circadian phase delay [128]. Indeed,
a study comparing pre-, early- and post-pubertal children shows that the sleep pressure
dissipation rate (measured as the decline in the 2-Hz electroencephalography power band)
does not differ, while the build-up of sleep pressure is slower in the older group [138]. This
is likely compounded by environmental factors such as limited exposure to light during
schooldays coupled with increased exposure to light-emitting electronic devices in the
evening [139,140]. On a molecular lever, the physiological phase shift could be driven
by chromatin modifications, as it was observed that later sleep timing correlates with
methylation levels of circadian genes [141]. While this phenomenon was mostly studied
in humans, a few animal studies show that it may similarly apply to other mammalian
species. A similar shift of 1 to 4 h in activity rhythms during puberty was observed in
macaques, degus, rats, mice and in fat sand rats [128]. Juvenile mice also show differences
in their entrainment capacities [142].

Late chronotypes, which teenagers predominantly are, tend to sleep less on average,
experience greater SJL and compensate for lost sleep on weekends [143]. This may affect
their physical and mental health. As a consequence, researchers have recommended that
school start times should be delayed to fit the natural rhythm of adolescents [144,145].
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A pilot study which shifted the school start time from 8:50 AM to 10:00 AM showed a
12% improvement in academic progress and 50% drop in absences due to illness [146].
Additionally, to mitigate the harmful effects of blue light exposure, a week of blue light
blocking glasses was shown to attenuate LED-induced melatonin suppression and subjec-
tive alertness before bedtime [147].

4. Menopause

Reproduction in mammals only lasts for a limited time [148]. This applies to females
and, to a smaller extent, to males. Both sexes, however, experience physiological changes
during the aging process related to changes in sex hormone levels [149]. The onset of
menopause is often described as the end of a woman’s “biological clock” [150,151]. When
the ovaries start running out of egg follicles that release estrogen, they also become less
responsive to other hormones that stimulate ovulation. As a result, the ability of females in
terms of reproduction rapidly drops to zero, whereas andropause in men is characterized
by a rather gradual reduction in testosterone levels over decades [152]. This testosterone
level reduction, however, has only little effect on the viability of sperm cells and, thus, the
principal ability to reproduce [153–155].

Clock of the reproductive system—The discovery of the ovarian clock [156,157] consid-
erably changed the perspective on reproduction in women. The ovarian clock is controlled
by neuroendocrine signals from the SCN [158]. A substantial body of evidence from human
and mouse studies shows that the circadian clock plays a crucial role in the physiological
processes of the reproductive system, such as ovulation and hormone secretion. Deficien-
cies in the circadian clock through clock gene mutations can lead to impaired reproductive
success [159]. For example, female mice with Bmal1 deficiency or double clock mutations
in Per and Cry exhibit disrupted mating behavior and infertility [160–167]. Single clock
gene mutations in Per1 and Per2 lead to reduced ovarian function [160,168,169]. Conversely,
other studies in Bmal1 knockout and Clock mutant mice show that a deficiency in clock genes
weakens the luteinizing hormone (LH) surge, but ovulation is unaffected [71,164,170,171].
Thus, the circadian rhythm appears to play a crucial role in determining the timing of the
LH surge, but it is not necessary for spontaneous ovulation. The local clock in the ovaries,
however, has a significant impact on the timing of the ovulatory response to LH [172]. This
suggests that the ovarian clock may control LH receptor signaling and ultimately influence
the timing of ovulation.

HPG axis—In female rodents during the ovulatory cycle, sex steroid secretion is
controlled similarly to that in males via the hypothalamus-pituitary-gonad (HPG) axis
(Figure 2). It initiates from a neuroendocrine cascade, e.g., gonad releasing hormone
(GnRH) in the medial preoptic area (mPOA), kisspeptin neurons in the anterior ventral
paraventricular nucleus (AVPV), and arginine vasopressin (AVP) neurons in the SCN.
This dictates the release of luteinizing hormone (LH) and follicle stimulating hormone
(FSH) in the pituitary gland [158,173] (Figure 2). Both hormones act on gonads and induce
gametogenesis and sex hormone production. During the follicular phase of the menstrual
cycle, FSH stimulates the maturation of ovarian follicles and the secretion of estradiol. When
estrogen levels consistently peak for 48 h in a human, the secretion of FSH is suppressed,
leading to a surge in GnRH from the hypothalamus. This GnRH surge stimulates the release
of gonadotropic hormones, including a surge in LH. The combination of the FSH peak and
LH surge triggers ovulation. Following ovulation, FSH levels remain low, preventing the
growth of additional follicles [174]. Additionally, they modulate the clock gene rhythm in
the ovarian tissue [175,176].

Aging female SCN—The activity of the HPG axis is regulated by three crucial brain
nuclei, i.e., the mPOA, the AVPV, and the SCN, which control reproductive success. The
activity of these nuclei is also regulated by the balance of positive and negative effects
of sex steroids [158]. The mechanism mediating both negative and positive feedback of
estradiol is complex and still not fully understood. The abnormally high or persistently
low estrogen plasma levels during reproductive senescence can impact HPG axis activity,
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resulting in reduced ovulation [177]. Interestingly, the changes in GnRH and kisspeptin
secretion in HPG axis vary among species. In humans, it has been shown that high plasma
concentrations of estrogen are associated with insensitivity of the HPG axis to estrogen
feedback [178,179]. This, in turn, leads to an increase in GnRH [180,181]. It is important to
note that these changes in HPG axis activity are caused by depletion of ovarian follicles in
middle-aged women. In contrast to humans, aging acyclic rodents retain the follicles in
their ovaries [182–184]. Instead, they show a reduction in hypothalamic GnRH cell numbers
followed by alterations in LH surge that contribute to reproductive senescence [185–187].
The importance of the hypothalamus in regulating reproductive ability could be confirmed
with transplantation experiments. Aged ovaries transplanted into young adult ovariec-
tomized female rats, for example, result in restoration of ovulation [188,189]. Besides these
differences, in both humans and rodents, the rise of FSH concentrations is a main feature
of reproductive senescence [190,191]. Altered LH secretion patterns characterized by an
increased duration and decreased frequency of LH pulses can also be observed in both
acyclic rodents and premenopausal women [192,193]. Therefore, to fully understand the
transition to menopause in humans, the use of rodent models in hypothalamic decline can
be of great help.
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Figure 2. The HPG (hypothalamic-pituitary-gonadal) axis regulates the levels of sex hormones in the
human body. In the hypothalamus, the AVPV and mPOA communicate with each other and receive
input from SCN neurons. After stimulation with peak estrogen, mPOA neurons produce GnRH
which is transported to the pituitary. The pituitary then produces LH and FSH in response to GnRH
stimulation, which act on the gonads to induce the production of sex hormones. Unlike the testes,
the ovaries have been reported to express a functional circadian clock and respond to humoral and
neuronal signals independently of LH and FSH rhythms. The rhythmic production of estrogen and
progesterone is therefore likely influenced by the peripheral ovarian clock, as well as by rhythmic LH
and FSH levels [194]. Estrogen also can inhibit GnRH secretion and gene expression. Testosterone is
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produced in a rhythmic manner [195], but this rhythmicity is largely HPG axis driven. During a
woman’s life, the number of follicles in the ovaries diminishes until extremely low follicle numbers
trigger menopause. However, the influence of this process on the peripheral ovarian clock is yet to be
fully understood.

A very noticeable alteration associated with aging is changes in sleep–wake rhythms
that are mainly, but not exclusively, regulated by the SCN [196–198]. A large body of
evidence shows that age-related changes in the SCN comprise reduced neuronal activity
of AVP, and VIP neurons important for intercellular coupling within. and robustness of,
the circadian pacemaker structure. Loss of AVP/VIP activity contributes to the decline
in behavioral and physiological rhythms [199–201]. Both neurons have also been linked
with control of ovulation [173,202–204]. For instance, AVP, that mediates SCN output,
triggers the LH surge through activating kisspeptin neurons in AVPV, which project to the
mPOA [205,206]. VIP neurons, in turn, project to the mPOA and control the timing of the
LH surge via the triggering of GnRH neurons [206]. According to Krajnak et al. [186] and
Davidson et al. [207], the molecular clock rhythm itself does not change significantly in aged
animals. Therefore, it can be postulated that GnRH and kisspeptin circuits may become
less sensitive during the aging process. Further research into the role of the circadian clock
system in neural circuits regulating LH and FSH secretion and ovulation is important for
understanding timing mechanisms contributing to reproductive senescence.

5. Old Age

With increasing age, many physiological processes lose integrity, which results in a
loss of resilience when faced with environmental challenges [208]. This increases the vulner-
ability to disease and, ultimately, death. One’s longevity is only partially (~15–30%) [209]
explained by genetics, with a marked influence of personal history and life-long habits [210].
Between species, longevity varies largely. Across 26 different mammalian species with
diverse lifespans, thousands of genes correlate with longevity. These can be divided
into negatively correlated (mainly involved in energy metabolism and inflammation) and
positively correlated (associated with DNA repair, microtubule organization and RNA
transport). Remarkably, many genes in the negatively correlated group are under tight
circadian regulation, suggesting that one adaptive value of the clock may lie in avoiding
persistently high expression of such death promoting genes [211]. In addition to this, many
ailments typically associated with old age also have a circadian component. These include
neurodegeneration [212], cancer [213], cardiovascular diseases [214], hypertension [215]
and others. Other dysfunctions include poor sleep [216] and poor cognition [217].

Aging both reduces the amplitude and phase advances of the circadian rhythms of the
body, including sleep, body temperature, cortisol and melatonin [218–221] (Figure 3). These
changes can be linked to circadian rhythm perturbation in both the SCN and peripheral
tissues. Transplant experiments demonstrate the importance of the SCN in this context, as
old animals that receive transplants of fetal SCN improve their rhythms of locomotor activ-
ity, body temperature, water consumption, pro-opiomelanocortin, corticotropin releasing
hormone, and even show increased longevity [222–224]. More recent studies show how
expression of neurotransmitters in the SCN diminishes with age. Both AVP and VIP levels
are reduced in aged humans [225–227] and rodents [199,228]. In addition, GABAergic
synapses also diminish in numbers in aged mice [229]. This understandably leads to lower
amplitudes and lower levels of spontaneous firing activity [230–232]. Overall, this suggest
that an aging SCN loses its internal synchrony [233], resulting in a loss of overall coherence
of SCN outputs [234].
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the neurotransmitter levels go down and overall coherence is disturbed. Downstream, the lower
clock amplitude is also observed in several peripheral organs, including the skeletal muscle, kidney,
thyroid and ovaries. As a result of these, and other, changes, the behavioral patterns of sleep/wake
and activity also shift.

The disruption of SCN rhythms may partially be driven by weakened entrainment,
with a focus on light. This can be caused by physiology and environmental factors alike.
However, older people tend to spend more time exposed to light than younger adults [235].
That may be offset by degenerative changes in the eye, which loses the transmissibility of its
lens and pupil area with age [236,237] and therefore communicates lower levels of light via
the RHT to the SCN. This is estimated to amount to a 72% loss of transmissibility at 480 nm
(the absorption maximum for circadian entrainment) from the age of 10 to 80 years [236]
(Figure 3). In addition, the RHT communicates with the SCN via α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate receptors (NMDA).
The latter have been reported to show response deficits in older mice [237].

Downstream of the SCN, peripheral clocks are also disturbed in the elderly (Figure 3).
Transcriptional rhythms of multiple organs have been reported as attenuated in aged
patients and mice, including ovaries [238], thyroid [239], skeletal and vascular muscle [240]
and kidneys [241]. Some of those peripheral clock rhythms could potentially be restored by
timed exercise [240,241]. Studies in mice show that voluntary wheel running can restore
dysfunctions in activity rhythms in older mice, and there seems to be a sex difference in this
response, as older females run significantly longer distances than males [242]. Surprisingly,
some of these studies show a relative retention of liver rhythms [238,239], while another
study conducted in rats suggest that changes in liver circadian genes during aging might
be characteristic of males [243].

Mouse wheel-running studies also report that older animals have a lower activity with
a delayed onset (i.e., a phase delay) [242]. This is accompanied by an increase in onset
variability [244]. Interestingly, this disturbance of wheel-running patterns seems to precede
learning and memory impairment, suggesting that circadian rhythm disturbances could
serve as an early predictor of cognitive decline [245]. Similar processes may be at play in
humans as, in an accelerometry study of thousands of US adults, more advanced biological
aging was linked to lower amplitude, less daily stability and higher inter-day variability of
rest–activity rhythms [246].

Elderly subjects also experience significant changes in their chronotype and sleep
patterns. In line with a phase advance of physiological rhythms, chronotype shifts towards
earlier times with advancing age until it surpasses the average (early) chronotype of
children [117]. This may be driven by endocrine changes, as is suspected of the late-



Biology 2023, 12, 383 11 of 21

chronotype shift observed in teenagers. Worryingly, around 50% of old people suffer from
poor sleep [247]. This is associated with changes in sleep architecture which include longer
latencies to fall asleep and less time spent in deep non-REM sleep (stages 3 and 4), as well
as REM sleep [248,249]. In addition to an effect on well-being, self-reported short sleep
duration correlates with poor cognitive performance [250]. To mitigate this, several pilot
studies propose a use of bright light in nursing homes to improve sleep (among other
symptoms) in elderly patients, and the results are promising [251–253].

It is not yet elucidated whether sleep disturbances are a consequence of aging or an
aggravating factor. Nevertheless, research suggests that, in older patients, different forms
of chronotherapy could improve well-being and health. Further studies are needed to
assess the effectiveness of such interventions.

6. Conclusions

In conclusion, we observe dramatic changes in circadian architecture along the life
cycle in humans, as well as in experimental rodents. While circadian rhythms are initiated
under control by maternal factors inside the womb, they only fully mature after birth.
During older age, rhythms gradually become more and more disrupted due to a lack
of internal synchronization at all levels of organization—from genes to behavior—and,
at the same time, a loss in responses to external zeitgeber input. These changes, while
being interesting in themselves from a biological (evolutionary) perspective, may also
be of high value for medical reasons. Circadian rhythms affect disease resistance and
development. They impinge on diagnosis parameters and may affect the effectiveness
of treatments. Thus, considering the age of a patient may critically affect the best time
(and, potentially, choice) of therapy. One special case is fertility and reproduction. Clocks
have been shown to play important roles in both male and female reproductivity, and
alterations in circadian rhythms may indicate imminent changes in reproductive fitness.
On the other hand, circadian phenotyping may improve interventions aiming at increasing
reproductive success, especially in relation to increased age. Finally, it will be of interest to
study circadian rhythms along the life cycle of extremely short or long-lived species to better
understand and potentially exploit the interaction between circadian and lifetime clocks.
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