
Citation: Littek, A.; McKenna, S.J.;

Chiam, W.X.; Kranioti, E.F.; Trucco,

E.; García-Donas, J.G. Automatic

Segmentation of Osteonal

Microstructure in Human Cortical

Bone Using Deep Learning: A Proof

of Concept. Biology 2023, 12, 619.

https://doi.org/10.3390/

biology12040619

Academic Editor: Eugénia Cunha

Received: 23 February 2023

Revised: 11 April 2023

Accepted: 14 April 2023

Published: 19 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biology

Communication

Automatic Segmentation of Osteonal Microstructure in Human
Cortical Bone Using Deep Learning: A Proof of Concept
Alina Littek 1, Stephen J. McKenna 1,* , Wei Xiong Chiam 1 , Elena F. Kranioti 2 , Emanuele Trucco 1

and Julieta G. García-Donas 3,*

1 Computer Vision and Image Processing Group, School of Science and Engineering, University of Dundee,
Dundee DD1 4HN, UK; alina.littek@gmail.com (A.L.); 2478626@dundee.ac.uk (W.X.C.);
e.trucco@dundee.ac.uk (E.T.)

2 Forensic Medicine Unit, Department of Forensic Sciences, School of Medicine, University of Crete,
70013 Heraklion, Greece; ekranioti@uoc.gr

3 Centre for Anatomy and Human Identification, School of Science and Engineering, University of Dundee,
Dundee DD1 5EH, UK

* Correspondence: s.j.z.mckenna@dundee.ac.uk (S.J.M.); jgomezgarciadonas001@dundee.ac.uk (J.G.G.-D.)

Simple Summary: Human cortical bone microstructure assessment is used in biological and foren-
sic anthropology for different purposes. For example, studies have investigated the relationship
between the microstructural features and age, while others have examined bone microstructure
for identification of animal and human bone. The present research is a pilot study investigating
the possibility of automatic analysis of human bone microstructure microphotographs through the
application of deep learning. The aim of this study is to explore the feasibility of identification of
intact and fragmentary osteons in human cortical bone. Our results demonstrate the potential of deep
learning for differentiation of osteonal structures, although a larger dataset and further refinement of
the model is required in the future to confirm our preliminary results and provide a more accurate
identification of osteonal structures.

Abstract: Cortical bone microstructure assessment in biological and forensic anthropology can
assist with the estimation of age-at-death and animal-human differentiation, for example. Osteonal
structures within cortical bone are the key feature under analysis, with osteon frequency and metric
parameters providing crucial information for the assessment. Currently, the histomorphological
assessment consists of a time-consuming manual process for which specific training is required.
Our work investigates the feasibility of automatic analysis of human bone microstructure images
through the application of deep learning. In this paper, we use a U-Net architecture to address the
semantic segmentation of such images into three classes: intact osteons, fragmentary osteons, and
background. Data augmentation was used to avoid overfitting. We evaluated our fully automatic
approach using a sample of 99 microphotographs. The contours of intact and fragmentary osteons
were traced manually to provide ground truth. The Dice coefficients were 0.73 for intact osteons, 0.38
for fragmented osteons, and 0.81 for background, giving an average of 0.64. The Dice coefficient of the
binary classification osteon-background was 0.82. Although further refinement of the initial model
and tests with larger datasets are needed, this study provides, to the best of our knowledge, the first
proof of concept for the use of computer vision and deep learning for differentiating both intact and
fragmentary osteons in human cortical bone. This approach has the potential to widen and facilitate
the use of histomorphological assessment in the biological and forensic anthropology communities.
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1. Introduction

In biological and forensic anthropological analysis, the macroscopic observation of
bone allows the expert to understand key information about an individual, such as popula-
tion affinity, sex, age and stature, which correspond to the four main pieces of information
gathered for the construction of the biological profile [1]. When the remains are highly
fragmented or affected taphonomically, the assessment of cortical bone microstructure is
the last resource before opting for biochemical processes [2]. From the bone tissue types,
the outer highly mineralized layer of tissue provides resistance to further taphonomic alter-
ations [3]. Thus, cortical bone histomorphometry can assist the disciplines offering insights
into age-at-death, differentiation between animals and humans, and the identification of
pathological conditions [4–6].

Within cortical bone, osteons are the main feature assessed for most anthropological
analysis [7–9]. Osteonal structures formed by basic multicellular units represent the traces
of cyclic remodeling events [10,11]. Methods are therefore developed using the osteon as
the key parameter, with measurements taken in relation to their frequency per bone area,
size and shape [7,9,12]. Qualitative analysis is commonly performed with osteons being
differentiated as intact or fragmentary depending on different degrees of resorption [9].
Other osteons are differentiated based on their morphological characteristics, as for example
drifting or double zonal osteons, providing information about metabolic or biomechanical
demands [13,14].

Technically, bone cross-sections are processed for histomorphometric assessment
manually or with special equipment by grinding and polishing the bone surface until
the microscopic features can be observed with enough detail for the expert to perform
the analysis [15,16]. As for the data collection approach, the manual counting or manual
measuring of osteonal structures can be conducted using a standard research microscope
and image analysis software such as ImageJ [17,18]. Regardless of population differences,
the average amount of intact and fragmentary osteons for the rib cross-section of a 60-year
old individual is approximately 300, with the clavicle cross-section having 1220 at the age
of 40 [19,20]. The data collection protocol for cortical bone histomorphometry entails a
time-consuming process requiring specialized training as well as experience to ensure
accurate feature identification [21,22].

Automated data collection processes have emerged in recent years, including software
tools and machine learning-based methods [23–25]. Approaches such as neural networks
or random forests have been applied for population affinity, sex and age estimation [24,26].
The only osteon segmentation system using deep learning known to us was designed
for osteo-histological segmentation of non-avian theropod dinosaurs [27]. Images are
substantially different (e.g., sparse, mostly isolated target structures; largely uniform
background), making that system arguably unsuitable for images of human osteons like
the ones used in our study. Although further validation is required to ensure reliable
outcomes [28,29], automated approaches have shown promising results as a means to
enable more sophisticated statistical analysis, data interpretation and decision making [30].

Our study is part of a research program exploring the potential of machine learning for
assessing cortical bone microstructure. A proof-of-concept system for segmenting osteons
is reported, along with tests on a pilot data set with ground-truth annotations. To the best
of our knowledge, this paper presents the first attempt to automate the histomorphometric
anthropological assessment of intact and fragmentary osteons in human cortical bone using
artificial intelligence techniques.

2. Materials and Methods
2.1. Dataset

The sample under study consists of microphotographs obtained from rib thin sections
that were collected from a previous study and includes the mid-segment of standard ribs
from individuals with a mean age of 60 (SD = 17.89) [19].



Biology 2023, 12, 619 3 of 10

The histological slides were prepared using standardized procedures [19,31]. High
quality microphotographs were captured at 100x magnification under semi-polarized
settings using a Leica DM 750P research microscope fitted with a Leica MC 170 HD camera
and Leica Application Suite V4 software (Leica Microsystems, UK). The dimensions in
pixels were 2592 × 1944 and 1600 × 1200. Although only semi-polarized microphotographs
were used for the machine learning analysis, transmitted light microphotographs were
also used for further confirmation of structure identification on very crowded cortices (e.g.,
high frequency of osteonal structures on oldest age individuals).

Only secondary osteons were assessed, as these are the ones usually quantified for the
anthropological assessment [7,8,32–34]. A protocol for secondary osteon identification was
created for consistency purposes. The two types of osteons most commonly assessed in
previous studies were differentiated: intact osteons and fragmentary osteons [7,9,19,32,35].
The definitions followed for identification were those from Stout and Paine [9]. Intact
osteons were classified as such if the Haversian canal showed at least 90% of its perimeter
with no sign of resorption, while fragmentary osteons were identified as having more than
10% of their canals showing signs of remodeling (Figure 1). For those osteons that were cut
by the frame of the microphotograph, both the Haversian canal and concentric lamellae
and osteocytes arrangement were used for reference, with the canal visibility criteria being
used (e.g., a fragmentary osteon was identified if the canal perimeter was cut by more
than 10%). Drifting osteonal structures were classified as intact or fragmentary based on
the aforementioned criteria and following guidelines proposed by Robling and Stout [14].
Type II and double zonal osteons were identified following descriptions and guidance from
previous studies [36,37].
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Figure 1. Examples of intact osteons (black outlines) and fragmentary osteons (colored outlines)
identified following the criteria for this study.

Significant variations in color, shape, and portion of bone are present, making auto-
matic segmentation challenging. In addition, some of the images show colored markings
on the bone that were added during the preparation for the thin sections. An illustration of
variations in size, color and shape is shown in Figure 2.
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2.2. Manual Image Annotation

Intact and fragmentary osteons were manually annotated on 99 microphotographs
using the VGG Image Annotator (www.robots.ox.ac.uk/~vgg/software/via/ (accessed 30
January 2022)), a user-friendly and lightweight software application appropriate for tracing
image regions. Annotations were performed by a single observer with extensive experi-
ence in bone histomorphometry (JGGD). Intact and fragmentary osteons were identified
according to the protocol described above. The remaining image regions were considered
background. Contours were approximated by polygons with no restrictions on the number
of sides; the polyline tool was chosen to select points delimitating the region of the osteons.
A total of 1415 individual osteons were identified and annotated, consisting of 773 intact
osteons and 642 fragmentary osteons. Annotations of overlapping structures were per-
formed in a manner dependent on their classes; the boundary was drawn to overlap if
an intact osteon was located on top of, or overlapping with, a fragmentary osteon. When
two instances of the same class overlapped (i.e., intact over intact or fragmentary over
fragmentary), then a small space was kept between objects. Masks were generated from
the annotations in which each pixel was associated with an integer number representing
one of the three classes (intact osteon, fragment, background). An example of annotated
regions is shown in Figure 3.
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Figure 3. An example of mask generation: (a) original microphotograph; (b) annotations drawn on
the original image (a) with examples of classes ‘intact’ and ’fragment’ marked in orange and blue,
respectively; all other pixels are considered background; (c) the corresponding mask image.

2.3. Deep Learning Model: Semantic Segmentation

Given a dataset of training pairs, in which each pair consists of an image and its
corresponding segmentation mask (such as in Figure 3a,c), a neural network can be trained
to map images to segmentation masks. Given sufficient training data these networks can
generalize, producing sufficiently high-quality segmentations of previously unseen images
from the same domain as the training data. Training uses an optimization algorithm that
iteratively adjusts internal parameters in the neural network so as to reduce its loss (some
measure of error) on the training data. Training deep neural networks with many layers of
‘neurons’ to classify or segment images is now common practice in computer vision and
biomedical image analysis, achieving state of the art results on many tasks [38].

U-shaped neural network architectures have proven effective for image segmenta-
tion [39]. These architectures consist of an encoder part followed by a decoder part. The
encoder part can be thought of as mapping the input image to multiple feature maps that
together comprise a representation of the input image. The decoder part then maps these
feature maps to a segmentation map, which is the same size as the input image. Skip con-
nections which directly connect layers of neurons in the encoder to layers of neurons in the
decoder help the network produce segmentation maps with finely detailed high-resolution
information.

The deep learning network we adopted was a modified U-Net [39] implemented in
Python using Keras. All images were resized to 512 × 512 pixels using bilinear interpo-
lation and converted to greyscale for further processing. U-Net layer sizes were set to
accommodate the 512 × 512 input images. Given the relatively small size of our dataset,

www.robots.ox.ac.uk/~vgg/software/via/
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data augmentation was used to reduce overfitting. Data augmentation is common practice
when deep learning is applied to image analysis tasks; by applying transformations to the
training images and their segmentation masks, the amount of training data is synthetically
increased, helping to promote generalization. Specifically, data were augmented during
training by randomly applying horizontal and vertical flipping, zooming (−20% to +20%),
90-degree rotations, and shearing (with angle 0.2 radians) to the input images.

Dropout (dropping different sets of neurons randomly) was also used to reduce
overfitting during training. The dropout rate was set to 0.3. Zero-padding was used at
the image boundary to make the size of the output the same as that of the input image.
The output layer used softmax activation to generate a probability value per pixel for each
of the 3 classes. In total, the network had 1,940,851 trainable parameters. Training was
performed using the widely used Adam stochastic gradient-based optimizer [40] with a
weighted categorical cross-entropy loss. The batch size was 2 and early stopping with a
patience parameter of 25 iterations was used.

The output from the final layer of the trained network can be treated as providing
a probability distribution over the three class labels for each pixel in the image. These
probabilities can be used for further processing. Alternatively, a labelling of the image (i.e.,
an automatic image annotation) can be obtained by assigning each pixel the label with
highest probability. This labelling can be compared with the manually obtained expert
annotation (the ‘ground truth’) to quantify segmentation performance.

3. Results
3.1. Qualitative Results

Figure 4 shows example test results for images presenting different levels of difficulty.
Counting from the top, rows 1, 2 and 3 show examples of good segmentations: most osteons
are captured well with only minor errors. Rows 4 and 5 show examples of less successful
segmentations. In Row 4, there are substantial false negatives for intact osteons, although
the background is captured well. Row 5 presents a texture that is poorly represented in the
training set, leading to extensive false positives for both intact and fragmented osteons.

3.2. Quantitative Results

Table 1 is the normalized confusion matrix computed over all 99 images when used as
test images (in the context of 10-fold cross-validation). This matrix shows how the manual
and automatic pixel class assignments were jointly distributed. Quantitative evaluation
metrics were computed from this matrix. The proportions of pixels in each class according to
the manual annotations (obtained by summing the rows of the confusion matrix) were 54.7%
background, 13.5% fragment, and 31.8% intact osteon. The corresponding proportions
predicted automatically (obtained by summing the columns of the confusion matrix) were
46%, 21%, and 33%, respectively. Intact osteon pixels were identified with a sensitivity (true
positive rate) of 74% and a specificity (true negative rate) of 86%.

Table 1. Confusion matrix obtained from 10-fold cross-validation.

Predicted Label

Background Fragment Intact

Background 0.406 0.090 0.050

Fragment 0.025 0.066 0.044

Intact 0.028 0.054 0.236

The Dice coefficient is a commonly used metric when evaluating semantic segmenta-
tion. For a single class, it is computed as

2TP
2TP + FP + FN

(1)
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where TP, FP, and FN are the numbers of true positive, false positive, and false negative
pixels, respectively, considering instances of the class in question to be positive. Dice
coefficients obtained were 0.73 for intact osteons, 0.38 for fragmented osteons, and 0.81 for
background, giving an overall (average) Dice coefficient of 0.64.

Considering the two-class problem discriminating between osteonal structure and
background (i.e., collapsing the intact and fragment classes into a single class), the Dice
coefficient is 0.82, and osteonal pixels were identified with a sensitivity of 88% and a
specificity of 74%.
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4. Discussion

Bone histomorphometry is a valuable tool for biological and forensic anthropology.
Biological anthropological research has been performed exploring robusticity and its poten-
tial correlation with microscopic parameters [41] understanding intra- and inter-population
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variation regarding osteon dimensions [42], and intra-cortical differences between mam-
mals for species identification [43], among others. Regarding forensic anthropology ap-
plications, multiple studies have been produced investigating different topics such as
development and validation of age-at-death methods, human versus human identification,
as well as the effect of heating on cortical bone microstructure and its implications for
forensic identification [35,44–46]. Based on the wide range of topics covered, the crucial
contribution that cortical bone histomorphometry makes to the field is evident.

Histological analysis of bone requires the preparation of thin-sections, and different
protocols have been proposed depending on the equipment available, nature of the research
question, and state of preservation of the material [15,31,47,48]. Thus, efforts have been
made to provide different options for bone sample processing.

Regarding data collection, one of the drawbacks of the microscopic approach relates
to the qualitative and quantitative assessment of the microstructural features, which is a
time-consuming process. Moreover, issues have been highlighted regarding difficulties in
the identification and quantification of some histomorphometric parameters, suggesting
that the assessment should be performed by a trained researcher [22,49]. For example,
studies have reported difficulties with the identification of fragmentary osteons [22,50],
with this parameter being crucial for representing the remodeling rates, and thus, essential
for accurate age estimation [9]. In addition, the nature of the sample will also have an
impact on the observation of the microscopic features, with human bone from advanced
age individuals posing a challenge. With age, the number of osteonal structures increases
while osteon area and cortical area decrease producing what is known as the packing effect,
resulting in the crowding of osteons within the sampling area being assessed [51]. As age
advances, the difficulty of their identification becomes apparent.

In view of exploring a possible solution to the difficulties of cortical bone histomorpho-
metric data collection, the present study aimed to test the application of machine learning
for the automatic identification of intact and fragmentary osteons. A semantic segmentation
protocol was used on 99 microphotographs collected from human ribs for which annota-
tions were made for both types of osteons. The results provided by the U-Net developed
here produced a higher Dice coefficient for intact osteons than for fragmentary osteons (0.73
and 0.38, respectively). Although intact osteons also differ in shape and size, fragmentary
osteons present much more variation as they are the results of an intact osteon appearing
as a new remodeling event and overlapping with the existing structures (either intact or
fragmentary osteons). Based on this, fragmentary osteons are highly inconsistent producing
structures accounting for a wide range of shapes and dimensions (refer to Figure 1).

Considering the results obtained for osteonal structures (combining intact and frag-
mentary osteons), the Dice coefficient is 0.82. Other studies have been published regarding
cortical microstructural identification. For example, Qin et al. [27] recently developed a
deep convolutional network model to identify primary and secondary osteons through
vascular canals and circular lamellar bone on paleontological specimens. The results from
that study provided a Dice coefficient ranging from 0.74–0.75 for secondary osteons iden-
tification. As seen throughout the fossil microphotographs [27], the microstructures are
well spaced when compared to the human samples used in our study, suggesting that the
segmentation problem would be easier to solve.

Our study suggests that the U-Net shows potential for human osteonal structure
identification, although further refinement is needed to obtain more accurate identification
of both intact and fragmentary osteons. This pilot aimed to explore the general suitability
of deep learning methods for human cortical osteon segmentation. Hence, only one
deep learning model (architecture) was used. Given a larger set of annotated images,
it would be worth testing the performance of different models. Additionally, further
research could incorporate other bones such as the femur, which is also frequently used
for anthropological analysis [52,53]. Moreover, the inclusion of microphotographs with
different levels of resolution could be tested to see if microphotograph quality has an
impact on the results. Ideally, further research will focus not only on refining the semantic
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segmentation of osteonal structures but will also explore the possibility of counting and
measuring those structures, via instance segmentation, since osteon frequency and osteon
size are commonly assessed in histomorphometric methods [5,9,19]. In the future, an
automatic osteon identification tool available to researchers and practitioners would imply
that data collection would become less time-consuming, less subjective, and more accurate.
Large datasets for research purposes could be assessed by an online tool saving time for
the researcher. Additionally, it could also offer the possibility of assessing the whole cross-
section instead of considering a sampling strategy. Moreover, the availability of the software
could enable the incorporation of bone histomorphometry in forensic anthropology as a
routine in medicolegal settings.

5. Conclusions

This study aimed to explore the potential of artificial intelligence for the automatic
identification of the key parameter in human cortical bone, the osteon. Considering the
very modest number of images available for training a deep learning network, our pilot
system achieves good segmentation. Further work using a larger number of images could
potentially increase the accuracy reported here. A tool for automatic identification of
intact and fragmentary osteonal structures in human cortical bone will assist the biological
and forensic anthropology communities in the application of histomorphometry in their
routine assessments.
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