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Abstract: This paper explores the dynamics of the collaborative innovation network of China’s
agricultural biotechnology, from a spatial-topological perspective. The data pertain to a collection of
patent applications jointly filed by universities, research institutes and enterprises on the mainland of
China during 1985–2017. Using the logistic model, we first identify the developing phases of China’s
agricultural biotechnology. By dismantling the collaborative innovation network into spatial and
topological networks, the dynamics are analyzed from these two dimensions at the three levels of
nodes, edges and whole network. The results indicate that with the technology developing from
the introduction to the growth-to-maturity phase, the collaborative innovation network exhibits
dynamics as follows: as the scale expands, collaborations in the network are concentrated core cities,
while dispersing to more innovators; enterprises replace universities and become the main innovation
forces; the network attributes of small-world, scale-free and core-edge structures are apparent. Multi
proximity factors including geographical, cognitive and organizational, play key roles in driving
the dynamics, and the main factor evolves from geographical proximity to cognitive as well as
organizational proximity.

Keywords: agricultural biotechnology; collaborative innovation network; patent; dynamics; social
network analysis

1. Introduction

Since the 1990s, with the development of the knowledge economy and the deepening of
global innovation, networking innovation has gradually replaced hierarchical innovation [1,2],
which has led to the change of innovation mode. Since then, the collaboration innovation
network has attracted more and more attention as an important carrier and an effective way
to promote the sharing of innovation elements and the collaboration of innovators [3]. Both
new regionalism and the school of global production networks emphasize the key role of
the collaboration innovation network in knowledge flow and innovation cooperation [4–6].

In view of the changes in innovators and their cooperative relationships, dynamic
evolution has become one of the basic features of the collaboration innovation network [7,8].
The research on the dynamics of the collaboration innovation network has become an
important topic for innovation economists and a great deal of in-depth research has been
conducted. Existing studies can be roughly divided into three phases. In the first phase,
research on the collaboration network was mainly conducted by regional economists, who
studied industrial clusters to carry out research on innovation clusters. Due to the lack of a
quantitative method, scholars can only use qualitative methods to analyze the formation
and dynamics of the collaboration network among industrial clusters. For example, Pyke
analyzed both the supply-demand network and the informal network of Third Italy [9];
Saxenian conducted a comparative analysis on the pattern of the regional collaboration
networks in Silicon Valley and Highway 128 in the United States [9]; Liyanage examined the
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processes by which innovation clusters are formed in research collaborations by analyzing
the work programs of 51 Australian cooperative research centers [10]. As social network
analysis (SNA) was introduced into regional economics and innovation economics, the
research of the collaborative innovation network entered the second phase. With the help
of software such as Ucinet and Gephi, researchers can quantitatively analyze the interactive
relationship between innovators, thus making up for the low standardization and lack of
in-depth analysis on the evolution process of the network and the internal collaborative
relationships in the former phase [11]. Moreover, in this phase, a large number of scholars
conducted research on the collaborative innovation network through the data of jointly-
applied-for patents and published papers. By measuring centrality, structural holes and
other indicators, some scholars identified core notes and their dynamics [12–15], while
some other scholars analyzed and characterized the network’s organizational form and
evolution trajectory from the level of overall network through the measurement of the
average path length, cluster coefficient and other indicators [16–18]. In recent years, with the
rise of research on the evolution of multi-cluster networks, research into the collaborative
innovation network entered the third phase. Studying collaborative innovation networks
on a larger scale, such as cross-clusters, became a symbol of this phase [19,20]. Based on the
panel data of 52 aerospace-industry clusters, Turkina et al. employed community detection
to analyze the structure and dynamics of the collaborative innovation network among
companies within and among clusters [21]. Using the method of dominant path, Heinisch
et al. explored the spatial pattern of patent citations within and among 35 clusters in
1986–2006 in the United States, and evaluated the role of geographic factors in the evolution
of technology, indicating that the collaborative innovation network was evolving from
within to between clusters [22]. Although there have been many studies on the dynamics of
the collaboration innovation network, most of them have focused on the networks formed
by innovators in certain geographic areas from a geographic perspective; only a few have
paid attention to the collaboration innovation network formed in a certain technical field.

To fill the knowledge gap, this paper focuses on agricultural biotechnology in China,
and explores the dynamics of China’s agricultural-biotechnology collaborative innovation
network from a spatial and topological perspective. Agricultural biotechnology refers to
the biotechnology applied to agricultural production, including the use of gene modifica-
tion, fermentation, enzyme engineering, molecular breeding and other technical means to
improve the characteristics of animals, plants and microbes, cultivate new varieties, and
produce biological pesticides, veterinary drugs and vaccines [23,24]. The enhancement of
agricultural biotechnology innovation has become the fundamental way to ensure food
security within a background of increasingly severe resource-constraints [25,26]. In order
to promote agricultural-biotechnology innovation, China attaches great importance to
strengthening collaborative innovation, especially in the form of the collaborative inno-
vation network, since the function of which is to further improve innovation rather than
common forms of collaborative innovation, and has been widely recognized [27–29]. In
the “11th five-year plan”, the National Development and Reform Commission within the
Ministry of Science and Technology specially formulated the biotechnology-development
plan, emphasizing collaborative innovation at the national level. In 2008, China launched
the implementation of a major special project for GM to provide key support for cross-unit
and cross-regional collaborative innovation. In 2022, the Ministry of Agriculture issued the
General Plan for National Breeding to encourage universities, institutes and enterprises
to carry out joint R&D in the form of a network. Due to the continuous policy guidance,
China’s agricultural-biotechnology innovations carried out using networking collaboration
have become increasingly active, which is reflected in the output of relevant patents. In
April 1985, when China began to implement the Patent Law, there were only 82 agricultural-
biotechnology patents jointly applied for by more than two innovators, but in 2017 more
than 8000 patents were jointly applied for via networking collaboration.

To achieve the aim of this paper to explore the dynamics of China’s agricultural-
biotechnology collaborative innovation network from a spatial and topological perspective,



Systems 2023, 11, 73 3 of 19

we employ the data from a collection of patent applications jointly filed by universities,
research institutes and enterprises on mainland China during 1985–2017. Using the logistic
model, the history of China’s agricultural biotechnology innovation is divided into the
three phases of introduction (1985–2007), growth (2008–2015) and maturity (2016–2017). By
dismantling the collaborative innovation network into spatial and topological networks,
using Ucinet and Arcgis, the dynamics are analyzed from these two dimensions at the
three levels of nodes, edges and the whole network, separately. From the perspective of a
spatial network, its scale has expanded, while collaborations among cities are concentrated.
Meantime, the expansion of the topological network is accompanied by the dispersing of
collaboration among innovators. With the evolution above, the leadership of enterprises
in the network is being strengthened, while universities’ leadership is being weakened;
moreover, the network attributes of small-world, scale-free and core-edge structure are
increasingly significant. Lastly, geographic proximity and cognitive proximity, as well
as organizational proximity are important factors driving the dynamics of collaborative
innovation, and organizational proximity is gradually replacing geographic proximity as
the main driving factor.

We make three main contributions to the existing literature. Firstly, by retrieving
the applicants’ addresses, we dismantle the collaborative innovation network into two
networks; one is the spatial network composed of the cities where the inventors are located,
and the other is the topological network composed of the inventors themselves, which is
rare in the existing literature and can help us to explore the dynamics of the network from
spatial and topological dimensions. Secondly, unlike previous studies that mainly focus on
nodes and overall network while neglecting the edges connecting nodes in the network,
we recognize the importance of edges, which represent the collaborative relationships
among innovators, and we conduct this research from the three levels of nodes, edges
and overall network. Lastly, as a data contribution, we creatively realize the effective
identification of agricultural-biotechnology-patent IPCs by mapping biotechnology-related
IPCs onto more detailed agricultural areas, which overcomes the difficulties of verifying
agricultural-biotechnology patents due to blurred borders, and provides inspiration for
other scholars.

2. Methods
2.1. Data Collection

The unique data used in this paper pertain to patent applications obtained through
Patsnap, a database that covers 140 million patents from 116 countries and regions in the
world and is updated weekly. Since “agricultural biotechnology” is a general term for a
large class of technologies, with no clear definition, it is difficult to construct the search
with specific words in titles, abstracts and keywords of patents, as in other literature. In
this paper, we retrieve patents related to agricultural biotechnology with the International
Patent Classification Number (IPC), which is assigned to a patent based on the detailed
field it belongs to, at the stage of application. Since agricultural biotechnology is the area of
biotechnology involving applications for agriculture [30], we take three steps to identify
the IPCs which cover all the detailed fields of agricultural biotechnology. First, we draw on
the methods used by OECD and EU to identify biotechnology-related IPCs [31]. Second,
Xu’s method is employed to define the subdivisions of agriculture with the help of Web of
Science (WOS) and Essential Science Indicators (ESI) [32]. Third, we map each IPC related
to biotechnology to each subdivision of agriculture; after consulting the opinions of experts
in the field of agricultural biotechnology, the IPCs related to agricultural biotechnology are
finally identified (Figure 1, step 1).

The time for patent search is from 1985 to 2017. The reason for setting 1985 as the start-
ing point is that China implemented the Patent Law of the People’s Republic of China
on 1 April 1985 and that is the beginning of patent application in China; since it takes
18–48 months to disclose a patent after its application, 2017 is set as the deadline. Hence,
the query sentence is as follows: IPC = (A01H or A01N or A61K38/00 or A61K39/00
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or A61K48/00 or A23K or C05F11/08 or C05F15/00 or C07K14/415 or C07K14/195 or
C07K14/37 or C12M or C12N or C12Q or C12S or C12P) AND TIME = (1985–2007) AND
PN = CN. The types of patent in this study includes invention patents and utility models.
After searching, 325,500 agricultural-biotechnology patents applied for in China are re-
trieved (Figure 1, step 2).
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2.2. Identification of the Phases in Life Cycle

The technology life-cycle is a model of technology based on growth theory and gen-
erally contains four phases: introduction, growth, maturity and decline [33]. Since the
life cycle is for all patents rather than patents jointly applied for, we use the retrieved
325,500 patents to analyze and identify the life cycle (Figure 1, step 3). With the help
of the logistic model and software Loglet Lab 4.0, the growth-curve fitting and related
parameter-calculation are conducted. The logistic model is defined as follows:

y =
L

1 + α · exp−β
(1)

where y is the cumulative number of patents; α is the slope of the growth curve during
a specific year; β represents the time at the inflection point with the highest slope of
the growth curve; L corresponds to the limit of the cumulative number of patents. The
introduction phase is recognized with y < 10%*L, while the decline phase is y > 90%*L and
the phases between them are growth and maturity.

2.3. Data Processing and Network Construction

The first step in data processing is the screening of patents. Patents filed by one
applicant are eliminated and then patents with more than one applicant are excluded
successively, to facilitate the obtaining of applicants’ geographical information. Only those
where the applicants are located on mainland China are retained, to avoid the difficulties of
obtaining information from Hong Kong, Macao and Taiwan. After screening, 13,758 patents
are retained (Figure 1, step 4).
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The second step is to form undirected collaborations. We treat each collaboration as
undirected collaboration between two innovators. Permutations and combinations are
used to treat collaborations established by three or more innovators. After processing,
17,220 undirected collaborative-relationships are formed (Figure 1, step 5).

The third step is the acquisition of geographical information for each innovator and
collaboration. According to their geographical locations acquired through Python from
Baidu Maps, the innovators are classified into various local cities. Based on the cities and
corresponding provinces, the scale of collaborations among innovators are divided into
local, regional and inter-provincial collaborations, which refer to innovators in the same
city, in one province but different cities, and two provinces, respectively. Then, ArcGIS is
used to calculate the spatial distance of each collaboration (Figure 1, step 6).

The fourth step is the construction of a collaborative innovation network from two
dimensions. On the basis of the geographical information of the innovators and collabo-
rations, a spatial collaborative-innovation-network is constructed through ArcGIS. Then
the topological network is obtained using social network analysis and Ucinet, after the
collaboration data has been transformed into a matrix (Figure 1, step 7).

2.4. Topological-Network Analysis

Both the spatial network and the topological network are analyzed from the perspec-
tive of nodes, edges and overall network (Figure 1, step 8). Topological-network analysis
involves the following indicators:

2.4.1. Analysis of the Nodes

The nodes represent the innovators in the collaborative network. Degree centrality
(DC) is the core indicator for measuring the centrality of nodes in the network. The formula
for calculating degree centrality is as follows:

C(i) = ∑j∈N xij (2)

where, in the weighted network, xij is the number of connections between nodes i and j,
while in the binarized network it is the number of nodes connected to node i.

Next, we take a horizontal comparison of degree centrality in different phases, to
analyze the dynamics of nodes. In order to facilitate horizontal comparison, degree
centrality needs to be absolute, as follows:

C′(i) =
C(i)

n− 1
(3)

where C′(i) and C(i) are the absolute degree centrality (Ab-DC) and degree centrality, respec-
tively, and n is the total number of nodes or connections in the network.

2.4.2. Analysis of the Edges

The edges in the collaborative network represent the collaborations established among the
nodes. In this paper, edges are analyzed in terms of type, strength, scale, and spatial distance.

2.4.3. Analysis of Overall Network

In the first step, we analyze the cohesiveness of the network by measuring two
indicators of average degree and density. Average degree refers to the average number
of connections of all nodes in the network. In the weighted network, the greater the
average degree, the more the collaborations established between nodes on average, further
indicating the higher collaboration-intensity of the network, while with a binarized network,
greater average degree means that the average number of nodes that establish collaboration
with one node is higher, and the network is denser. The calculation formula for average
degree is as follows:
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D =
1

2n∑n
i=1∑

n
j=1xij (4)

where xij is the number of collaborations between nodes i and j, and n is the number of
nodes in the network. In a binarized network, xij is 0 or 1, while in a weighted network xij
is the actual number of collaborations between nodes i and j.

Density is measured by the ratio of the actual total collaborations existing in the
network to the theoretical maximum. The greater the density, the closer the number
of actual collaborations between network nodes is to the maximum theoretical value,
indicating the network is more cohesive. The calculation formula of density is as follows:

D =
∑n

i=1 ∑n
j=1 xij

n(n− 1)
(5)

where xij is the number of collaborations between nodes i and j in the network, and n is the
number of nodes in the network. Since density is limited to computing binarized-networks,
the value of xij is either 0 or 1.

In the second step, centralization is measured to analyze the degree of concentration
of the network to one or several core-nodes and then to analyze whether there is a trend
where a few nodes control most or all resources in the network. Generally speaking, the
smaller the centralization, the more dispersed the entire network; on the other hand, the
higher the centralization, the more concentrated the network is. The calculation formula of
centralization is as follows:

CN =

n
∑

i=1
(Cmax − Ci)

max[
n
∑

i=1
(Cmax − Ci)]

(6)

where Cmax is the maximum value of degree centrality among all nodes in the network
and Ci is the degree centrality of node i.

In the third step, the attributes of the network as a complex is explored. First, the
average path length and clustering coefficient are measured, to determine whether the
network has a small-world attribute. Afterwards, the distribution statistics of all nodes are
processed on the basis of previous calculation of the nodes’ degree centrality, to explore the
scale-free attribute of the network. The formula for calculating the average path length is
as follows:

L =
2

n(n− 1)∑i≤N∑j>idist(i, j) (7)

where dist(i, j) is the shortest path length between nodes i and j, and n is the number of
nodes in the network.

The formula for calculating the clustering coefficient of a single node is as follows:

C(i) =
2
∣∣∣{ejk : vj, vk ∈ L(i), ejk ∈ E}

∣∣∣
ki(ki − 1)

=
2Ei

ki(ki − 1)
(8)

where Ei is the actual number of edges connected among the nodes that have direct
connection to the node i, and ki(ki−1)

2 is the maximum value of the edges in the local
network containing node i. In a network composed of n nodes, the overall clustering
coefficient is the average value of the clustering coefficients of all nodes.

3. Results
3.1. Identification of the Phases in Life Cycle

Figure 2 shows the fitted S-curve of China’s agricultural biotechnology. The determi-
nation coefficient R2 is 0.9866, which demonstrates that the degree of fitting simulation
is relatively high and the curve is basically close to the actual development of China’s
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agricultural biotechnology. According to the calculation of LogletLab4.0, the total number
of agricultural-biotechnology patents applied for in China accounted for approximately
10% of the saturation value from 1985 to 2007, which demonstrates that China’s agricul-
tural biotechnology is in the introductory phase. The inflection point appeared in 2016,
indicating the growth-phase located at 2008–2015. The period 2016–2017 is the first two
years of the maturity phase, since the predicted growth-time is 24 years. 
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The life-cycle phases identified above basically coincide with several landmarks in the
development of China’s agricultural biotechnology. On 1 April 1984, the Patent Law of the
People’s Republic of China was implemented. Over the next 22 years, China continued
to increase its support for agricultural biotechnology R&D, and precisely calculated, the
support basically doubled every five years [34]. During this period, the average annual-
growth-rate of patent applications for agricultural biotechnology amounted to 15%. China
launched a major project in support of genetically modified crops to enhance the role of
biotechnology in boosting food security in 2008. In that year, the funding for agricultural
biotechnology doubled compared to that of 2005 and was accompanied by another in-
crease of 66% in 2010, compared to 2008 [34]. It can be concluded that the unprecedented
strengthening of R&D promoted the rapid development of agricultural biotechnology.

3.2. Dynamics of the Spatial Network
3.2.1. Dynamics of the Cities

Table 1 exhibits the fact that 1308 innovators carrying out collaborative innovation
are distributed in 153 cities in the introduction phase. In the growth phase, the number of
collaborative innovators climbs to 4154, and the spatial distribution expands to 256 cities,
simultaneously. For 2016–2017, the first two years only of maturity, the number of cities of
the 3005 collaborative innovators even reaches 238. However, although the distribution
of innovators is expanding, the importance of cities in the collaborative spatial network
varies significantly, and this is directly reflected in cities with different number of collabora-
tions. Among the cities, Beijing, Shanghai, Shenzhen and Guangzhou are star cities, while
innovators in other cities tend more to carry out collaborations with these cities. Driven
by these influential centers, three key areas for agricultural-biotechnology innovation are
forming in China, with characteristics of regional innovation clusters: the Beijing-Tianjin
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region, the Yangtze River Delta region, and the Pearl River Delta region; the core cities of
these are Beijing, Shanghai, Shenzhen and Guangzhou, respectively.

Table 1. Top 10 Cities with the highest Degrees-Centrality and Absolute-Degree- Centrality in
each phase.

1985–2007 2008–2015 2016–2017

City/DC/Ab-DC City/DC/Ab-DC City/DC/Ab-DC

Beijing/348/0.04 # Beijing/1712/0.032 # Beijing/815/0.045 #

Shanghai/225/0.026 * Shanghai/706/0.013 * Guangzhou/483/0.027 §

Shenzhen/90/0.01 § Shenzhen/619/0.012 § Shanghai/471/0.026 *

Guangzhou/88/0.01 § Guangzhou/540/0.01 § Shenzhen/309/0.017 §

Suzhou/74/0.009 * Suzhou/397/0.007 * Nanjing/228/0.013 *

Hangzhou/73/0.008 * Hangzhou/374/0.007 * Hangzhou/218/0.012 *

Chongqing/68/0.008 Nanjing/366/0.007 * Tianjin/213/0.012 #

Nanjing/64/0.007 * Tianjin/351/0.007 # Suzhou/195/0.011 *

Qinzhou/56/0.006 Qinzhou/331/0.006 Wuhan/146/0.008

Wuhan/48/0.006 Shenyang/285/0.005 Chengdu/136/0.008
Notes: Label #, * and § represent cities in the Beijing-Tianjin region, the Yangtze River Delta region and the Pearl
River Delta region, respectively.

When horizontally comparing core cities in different phases, a clear upward trend can
be found of the absolute degrees centrality of several core cities such as Beijing, Shanghai,
Guangzhou, and Shenzhen. Taking Beijing as an example, the absolute degrees centrality is
0.04 from 1985 to 2007, while it rises to 0.045 in the first two years of the maturity phase.
The gradual increase in absolute degrees centrality of star cities indicates that innovators
in these cities are becoming more attractive to innovators in other regions for carrying
out collaborations, which further implies that innovation resources are being concentrated
in them.

3.2.2. Dynamics of the Collaborations among Cities

From the perspective of spatial scale, innovators are more inclined to establish cross-
city collaborations, with 90% in total, as depicted in Figure 3a. In the two types of cross-city
collaborations, innovators are evolving from the tendency to establish regional collabora-
tions to inter-provincial, on a larger scale. In 1985–2007, more than 50% of the collaborations
are established on the regional scale; while in 2016–2017, this proportion drops to less than
40%. In contrast, the proportion of inter-provincial collaboration rises to nearly 50%. This
dynamic can be mutually confirmed with Figure 3b, which was obtained by calculating
the spatial distance of each collaboration through ArcGIS; the overall spatial distance of
collaborations displays a clear upward-trend from 1985 to 2017. Cui et al. (2019) arrived
at a similar conclusion in their research into the long-distance collaboration tendency and
believed this to be due to the reduction in travel costs brought about by the increasingly
convenient transportation.

The strength of collaborations between cities reveals two more obvious dynamics
(Table 2). Similar to findings in Section 3.3.1, the strong connections in the spatial network
are mainly established by cities in three regions: Beijing-Tianjin, the Yangtze River Delta
and the Pearl River Delta, and this dynamic has become more apparent over time. In the
maturity phase, among the cities related to the top ten strong-connections, only Chongqing
does not belong to the above three regions. Furthermore, Beijing and Shanghai are the top
two stars for collaborative innovation. In both the introduction and growth phases, among
the top ten strong-connections, there are eight involving Beijing and Shanghai, while in the
maturity phase there are nine established with Beijing or Shanghai.
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Table 2. Top 10 collaborations among cities with the highest strength.

1985–2007 2008–2015 2016–2017

Collaboration/Strength Collaboration/Strength Collaboration/Strength

Beijing #–Shanghai */57 Beijing #–Hangzhou */120 Guangzhou §–Shenzhen §/76

Shanghai *–Suzhou */40 Beijing #-Shenzhen §/108 Beijing #–Shanghai */53

Beijing #–Qinzhou/28 Beijing #–Chongqing/104 Beijing #–Hangzhou */53

Qinzhou–Fushun/26 Beijing #–Qinzhou/91 Beijing #–Tianjin #/44

Shanghai *–Hangzhou */24 Beijing #–Tianjin #/82 Beijing #–Shenzhen §/42

Beijing #–Lianyungang/23 Shenzhen §–Yangzhou */71 Shanghai *–Suzhou */42

Shanghai *–Chongqing/20 Beijing #–Shanghai */69 Shanghai *–Ningbo */40

Beijing #–Chongqing/19 Zhongshan §–Guangzhou §/67 Beijing #–Nanjing */36

Shenzhen §–Dongguan §/19 Beijing #–Changsha/58 Beijing #–Chongqing/36

Beijing #–Tianjin #/18 Beijing #–Lianyungang/52 Shanghai *–Shenzhen §/36
Notes: # refers to cities in the Beijing-Tianjin region; * indicates cities in the Yangtze River Delta region; § means
cities in the Pearl River Delta region. The strength means the number of connections (collaborations) established
between two cities and is showed on the right of each collaboration in the table.

3.2.3. Dynamics of the Overall Spatial Network

Dynamics of local collaborations (Figure A1a) and crossing city collaborations (Figure A1b)
are mapped.

(1) Over time, the distribution of collaborations, no matter whether local or crossing
the city, displays an east–middle–west diffusion trend, and the overall strength of
collaborations increases synchronously.

(2) Regional innovation cluster with star cities as the cores are taking shape. With Beijing
as the core, the Beijing–Tianjin innovation cluster is being formed; Suzhou, Hangzhou,
Nanjing, and Yangzhou are forming the Yangtze-River-Delta innovation cluster
around Shanghai; the Pearl-River-Delta innovation cluster containing Dongguan
and Zhongshan is forming, with Guangzhou and Shenzhen as the cores. Meanwhile,
the collaborations both in and among the clusters are strengthened simultaneously.

(3) There is a clear regional imbalance in agricultural-biotechnology innovation, and the
imbalance is increasing. On the whole, innovation-related resources are obviously
inclined towards eastern China, and this region has obvious advantages in terms of
the quantity and strength of collaborations. Furthermore, star cities such as Beijing,
Shanghai, and Guangzhou, as well as Shenzhen and the corresponding surrounding
regions, Beijing-Tianjin, the Yangtze River Delta and the Pearl River Delta have
obvious advantages in innovation collaborations.
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3.3. Dynamics of the Topological Network
3.3.1. Dynamics of the Innovators

In terms of quantity, enterprises are always advantageous. As technology enters
the growth-and-maturity phase from the introduction, the proportion of enterprises rises
from 50 to 60%. However, from a microscopic perspective, various innovators such as
universities, research institutes, and enterprises show more complex dynamics. Table A1
shows that in the binarized collaborative-network, from 1985 to 2017 universities always
dominate. In each phase, among the top 20 nodes with the highest degree centrality,
universities account for 14, and rank top. Since degree centrality is obtained after binarizing
the collaboration, that is, 1 and 0 represent whether there is a collaboration between two
innovators respectively, so the higher degree-centrality of universities displays not only a
larger number of established collaborations among them, but also a wider scope of local
collaborative networks around them.

By horizontal comparison, the overall downward trend of innovators’ absolute degree
centrality can be found in Table A1. Taking the maximum value of each phase as examples,
during 1985 to 2007, the absolute degree centrality of Tsinghua University is 0.025; that
is, the collaborations established with Tsinghua University account for 2.5% of the total;
in 2008–2015, Zhejiang University has an index of 2%; in 2016–2017, Jiangnan University
further decreases, to 1.4%. This demonstrates that unlike the spatial network where
innovation resources are being concentrated in certain core cities, in the topological network
the relative importance of core nodes is showing a downward trend.

For the weighted collaborative-network, unlike universities, which occupy the abso-
lute core positions in the binarized network, enterprises are gradually replacing universities
as well as research institutes, and becoming the main force of collaborative innovation
with higher collaboration-strength. From 1985 to 2007, among the 20 innovators with the
highest weighted-degree-centrality, there are only six enterprises, and the rankings are
generally low. From 2008 to 2015, eight enterprises enter the top 20. Among them, Beijing
Dabeinong Group Co., Ltd., BGI Group Co., Ltd. and its affiliated BGI Research Institute
Co., Ltd., COFCO Co., Ltd. and its subsidiary COFCO NHRI Co., Ltd. occupy the top five;
during 2016–2017, the overall advantages of enterprises are more obvious, with 11 ranking
in the top 20. In addition to COFCO and Dabeinong Group, Zhangzhou Aonong Co.,
Ltd., Guangzhou Aonong Co., Ltd. and several other agricultural companies also rise as
important nodes in the network.

Comparing the binarized network and the weighted network, it can be clearly found
that in the binarized network universities occupy the core positions, while in the weighted
network the core positions of enterprises are more obvious. In the binarized network, the
degree centrality represents the number of innovators with whom the collaborations are
established, while in the weighted network the weighted degree-centrality of one node
represents the number of collaborations established. Therefore, the difference between the
above indicators of universities and enterprises can be interpreted as the fact that univer-
sities can attract a greater number of innovators to collaborate, while enterprises attract
other innovators to establish a greater intensity of collaborations with them. The possible
reason for this difference is that universities are the source of knowledge production; they
are experts in basic research, which is fundamental for technology transfer and related
industrialization; as enterprises have more advantages in capital and human resource, it is
easier for them to carry out industrialization-oriented collaborative innovations of a larger
number and higher intensity.

3.3.2. Dynamics of the Collaborations among Innovators

Figure 4 exhibits the various dynamics of different types of collaborations as China’s
agricultural biotechnology enters the maturity phase from the introduction. The proportion
of total collaborations related to universities or research institutes gradually decreases from
50% to 35%, while enterprises-related collaborations increase by 10%, to 76.46%. These
findings are corroborated by the increase in weighted degree-centrality of enterprises in
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Section 3.3.1, indicating that from a quantitative perspective, the importance of universities
and research institutes in the collaboration network is declining, while enterprises are
rising in sync. Further analysis of the collaborations established with enterprises reveals
that among the three types of collaborations, enterprises–universities, enterprises–research-
institutes and enterprises themselves, the collaborations between enterprises are gradually
increasing. In 1985–2007, the collaborations between enterprises account for only 12%, while
in the two phases of 2008–2015 and 2016–2017, the proportion exceeds 36% in both cases,
which is three times that in the introduction phase. This further shows that enterprises are
becoming important forces for China’s agricultural biotechnology.
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By analyzing the top collaborations with the highest strengths in Table A2, it can be
found that the driving forces for strong connections in collaborations are mainly multi-
proximity including geographical, cognitive and organizational proximity. The collabo-
rations driven by geographical proximity are established between famous universities
and local enterprises, such as the collaborations between Fudan University and Shanghai
Bodao Gene Technology Co., Ltd., Tsinghua University and Beijing Capitalbio Co., Ltd.,
as well as Guangdong Institute of Microbiology and Guangdong Huankai Microbiology
Technology Co., Ltd. The main manifestation of cognitive proximity-driven collaborations
are between two types of innovators based on common or overlapping research-fields, such
as the close collaboration established by Sinochem and Shenyang SYRICI Co., Ltd., due to
their common research field of biological pesticides. The organizational proximity-driven
collaborations are mainly manifested as collaborations between parent subsidiaries or
sister companies, such as the collaborations between COFCO and its subsidiary COFCO
NHRI, as well as Beijing Dabeinong Technology Group Co., Ltd. and Beijing Dabeinong
Biotechnology Co., Ltd. Furthermore, the dynamics of strong connections shows the evo-
lution of a main driving-force from geographical proximity to organizational proximity.
In 1985–2007, the strong connections are mainly established between famous universities
and local enterprises, based on geographic proximity, which we have discussed above,
while in 2016–2017, strong connections between companies are established more based on
organizational proximity, especially between parent subsidiaries or sister companies.

3.3.3. Dynamics of the Overall Topological Network

The results of the quantitative analysis of the overall topological network are reported
in Table A3. Firstly, an obvious networked trend of collaborative innovation among in-
novators is illustrated by the indicators of innovators, collaborations and collaborations
(weighted). Since 1985, the number of innovators and collaborations has increased signifi-
cantly. Although it is just the first two years of the maturity phase, the number of innovators
and collaborations in 2016–2017 is still more than twice of that in the introduction. Secondly,
the collaborations among innovators are strengthening, which is directly reflected in the rise
in the average degree and weighted average-degree of the overall network, implying that
although there is no obvious change in the density, both the average number of partners
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and established collaborations of the innovators in the network are increasing, further
indicating that the consensus to carry out agricultural-biotechnology innovation through
collaboration is being formed among innovators. Thirdly, the ability of a few core nodes in
the network to control most of the resources of the network is declining, which is illustrated
by centralization in Table A3 and co-evidenced by the continuous decrease in the degree
centrality of the core nodes in Table A1. This dynamic demonstrates that the collaborative
network is tending to be decentralized.

At the same time, the network has shown the dual attributes of both small-world
and scale-free. To explore the small-world attribute, both the average path-length and the
cluster coefficient are calculated, and the results suggest that in each phase, the average
path-length of the network is between 6 and 8.5 and the cluster coefficient is 0.06–0.155
(Table A3). According to the threshold index of judging the small-world attribute as
an average path-length < 10 and a cluster coefficient > 0.01 [35,36], China’s agricultural-
biotechnology collaborative-innovation network is typically small-world, although as
overall size increases, its small-world attribute decreases slightly. The attribute of the small-
world network determines the convenience of information-transfer and node-connections
within the network, which is obviously conducive to promoting the overall improvement
in innovation level through collaborations among innovators [37–39].

Figure A2 presents the fitted power-law-distribution curve of all nodes with different
degrees in the network. The determination coefficients, R2, of the three curves are all
around 0.9, suggesting the power law distribution of the nodes is obvious and the network
is typically scale-free. The scale-free attribute of the collaborative network has a significant
positive impact on the network’s ability regarding resource integration, innovation and
technology diffusion, which greatly improves the function of the collaborative innovation
network in promoting innovation [40,41]. Meantime, in the scale-free network, there are
not only nodes with a higher degree to play the role of integrating innovation resources,
but also a large number of nodes with a lower degree which are interwoven with higher
ones, which is more conducive to improving the robustness of the network [42,43].

The visualization of the network dynamics is exhibited in Figure A3. In addition to
scale expansion and increasing strength, more dynamics are presented.

(1) The core-edge structure of the network is prominent. This is highlighted by the fact
that the network as a whole is increasingly divided into core and edge areas. As with
the nodes located in the core area, the number of nodes connected to them and related
collaborations established are significantly more than those in the edge, indicating that
the collaborative connections between innovators in the core area are complex, and
the attribute of the small-world is particularly obvious. However, the collaborative
connections between innovators in the edge have relatively important limitations;
they are often limited to the same or a few innovators for carrying out collaborations.

(2) The positions of universities, research institutes and enterprises are changing obvi-
ously. Whether it is binarized (Figure A3a) or weighted (Figure A3b), in the maps
of the introduction phase universities occupy core positions, especially for the bi-
narized network, and famous universities such as Tsinghua University and Fudan
University are always dazzling stars. In the maps of the growth phase, universities
in the binarized network are still irreplaceable, but in the weighted network Beijing
Dabeinong Group Co., Ltd., BGI Co., Ltd. and COFCO Group Co., Ltd., as well as
their subsidiaries, are beginning to appear in the core area and occupy dominant
positions. This dynamic is more obvious in the maps of the maturity phase. Although
in the binarized network of 2016–2017 universities still firmly occupy the core position,
in the weighted network Beijing Dabeinong Group Co., Ltd., COFCO Group Co., Ltd.,
and Aonong Group Co., Ltd., as well as other enterprises, have become the main
forces in agricultural-biotechnology innovation.

(3) It is the combination of geographical, cognitive and organizational proximity that
drives the dynamics of innovation networks, but the main driving factor is evolving
from geographical proximity to organizational proximity. Figure A3b illustrates
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that, from 1985 to 2007, the strong collaborative connections are mainly enterprise-
university collaborations based on geographical proximity, while in the maturity
phase of 2016–2017, collaborations are more strongly established between enterprises
based on organizational proximity, especially between parent subsidiaries or sister
companies.

4. Discussion and Conclusions

In this study, based on the data of patent applications jointly filed from 1985 to 2017, we
analyze the dynamics of the collaborative innovation network in two dimensions of spatial
and topological. We first identify the three phases of China’s agricultural biotechnology as
the introduction phase (1985–2007), the growth phase (2008–2015) and the maturity phase
(2016–2017). After three phases, the spatial network expands in scale, while collaborations
tend to be concentrated in several cities. Meanwhile, the topological network expands, and
collaborations tend to be scattered. Specifically, the geographic locating area of innovators
is expanding and the spatial scale as well as spatial distance of collaborations among
innovators is tending to increase. Although the overall scale is expanding, a few core
cities such as Beijing, Shanghai, Shenzhen and Guangzhou are becoming more attractive to
innovators in other cities to establish collaborations, reflecting how innovation resources
are being concentrated in these very few regions. In terms of topological network, the
total number of nodes and collaborations among these, as well as the average number
of collaborations held by each node, show an upward trend, indicating the network is
expanding in topology. Meantime, indicators such as absolute degree centrality of the core
nodes and centralization of the network exhibit a downward trend, suggesting that with
the overall innovation improvement of various innovators, the ability of core nodes to
control innovation resources and attract innovation collaborations is declining. In the early
phase of China’s agricultural biotechnology, universities, as the main forces of knowledge
production, are more attractive to other innovators for carrying out collaborative innovation.
With the improvement of the innovation level of enterprises, their dominance obviously
increased. From the perspective of the network as a whole, the collaboration network
exhibits attributes of small-world, scale-free and core-edge structure. Lastly, geographical
proximity and cognitive proximity, as well as organizational proximity, are important
factors driving the dynamics of collaborative innovation, and organizational proximity is
gradually replacing geographical proximity as the main driving factor.

The research conclusion of this paper is basically consistent with the development of
agricultural biotechnology in China. On 1 April 1984, China promulgated and implemented
the Patent Law, to strengthen the protection of intellectual property rights. On the same day,
the Wuhan Institute of Virology of the Chinese Academy of Sciences submitted a patent
application for the tung-tree inchworm-virus insecticide, which became the first invention-
patent application in the field of agricultural biotechnology in China. Over the following
22 years, China continued to increase its support for agricultural-biotechnology R&D, and
the investment in R&D doubled every five years (Hu Ruifa, 2016). During this period, the
annual growth rate of patent applications for agricultural biotechnology was approximately
15%. In 2008, in order to enhance the role of biotechnology innovation in ensuring national
food-security, China’s central government launched a major special project for GM. In that
year, China’s investment in agricultural-biotechnology innovation doubled compared with
2005, and in 2010 it increased by 66%, compared with 2008 (Hu Ruifa, 2016). The unprece-
dented strengthening of R&D investment has led to the rapid development of agricultural-
biotechnology innovation, and pushed China’s agricultural-biotechnology innovation into a
mature stage. As China’s agricultural-biotechnology R&D-investment continues to increase,
the innovation capacity of universities, institutes, especially enterprise-type innovators,
has been significantly improved. The collaborative-innovation intensity among these in-
novation entities has increased synchronously, and the trend in networking collaboration
is increasingly obvious. From the perspective of different types of innovators, the status
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of enterprise-type innovators in the network has been significantly improved, which is
reflected in the amount and intensity of cooperation.

The implications of the conclusion above is that the investment in agricultural-biotechnology
R&D, including government investment and social investment, should be improved contin-
uously, which is the basis for improving the level of innovation and promoting innovation
cooperation. At the same time, since China’s universities are an important source of knowl-
edge, faculties in universities should be encouraged to carry out technology transfer and
carry out more joint R&D with research institutes and enterprises. Meanwhile, despite the
rising status of enterprise-type innovators in the network, in order to further improve the
level of agricultural-biotechnology innovation, enterprises should be encouraged more
to carry out independent innovation through various means such as tax reduction and
fee reduction.

Although in-depth research has been carried out, there are still limitations in this
paper. First of all, social network analysis and the related software Ucinet are used many
times to quantitatively measure and visualize the network, while they cannot quantitatively
analyze the dynamics between networks, which needs to be summarized more subjectively.
In addition, this paper mainly analyzes the dynamics of networks, while the factors driving
the dynamics are not explored by quantitative research adequately. In the future, other
analytical methods will be used to quantitatively measure the dynamics of the network,
and more models will also be used to empirically explore the driving force of networks.
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Figure A1. Dynamics of the overall spatial network: (a) shows the dynamics of local collaborations
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innovators in the same city; (b) shows the dynamics of collaborations crossing cities; the size of the
green dots in different cities indicates the number of collaborations established between innovators
in each city and their partners in other cities or provinces. The width of the lines means the strength
of connections between cities. For clarity of display, only the top ten strongest are shown.
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Table A1. Dynamics of the top 20 nodes (innovators) with the highest Degree Centrality and Absolute
Degree Centrality.

1985–2007 2008–2015 2016–2017

Innovator/DC/Ab-DC
(Binarized)

Innovator/DC/Ab-DC
(Weighted)

Innovator/DC/Ab-DC
(Binarized)

Innovator/DC/Ab-DC
(Weighted)

Innovator/DC/Ab-DC
(Binarized)

Innovator/DC/Ab-DC
(Weighted)

Tsinghua Univ
/33/0.025

Fudan Univ
/357/0.001

Zhejiang Univ
/85/0.02

Beijing Dabeinong
Group Co., Ltd./367/0

Jiangnan Univ
/43/0.014

Jiangnan Univ
/89/0.001

East China Univ of
S&T/29/0.022

Shanghai Bodao Gene
Tech Co.,

Ltd./195/0.001

Jiangnan Univ
/70/0.017

BGI Co., Ltd.
/229/0

Nanjing Agriculture
Univ/31/0.01

COFCO NHRI Co.,
Ltd./81/0.001

Fudan Univ
/28/0.021

Tsinghua Univ
/100/0

East China Univ of
S&T/54/0.013

BGI Research Institute
Co., Ltd./181/0

South China
Agricultural

Univ/29/0.01

Zhangzhou Aonong
Biotech Co.,

Ltd./77/0.001

Zhejiang Univ
/25/0.019

NCGR-Shanghai, CAS
/80/0

Shanghai Jiao tong
Univ/49/0.012

COFCO Co., Ltd.
/164/0

Zhejiang Univ
/25/0.008

Guangzhou Aonong
Biotech Co.,

Ltd./66/0.001

SIBS, CAS
/24/0.018

Shanghai Bode Gene
Tech Co., Ltd./62/0

South China
Agricultural

Univ/47/0.011

COFCO NHRI Co., Ltd.
/149/0

Sun Yat-sen
Univ/22/0.007

South China
Agricultural

Univ/64/0.001

Nankai Univ
/14/0.011

East China Univ of S&T
/52/0

Tsinghua Univ
/41/0.01

Zhejiang Univ
/139/0

East China Univ of
S&T/20/0.007

COFCO Co., Ltd.
/61/0.001

Shandong Univ
/14/0.011

SIBS, CAS
/41/0

Nanjing Agriculture
Univ/40/0.01

Jiangnan Univ
/131/0

Huazhong Agricultural
Univ/20/0.007

Zhejiang Univ
/59/0.001

Sun Yat-sen Univ
/14/0.01

Sino Geno Max Co., Ltd.
/38/0

Hunan Agriculture
Univ/39/0.009

Tsinghua Univ
/125/0

Tsinghua Univ
/20/0.007

Fujian Aonong Biotech
Co., Ltd./58/0.001

IOZ, CAS
/13/0.01

Beijing Capitalbio Co.,
Ltd.

/34/0

Sun Yat-sen Univ
/39/0.009

East China Univ of S&T
/114/0

Yunnan Agricultural
Univ/18/0.006

Beijing Dabeinong
Group Co., Ltd./50/0

China Agriculture Univ
/13/0.01

Zhejiang Univ
/32/0

IOM, CAAS
/38/0.009

Shanghai Jiao tong Univ
/105/0

Shang Academy of
Agriculture/16/0.005

Tsinghua Univ
/48/0

Peking Univ
/12/0.009

NCGR, CAS
/31/0

Fudan Univ
/35/0.008

Shang Academy of
Agriculture/88/0

Beijing Dabeinong
Group Co.,

Ltd./15/0.005

Zhejiang Huitide Life
Tech Co., Ltd./47/0

Sino Geno Max Co.,
Ltd./12/0.009

Nankai Univ
/27/0

BGI Co., Ltd.
/35/0.008

COB, Beijing Dabeinong
Group Co., Ltd./85/0

Hunan Agricultural
Univ/15/0.005

East China Univ of S&T
/44/0

Jiangnan Univ
/12/0.009

Sun Yat-sen Univ
/26/0

China Agriculture Univ
/35/0.008

Sun Yat-sen Univ
/82/0

South China Univ of
Technology
/15/0.005

Nanjing Agriculture
Univ

/44/0

Shanghai Jiao tong
Univ/12/0.009

South China
Agricultural Univ/24/0

Beijing Dabeinong
Group Co.,

Ltd./34/0.008

Xiamen Univ
/81/0

Shanghai Jiao tong
Univ/15/0.005

Sun Yat-sen Univ/
38/0

NCGR, CAS
/11/0.008

Shanghai Jiao tong Univ
/24/0

Huazhong Agricultural
Univ/32/0.008

Zhenjiang Univ of
Technology

/78/0

Peking Univ
/14/0.005

Shanghai Jiao tong Univ
/37/0

Sichuan Univ
/11/0.008

SIOC, CAAS
/21/0

SIBS, CAAS
/31/0.007

Jiangsu Yangnong
Chemical Co.,

Ltd./75/0

CAIQ
/14/0.005

Beijing Annoroad
Biotech Co., Ltd./36/0

Nanjing Agriculture
Univ/10/0.008

Shenzhen Piki Biotech
Co., Ltd./20/0

Shang Academy of
Agriculture/30/0.007

Fudan Univ
/72/0

COFCO NHRI Co., Ltd.
/14/0.005

Wuhan Sunhy Biology
Co.,Ltd/36/0

SBM, CAMS
/10/0.008

Chongqing Univ
/20/0

Peking Univ
/27/0.007

Jiangsu Youshi
Chemical Co.,

Ltd./72/0

Fujian Aonong Biotech
Co., Ltd./13/0.004

Zhejiang Annoroad
Biotech Co., Ltd./36/0

South China
Agricultural

Univ/9/0.007

CAIQ
/19/0

Nankai Univ
/27/0.007

South China
Agricultural Univ/68/0

Henan Univ of S&T
/13/0.004 Jinan Univ/35/0

IOM, CAAS
/9/0.007

Chongqing Chongda
Biotech Co., Ltd./19/0

Genetics, CAAS
/25/0.006

Huazhong Agricultural
Univ

/67/0

ISA, CAAS
/13/0.004

Jinhua Aonong Biotech
Co., Ltd./34/0
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Table A2. Top 10 collaborations between innovators with the highest strength *.

1985–2007 2008–2015 2016–2017

Collaboration/Strength Collaboration/Strength Collaboration/Strength

Fudan Univ- Shanghai Bodao Gene
Tech Co., Ltd./195

BGI Co., Ltd.-BGI Research Institute
Co., Ltd./189 COFCO Co., Ltd.-COFCO NHRI Co., Ltd./37

Fudan Univ-Shanghai Bode Gene
Tech Co., Ltd./159 COFCO Co., Ltd.-COFCO NHRI Co., Ltd./133 Sinochem Lantian Co., Ltd.—Sinochem Zciri

Co., Ltd./37

Fudan Univ- NCGR-Shanghai, CAS/62 Sinochem Lantian Co., Ltd.—Sinochem Zciri
Co., Ltd./87

Zhenjiang Huitai Life Sci Co., Ltd.-Shanghai
Bohui Biotech Co., Ltd./33

Tsinghua Univ- Beijing Capitalbio Co., Ltd./52 COB, Beijing Dabeinong Group Co.,
Ltd-Beijing Dabeinong Group Co., Ltd./83

Shanghai Want Food Co., Ltd. -Shanghai
Industrial Tech Institute/30

Shenzhen Piki Biotech Co., Ltd.-CAIQ/21 Jiangsu Yangnong Chemical Co., Ltd.-Jiangsu
Youshi Chemical Co., Ltd./83

COB, Beijing Dabeinong Group Co.,
Ltd-Beijing Dabeinong Group Co., Ltd./28

Chongqing Univ- Chongqing Chongda
Biotech Co., Ltd./19

Jiangsu Yangnong Chemical Co., Ltd.- Sinopec
RIPP/70

Shanghai Institute of Pharmaceutical
Industry-China Institute of Pharmaceutical

Industry/24

SINOCHEM Co., Ltd.-Shenyang SYRICI
Co., Ltd./13

Hangzhou EastChinapharm Co., Ltd.-
Zhejiang Univ of Technology/60

Shanghai Cathaybiotech Research Institute Co.,
Ltd.- Cathaybiotech Co., Ltd./24

Guangdong Institute of
Microbiology-Guangdong Huankai

Microbiology Technology Co., Ltd./12

Guangdong Dahuanong Animal Health
Products Co., Ltd. -Zhaoqing Dahuanong

BioPharm Co., Ltd./42

Fujian Aonong Biotech Co., Ltd.-Zhangzhou
Aonong Biotech Co., Ltd./22

South China Agricultural Univ-Foshan
Biochemical Tech Co., Ltd./7 Tsinghua Univ- Beijing Capitalbio Co., Ltd./36

Guangzhou Aonong Biotech Co.,
Ltd.-Zhangzhou Aonong Animal Husbandry

S&T Co., Ltd./19

Huazhong Univ of S&T- Guangzhou Tebsun
Biotec Co., Ltd./7

Beijing Dabeinong Feed Co., Ltd.-Beijing
Dabeinong Group Co., Ltd./83

Hubei Huayang Group Co., Ltd.-Wuhan
Sunhy Biology Co.,Ltd./19

* Strength means the number of connections (collaborations) established between two innovators and is shown on
the right of each collaboration in the table.

Table A3. Indicators of the topological network.

Innovators Collaborations Collaborations
(Weighted)

Average
Degree

Average
Degree

(Weighted)
Density Centralization Average

Path-Length
Cluster

Coefficient

1985–2007 1308 2258 4154 1.726 1.59 0.001 0.024 6.716 0.085

2008–2015 4154 8786 18,736 2.115 2.26 0.001 0.02 6.208 0.067

2016–2017 3005 5502 10,651 1.831 1.77 0.001 0.0137 8.36 0.054
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