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Abstract: Companies often use specially-designed production systems and change them from
time to time. They produce small batches in order to satisfy specific demands with the least
tardiness. This imposes high demands on high-performance scheduling algorithms which can
be rapidly adapted to changes in the production system. As a solution, this paper proposes a generic
approach: solutions were obtained using a widely-used commercially-available tool for solving
linear optimization models, which is available in an Enterprise Resource Planning System (in the
SAP system for example) or can be connected to it. In a real-world application of a flow shop with
special restrictions this approach is successfully used on a standard personal computer. Thus, the
main implication is that optimal scheduling with a commercially-available tool, incorporated in an
Enterprise Resource Planning System, may be the best approach.
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1. Introduction

Operative production planning and scheduling in Enterprise Resource Planning Systems are
incorporated in hierarchical production planning, consisting of master production scheduling, material
requirements planning (MRP), and scheduling (see Kurbel [1] or Vollmann [2]). Since capacity
considerations in master production scheduling and material requirements planning cause incorrect
estimations of lead times, out-of-stock and tardiness, respectively, can be substantially reduced by
scheduling. Due to the so called “no free lunch theorem” (see Wolpert and Macready [3]), the
performance of an algorithm can only be high if (correct) problem-specific knowledge is used (about
the structure of the optimization problem). This explains why there are still many publications about
scheduling algorithms for specific production systems. This fits to the observation that companies
produce small batches on specially-designed production systems which are changed from time to
time. Thus, such production systems have special technological restrictions. For example, in cell
manufacturing, a buffer could be non-existent due to limited space and storage facilities. So, in recent
years, a considerable amount of research for no-buffer (blocking) scheduling problems and for no-wait
scheduling problems are published. However, real-world problems often have more restrictions; for
example, a limited amount of production aids such that they are even more difficult to schedule.
Therefore, it is very time consuming to get an appropriate algorithm: either by developing a new one
or by finding one in the literature (since the information about the runtime is, if published, usually
outdated, satisfying a runtime restriction can just be tested by an implementation of the algorithm.).

This paper proposes that a linear optimization model is developed for a scheduling problem and
it is solved with a commercially-available tool. Several tools are available. In this paper, the tool ILOG,
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which is available in the SAP system, is used. As an alternative, Baker uses, in [4], the Risk Solver
Platform (RSP), which is an Excel add-in, developed by Frontline Systems, Inc. (Incline Village, NV,
USA). Thus, an appropriate tool is either available in an Enterprise Resource Planning Systems (ILOG
is in the SAP system, for example) or can be connected to it.

The approach is applied on permutation flow shop problems with technology restrictions.
A real-world example serves as a test problem. As usual, in industrial practice, the planning
is executed in a rolling-horizon environment. For this, a production-planning and control (PPC)
system simulation is implemented. In this simulation, a customer order arrival process is generated.
Material requirements planning (as usual) determines production orders. These are scheduled by the
approach at the company site, by priority rules and by solving an optimization model. Because a
standard personal computer is used, this real-world application shows that optimal scheduling is
applicable in industrial practice. With each new generation of hardware (or improved software for
solving an optimization model) more complex scheduling problems can be optimally solved under
the conditions at the company site. For research this means that optimal solutions can serve as a
benchmark—not only for small test problems. Thus, the main implication is that optimal scheduling
with a commercially-available tool, incorporated in an Enterprise Resource Planning System, will, in
the future, be more often the best approach.

This paper is organized as follows. First, the real-word problem is explained (Section 2).
An optimization model is developed (Section 3) and a literature review about published optimal
and heuristic solutions is given (Section 4). This section also explains the priority rules which serve as
comparison to the optimal scheduling. Then, simulation of the rolling horizon planning together with
the input data is presented and computational results are analyzed (Section 5). Some conclusions are
given at the end (Section 6).

2. Real-World Problem

The problem is a modification of a partly-automated production line at Fiedler Andritz in
Regensburg, Germany, to produce filters (baskets) with a lot size of one. They are mainly sold
to customers directly or assembled in other products. All filters have unified construction. They differ
in varying heights of the baskets and there exist different designs.

The production line consists of four stations which are shown in Figure 1. Station 1 assembles six
single batons (called consoles) on an assembly ground plate to a skeleton of a filter basket. Baton profiles
are assembled into the provided slots of the filter basket skeletons. At the plunge station a wire coil is
contrived in the device of a lining machine. The lining machine straightens the wire and inserts batons
into the slots. To ensure stability, a worker installs span belts in inflow filter baskets and span cores in
outflow filter baskets. To install a span core is more time consuming; this is the only difference in the
processing times between and outflow filter baskets. There are enough span belts but just one span
core for each outflow filter type. Then, the filter basket is lifted from the assembly ground plate and is
transported to the welding station, at which the baton profiles are welded on the filter basket skeletons.
The completed filter basket leaves the production line. Prior to this, the span medium is removed.
An overhead travelling crane lifts a filter basket out of a station, transports it to the next station and
inserts it directly in this station. This is just possible if this station is free. So, there is no buffer in the
production line. Due to other operational issues, the crane can just be moved if all stations are inactive.
Since an operation cannot be interrupted, the transport has to be performed after the completion of
all operations on the stations in the flow shop. Due to further operational issues this restriction has
to also applied be for the first and the last station; note, that the crane loads S1 and unloads S4 as
well. In summary, all stations are loaded and unloaded with filters during a common process and
this process starts with the last station S4, followed by station S3, S2, until station S1 is reached. It is
allowed that a station is empty; then this station is skipped (may be partially) in this process.
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Figure 1. Structure of the production line. 

The processing times of the 10 filter types for inflow (if) and outflow (of) are listed in Table 1. 

The duration of loading (unloading) a station is negligible compared to the duration of the operation 

as well as it is independent of the allocation (or loading) of the other stations and it is included in the 

duration of the operation. 

Table 1. Routings for the real-world application in minutes. 

Filter Type Station 1 Station 2 Station 3 Station 4 Sum of Processing Times 

   if of  if of 

1 65 5 15 20 10 95 100 

2 300 50 55 60 15 420 425 

3 255 125 60 67 75 515 522 

4 295 45 245 259 15 600 614 

5 135 195 295 313 105 730 748 

6 75 305 20 25 305 705 710 

7 255 285 205 215 75 820 830 

8 255 275 195 209 230 955 969 

9 50 290 250 263 290 880 893 

10 270 300 235 247 300 1105 1117 
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cases, these products are components in a large product. Thus, the due dates of the demands are in 

the future. This also happens due to contracts with customers about filter types in the future. For 

demands of single filters material requirements planning determine production orders. With “just in 

time” production a storage of these expensive filters are avoided as much as possible. The production 

orders are scheduled by a simple priority rule. Each working day consists of one shift with a net 

working time of seven hours—there are breaks of in total one hour in each shift. Material 

requirements planning is executed before each shift for all known demands. The priority rule is 

executed on the queue of waiting orders if the first station in the production line becomes idle. 

The general (single) scheduling problem consists of M stations and a pool of N jobs, which may 
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order and the tardiness of a filter which will be assembled in other products should be as small as 
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deviation of tardiness  T  is in line with other studies; see Mouelhi-Chibani and Pierreval [5] or 

Rajendran and Alicke [6] for generated scheduling problems, as well as Voß and Witt [7] for a real-

world application. 
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of the duration of the operations on the stations in the flow shop; this is called cycle time. This “load”-
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Figure 1. Structure of the production line.

The processing times of the 10 filter types for inflow (if) and outflow (of) are listed in Table 1.
The duration of loading (unloading) a station is negligible compared to the duration of the operation
as well as it is independent of the allocation (or loading) of the other stations and it is included in the
duration of the operation.

Table 1. Routings for the real-world application in minutes.

Filter Type Station 1 Station 2 Station 3 Station 4 Sum of Processing Times

if of if of
1 65 5 15 20 10 95 100
2 300 50 55 60 15 420 425
3 255 125 60 67 75 515 522
4 295 45 245 259 15 600 614
5 135 195 295 313 105 730 748
6 75 305 20 25 305 705 710
7 255 285 205 215 75 820 830
8 255 275 195 209 230 955 969
9 50 290 250 263 290 880 893

10 270 300 235 247 300 1105 1117

Single filters (lot size 1) are sold to customers directly or assembled in other products. In both
cases, these products are components in a large product. Thus, the due dates of the demands are in the
future. This also happens due to contracts with customers about filter types in the future. For demands
of single filters material requirements planning determine production orders. With “just in time”
production a storage of these expensive filters are avoided as much as possible. The production orders
are scheduled by a simple priority rule. Each working day consists of one shift with a net working time
of seven hours—there are breaks of in total one hour in each shift. Material requirements planning
is executed before each shift for all known demands. The priority rule is executed on the queue of
waiting orders if the first station in the production line becomes idle.

The general (single) scheduling problem consists of M stations and a pool of N jobs, which may
change at any time, with known earliest possible starting times being, respectively, release dates
ai p1 ď i ď Nq and due dates fi p1 ď i ď Nq, as well as duration ti,j of operation

`

oi,j
˘

j p1 ď j ď Mq
of job i p1 ď i ď Nq, which is worked on station j. Critical at the customer site is the tardiness of a
customer order and the tardiness of a filter which will be assembled in other products should be
as small as possible. Thus, minimizing total tardiness and analyzing average tardiness pTMeanq and
standard deviation of tardiness pTσq is in line with other studies; see Mouelhi-Chibani and Pierreval [5]
or Rajendran and Alicke [6] for generated scheduling problems, as well as Voß and Witt [7] for a
real-world application.

The time between two consecutive executions of the load process is determined by the maximum
of the duration of the operations on the stations in the flow shop; this is called cycle time.
This “load”-restriction, the no-buffer condition, and the capacity of the stations are the main restrictions.
Set-up times are relatively small compared to operation times and they are included in operation times.
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The no-buffer condition means a relaxation of the scheduling problem with the (above)
“load”-restriction. A good survey of scheduling problems with the no-buffer condition was given by
Hall and Sriskandarajah [8]. There it is proved that this problem is NP-hard in the strong sense for
more than two stations. Thus, the problem class with this real-world application as an example is
NP-hard in the strong sense as well.

3. A Linear Optimization Model

3.1. Literature Review

There are two main approaches (see Sundaramoorthy and Maravelias [9]): sequence-based models
(a sequence of jobs is determined) or discrete time models (those discrete periods are determined, in
which the jobs are completed). In many cases, the modeling of restrictions, especially for a limited
storage capacity, require more complicated constraints for sequence-based models than for discrete
time models. On the other hand, sequence-based models have normally shorter run times. In the
literature there are two ways to express such a sequence: in the so-called assignment formulation
the key decision variable

`

xi,p
˘

is set to 1, if job i is at position p in the permutation, and in the so
called precedence formulation the key decision variable

`

xi,p
˘

is set to 1, if job i precedes job p in the
sequence. Due to Gupta et al. [10] the assignment formulation requires less computation time than the
precedence formulation. In their study makespan is minimized. As can be seen below, for the class of
problems regarded in this paper restrictions can be formulated by quite simple constraints, so that a
sequence-based model seems to be the best choice. Nevertheless, in many papers, see Gicquel et al. [11]
for example, an integer model with discrete time periods is used. If general precedence constraints
occur then flow shop problems are modelled by the well-known resource constrained scheduling
problem (RCPSP, sometimes referred to as a project shop; see e.g., Morton and Pentico [12]); an example
is in Voß and Witt [7]. Thus, the following model extends the ones in the literature by restrictions
ensuring the “load”-restriction, restrictions for the special treatment of the first and the last cycles,
restrictions for the rolling planning environment, and restrictions to ensure that a span core is used not
more than once.

3.2. Model

Already, the no-buffer restriction means that all feasible schedules are a permutation of the
N jobs of the scheduling problem. The problem is modeled as an assignment problem with
additional restrictions.

Parameters:

M: number of stations; 1 ď j ď M.
N: number of jobs; 1 ď i ď N.
NE: number of artificial jobs; 1 ď i ď N.
ai: release date of job i for all 1 ď i ď N.
fi: due date of job i for all 1 ď i ď N.
oi,j: operation j of job i p1 ď i ď Nqwhich is worked on station j for all 1 ď i ď N and 1 ď j ď M.
ti,j: duration of operation j of job i

`

oi,j
˘

which is worked on station j for all 1 ď i ď N and 1 ď j ď M

Decision variables:

xi,p: position of job i in the permutation: job i is at position p for all 1 ď i, p ď N.

(Decision) variables for intermediate results:

FTp,j: upper bound of the realised finish time of the job at position p in a permutation on station j for
all 1 ď p, j ď N.
FTp,0: release date of the job at position p for all 1 ď p ď N.
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STp,j: earliest starting time for job p in a permutation on station j for all 1 ď p ď N; i.e., STp,j “ FTp´1,j.
SRTp,j: realized starting and finish time of the job at position p in a permutation on station j for all
1 ď p, j ď N.
FRTp,j: realized starting and finish time of the job at position p in a permutation on station j for all
1 ď p, j ď N.
TypOF

p,k: job at position p in the permutation has type k and is an outflow filter for all 1 ď p ď N and
for all 1 ď k ď 10.
Tp: upper bound for the tardiness of the job at position p for all 1 ď p ď N.

Restrictions:

(1) xi,p “

#

1, job i is at position p in the permutation

0, otherwise
for all 1 ď i, p ď N.

Each job i and each position p is handled once:

(2)
N
ř

p“1
xi,p “ 1 for all 1 ď i ď N.

(3)
N
ř

i“1
xi,p “ 1 for all 1 ď p ď N.

The “load”-restriction is ensured as follows. For each job there is a timeframe in which the
execution takes place; by (4, 5). The jobs, which are together in a cycle, have the same timeframe;
by (6–8).

In a timeframe the capacity restriction is ensured by (4) (remember: FTp,j is an upper bound of
the realized finish time of the job at position p in a permutation on station j):

(4) FTp,j´1 `
N
ř

i“1
ti,j ¨ xi,p ď FTp,j for all 1 ď p ď N and for all 1 ď j ď M (remember: FTp,0 is the

release date of the job at position p).

Linear inequalities (5) ensure that the orders of jobs on each station are identical:

(5) FTp´1,j `
N
ř

i“1
ti,j ¨ xi,p ď FTp,j for all 1 ď p ď N and for all 1 ď j ď M with FT0,j being the

availability of station j for all 1 ď j ď M.

Now, all jobs in a cycle should have identical timeframes:

(6) FTp`pj´1q,M´pj´1q “ FTp`j,M´j for all 1 ď p ď N´M` 1 and for all 1 ď j ď M´ 1.

At the beginning p1 ď p ď M´ 1q and at the end pN´M` 2 ď p ď N´ 1q of a permutation, not
all stations are occupied. So, the linear inequalities are adapted as follows.

For 1 ď p ď M´ 1 restriction (6) is:

(7) FT1`pj´1q,pM´pq´pj´1q “ FT1`j,pM´pq´pj´1q´ 1 for all 1 ď p ă pM´ 1q and for all 1 ď j ă M´ p.

and for N´M` 2 ď p ď N´ 1 restriction (6) is:

(8) FTp`pj´1q,M´pj´1q “ FTp`j,M´j for all N´M` 1 ă p ă N and for all 1 ď j ď N´ p.

So, FTp´1,j is the earliest starting time for job p in a permutation on station j, as decision variable
STp,j

`

“ FTp´1,j
˘

. With the following linear inequalities, additional decision variables for the real
processing times (remember: SRTp,j and FRTp,j are realized starting and finishing time of the job at
position p in a permutation on station j) are set correctly in the timeframe of a cycle and each job starts
at the beginning of a cycle.

(9) SRTp,j `
N
ř

i“1
ti,j ¨ xi,p “ FRTp,j ď FTp,j for all 1 ď p ď N.
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(10) STp,j “ SRTp,j for all 1 ď j ď M.

Note: The idle time of a job in a cycle can be used to start later, for example, if a worker is not
available. Set up times can be integrated if needed.

Just one span core for each outflow filter type (used on the consecutive stations S3 and S4) means
that there occurs no two consecutive orders in a permutation having the same outflow filter type. To
ensure this, the type of an order in position p in the permutation is determined by:

(11) TypOF
p,k “

#

1, job at position p in the permutation has type k and is an outflow filter

0, otherwise
for all 1 ď p ď N and for all 1 ď k ď 10.The above condition is not met, if TypOF

p,k`TypOF
p`1,k ą 1

for one k, 1 ď k ď 10, and one p, 1 ď p ď N.

Thus, the condition is met by

(12) TypOF
p,k ` TypOF

p`1,k ď 1 for all 1 ď p ă N´ 1 and for all 1 ď k ď 10.
(13) xi,p P t0, 1u for all 1 ď i ď N and for all 1 ď p ď N.
(14) TypOF

p,k P t0, 1u for all 1 ď p ď N and for all 1 ď k ď 10.

Linear inequalities (15, 16) ensure upper bounds for the variable tardiness
`

Tp
˘

.

(15) Tp ě 0 for all 1 ď p ď N.

(16) Tp ě FTp,M ´
N
ř

i“1
fi ¨ xi,p for all 1 ď p ď N.

Then

(17) Minimize

˜

N
ř

p“1
Tp

¸

minimizes the average tardiness.
An empty station in a cycle is achieved by an artificial order i whose duration time on each

station is zero, and whose release date is less than the release dates of all normal jobs, so i can start
immediately. With a large due date, no tardiness occur; so, i does not affect the objective function (17).
That this is beneficial is analyzed in the section “results and discussion”.

For the linear inequalities, which affects the cycles—as (6–8), there is a distinction between the
first (M ´ 1) cycles, the last (M ´ 1) cycles and the ones in between. This implies a minimum number
of jobs—i.e., of N. A smaller number (of N) of jobs is extended by one or more artificial jobs. For the
sake of simplicity, there are always (M ´ 1) artificial jobs at the beginning and (M ´ 1) artificial jobs at
the end of the to be determined permutation; i.e., the decision variable x. This is achieved with the
linear inequalities

(18) xp,p “ 1 for all 1 ď p ď pM´ 1q

in the case of the (M ´ 1) artificial jobs at the beginning and

(19) xN`pM´1q`NE`p,N`pM´1q`NE`p “ 1 for all 1 ď p ď pM´ 1q

in the case of the (M ´ 1) artificial jobs at the end, where NE is the number of artificial jobs with each
of them an empty station in a cycle is realized.

3.3. Model Extension for a Rolling Planning Environment

The entire planning hierarchy is executed in a rolling planning environment. This means (for
all scheduling procedures) that a sequence of scheduling problems are solved. Each solution of a
single scheduling problem is added to a permutation P of the jobs scheduled so far. The starting
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point is a sequence S of jobs—determined by material requirements planning. The jobs of one single
scheduling problem (i.e., workload) consists of those jobs in S. The actual permutation P is extended
by the permutation of the jobs due to the first c cycles, c P N, also c ě 1, in an optimal solution, which
are not already in P. Assume that p is the period in which the last of these c cycles is finished. Then the
next workload consists of the jobs from S with a release date less than or equal to p + r and which
are not already in P, of course. For a production line of M stations this means for the calculation of
the new solution (NS): The last (M ´ 1)-jobs in P (A1, . . . , AM´1) are partially part of the first (M ´ 1)
cycles of NS. A1, . . . , AM´1 determine a minimum length of the first (M ´ 1) cycles of NS. For cycle j,
1 ď j ď pM´ 1q, of these cycles, this minimum length is the maximum of the durations of the jobs in
A1, . . . , AM´1 which are executed in cycle j and it is denoted by TZBj. In addition, these first (M ´ 1)
cycles of NS determine the (realized) due dates of A1, . . . , AM´1 which is denoted by SETi for job Ai,
1 ď i ď pM´ 1q.

The model is extended as follows:

Parameters:

P: Permutation of the jobs scheduled so far due to the rolling planning environment.
A1, . . . , AM´1: last (M ´ 1)-jobs in P.
TZBj: lower bound for the duration of cycle j for all 1 ď j ď pM´ 1q.

Note: the other parameters of the model in Section 3.2 are filled by the release procedure
explained above.
(Decision) variables for intermediate results:
SETi: due date of job Ai for all 1 ď i ď pM´ 1q.

Restrictions:
The following restrictions—see (20)—ensure that the first (M ´ 1) cycles are longer than TZBj.

In our approach, the jobs A1, . . . , AM´1 are not scheduled, but substituted by the above mentioned
artificial jobs. So, the positions M until (M+ M ´ 1´ 1) have to be regarded and the finishing time is,
related to station 1, i.e.,

´

FTpM´1q`j,1

¯

. This corresponds to the first (M ´ 1) cycles of NS—without the
(M ´ 1) artificial jobs. Then the linear inequalities

(20) TZBj ď FTpM´1q`j,1 ´ FTpM´1q`pj´1q,1 for all 1 ď j ď pM´ 1q

are needed.
Since the first (M-1) cycles of the new solution (NS)—again (as with TZBj) without the (M ´ 1)

artificial jobs—can increase the (realized) due dates of A1, . . . , AM´1, so that their adapted delay have
to be integrated in the objective function. With SETi being the due date of the job which is finished in
cycle i (of NS) – i.e., Ai—the linear inequalities (21, 22) ensure upper bounds for the variable tardiness
pTiq or

`

TAi

˘

, respectively.

(21) Ti ě 0 for all 1 ď i ď pM´ 1q.
(22) Ti ě FTpM´1q`i,1 ´ SETi for all 1 ď i ď pM´ 1q.Then, the sum of these tardiness variables has to

be added in the objective function:

(23) Minimize

˜

N
ř

p“1
Tp `

M´1
ř

i“1
Ti

¸

.

Technically, TZBj is calculated by the scheduling algorithm as the maximum of the durations of the
jobs in A1, . . . , AM´1 which are executed in cycle j. For this, there exists a so called simulation algorithm
which simulates the execution of a permutation of jobs on the flow shop. This simulation algorithm
can be used to ensure restrictions outside the optimization model; then the simulation algorithm
ensures a feasible schedule and calculates the correct completion times for example. This is helpful
for restrictions in industrial practice which are difficult to formulate by a linear inequality (or linear
inequalities) or for a linear inequality (or linear inequalities) which increases the runtime significantly.
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The rolling planning environment implies that there are linear inequalities which ensures that no
job starts before its realized date (i.e., SRTp,1 ě release date of p) and that the availability of the stations
are met (i.e., SRT1,j ě availability of the station j).

4. Optimal and Heuristic Scheduling

Since the scheduling problem is NP-hard (in the strong sense, see above), research over the
last decades focuses increasingly on heuristic methods—from simple priority rules to sophisticated
metaheuristics. For flow shop scheduling, the development of the research is traced in Gupta et al. [10].
In more detail, Vallada et al. [13], even though it is focused on heuristics and metaheuristics, provides
a careful review of previous research.

As said earlier, the real application is close to the class of no-buffer (blocking) scheduling problems.
Solutions for the no-buffer (blocking) scheduling problems are presented in various papers already.
Just one example for the blocking flow shop scheduling with makespan criterion is the paper of
Wang et al. [14]. They propose a harmony search algorithm together with a new NEH heuristic
(Nawaz et al. [15], which several researchers name as best constructive heuristic to minimize the
makespan in the flow shop with blocking (see Framinan et al. [16] as one example only), based on the
reasonable premise, that the jobs with less total processing times should be given higher priorities.

To the best of my knowledge, just a few studies investigate algorithms for the total tardiness
objective (for flow shops with blocking). Ronconi and Henriques [17] describe several versions of a
local search. First, with the NEH algorithm they explore specific characteristics of the problem. A more
comprehensive local search is developed by a GRASP-based (greedy randomized adaptive search
procedure) search heuristic.

Optimal solutions are often achieved by a branch-and-bound algorithm, normally, with a lower
bound (-s) which reduces the number of nodes significantly. This algorithm is a heuristic if the CPU
time of a run is limited. An example for the total tardiness objective is the work of Ronconi and
Armentano [18]; a more effective one is presented in Ronconi [19], but for minimizing makespan.

Exact methods, like branch and bound approaches—for alternatives see Brucker
andKnust [20]—can just be applied to problems with a small number of stations; for a review see
e.g., Brucker [21]. For example, Kim [22] described a branch and bound algorithm for minimizing
mean tardiness in two machine flow shops. Typically, for a small number of stations lower bounds for
pruning the search tree (i.e., reducing the search (space)) are developed (and often proven), see e.g.,
Gharbi et al. [23]. As shown in the literature, see e.g., Brucker [21], the performance criteria affect the
complexity of algorithms for scheduling problems. In this sense minimizing makespan is the easiest
problem; for example, the two-machine flow shop problem with minimizing makespan is solved in
polynomial time by the Johnson algorithm but the 2 machine flow shop problem with minimizing
mean tardiness is NP hard. So, it can be expected that additional requirements from industrial practice
cause additional runtime consumption.

For flowshop problems, in general, a careful review is provided in the recent paper of Baker [4].
My own search about the last two years show that there is nothing to add. Especially, due to Baker [4],
the most effective branch and bound algorithm for the flow shop tardiness problem is developed
by Chung, Flynn, and Kirca [24]. The review in Baker [4] says: “Kim [22] examined problems with
different values of m and was able to solve problems as large as 14 ¨ 4 and 13 ¨ 8 within a time limit of
1 h. Roughly a decade later, Chung, Flynn, and Kirca [24] also considered different values of m and
were able to solve most problems containing 15 jobs (and as many as 8 machines), but several 20-job
instances in their testbed went unsolved. Instead of using a time limit, they terminated their algorithm
on the basis of nodes visited in the branch-and-bound (BB) algorithm, using a limit of four million
nodes. Based on the results of these studies, the state of the art among specialized BB algorithms
appears to be the solution of problems with up to about 15 jobs and 8 machines. Clearly, improvements
in hardware have occurred since the Chung paper appeared, but that does not necessarily mean that
we should expect to solve much larger problems today.”
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Using priority rules for scheduling is still state of the art in industrial practice; see, for example,
El-Bouri [25] or Chiang and Fu [26], and is used at Fiedler Andritz in Regensburg as well. Thus, in
this paper, optimal scheduling is compared with established priority rules from the literature.
As is known, tardiness is improved by assigning jobs with a small slack; the slack for job i is
defined by fi ´ t ´ tti, where t is the current time and fi is the due date of job i and tti is the
sum of the processing times of the operations of job i—or an alternative assessment of the lead
time. Investigations (see e.g., Engell et al. [27]) show that for many job shop problems the rules

CR` SPT “

$

&

%

fi ´ t
tti

, fi ´ t´ tti ą 0

tti, fi ´ t´ tti ď 0
, tti means the shortest processing time (SPT) rule, ODD,

which is identical with the EDD-rule (i.e., earliest due date) for the class of job shop problems in this

investigation, and SL{OPN “
fi ´ t´ tti

M
(where a low value is always preferred) are Pareto optimal

to the average, the variance, and the maximum tardiness (see Engell et al. [27]). This explains why
SL/OPN and CR+SPT are often used as benchmark; according to Raghu and Rajendran [28] other
combinations deliver worse results for flow shop problems. In addition, newer rules are regarded.
One is RR, originally defined in Raghu and Rajendran [22] and used, slightly modified, in Rajendran
and Holthaus [29]. The priority index is pfi ´ t´ ttiq ¨ e´η ` eη ¨ tti, with utilization level η of the

entire flow shop defined by η “
b

b` j
, with b being the busy time and j being the idle time of

the entire flow shop, and the job with the lowest priority index is processed next. The other rule
(RM) is based on the development of a weighted slack-based scheduling rule in Rachamadugu and
Morton [30]. Modifications of this rule deliver very good results for flow shop and job shop problems
with weighted tardiness criteria (see Vepsatainen and Morton [31]). The rule was successfully adapted
to resource-constrained project scheduling problems (RCPSP) in Voß and Witt [7]. Since there is no

weight in our problem, the priority index is
1
πi
¨ e

k
t
¨pfi´t´ttiq

, with resource costs πi, motivated by Voß

and Witt [7], and k is an empirically determined “look-ahead” parameter. As local processing time
costing we use πl

i “ tti, called RM local, and as global processing time we use π
g
i “

ř

iPUt

tti, where Ut

is the set of unfinished jobs in the pool of orders, including job i, called RM global; note that, in the
literature, additional costs are regarded (see Lawrence and Morton [30]).

5. Results and Discussion

In the real-world application the number of demands per period is between 3 and 9 and there are
long sequences of successive periods with a similar number of demands. By scheduling with FIFO
this causes a lead time for part types 1 to 5, which is almost always below one period, and a lead time
for part types 6 to 10, which is always below two periods. Thus, these values are used as lead times
in the material requirements planning. The hierarchical planning of material requirements planning
followed by optimal scheduling is denoted by MRP-OS and, if priority rules are used for scheduling,
it is denoted by MRP-Rule with the name of the rule in brackets, e.g., MRP-Rule (SL/OPN) in the
case of the SL/OPN rule. Both alternatives are simulated in a rolling environment. From an optimal
schedule just the first order is finally assigned on the production line; i.e., parameter C, see Section 3, is
1. This minimizes the impact of uncertain demand.

The number of demands per period are clustered in five cases: Case 1 between 3 to 5, Case 2
between 5 and 6, Case 3 between 6 and 8, Case 4 between 8 or 9, and a randomly-generated number
between 3 to 9. In addition, the demand at the customer site over the last two years is used. These
different workloads per period cause different number of late jobs in case of scheduling with the
“first-in-first-out” priority rule. Approximately, they are 30% with Case 1, 48% with Case 2, 71% with
Case 3, and 82% with Case 4. With all demand scenarios and parameter settings a steady state for both
performance criteria—TMean and Tσ—is reached by a simulation horizon of less than 2500 periods.
Therefore, in all experiments a simulation horizon of 3000 periods is used; in the case of historical
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data, they are repeated. To avoid errors from start-up and rundown, the first and the last 10 periods
are disregarded. In literature, an alternative is applied, which is implemented as well: the length of
the warm-up period of the simulation model is determined using the MSER-5 heuristics of White,
Cobb, and Spratt [32] and cut off. In addition, confidence intervals are calculated; for example, using
the overlapping batch means heuristic proposed by Meketon and Schmeiser [33] combined with
the optimal batch size heuristic from Song [34]. Since a steady state is always achieved, confidence
intervals are not needed.

In this investigation optimal scheduling is executed by IBM-ILOG—version 12.6.2—and the
tests are executed on a PC with an Intel 3.3 GHz CPU and 64 GB of RAM. ILOG is often used in
academic and industrial practice. Probably, Excel is more accepted in industrial practice. With the
Excel add-in Risk Solver Platform (RSP) the optimal model can be implemented, as Baker [4] shows;
RSP is developed by Frontline Systems, Inc. (Incline Village, NV, USA) and is available with several
textbooks and is widely used by students and practitioners. Thus, OS is feasible in industrial practice.

In the literature the sensitivity of the optimal schedule (OS) to changes in the (forecasted)
demands which is characteristic for a rolling planning environment is addressed—see for example
Bredström et al. [35]. In a preliminary investigation this effect is analyzed for the real-world application.
For this, OS is applied on the above explained different workloads with the parameter setting r = 0
(this means that just the jobs with a release date in the actual period are released (of course the entire
workload contains the backlog as well)), with r = 1 (compared to r = 0 also demand in the following
period is known) and with r = 2 (i.e., an additional period is regarded as well). Since mean tardiness is
optimized, just this criteria is analyzed.

Table 2 contains the relative difference to r = 1: “+” means a higher value (worse) and “´”
means a lower value (better). The results with r = 0 are significantly worse than the ones with r = 1.
Moreover, the results for r = 2 are very close to the ones of r = 1. The high time pressure in Case 4 shows
that a larger release horizon occasionally causes a decrease of the mean tardiness, but overall—i.e.,
after a full simulation—the number of tardy jobs is slightly smaller. Thus, a much higher runtime due
to a larger release horizon is not beneficial and r = 1 is used for the demand scenarios.

Table 2. Relative differences to r = 1 with “+” means a higher value (worse) and “´“ means a lower
value (better) for the six demand scenarios.

OS Case 1 Case 2 Case 3 Case 4 Case 5 Historical

r = 0 20.8% 23.9% 30.4 39.1% 29.9% 32.8%
r = 2 0% ´0.01% ´0.01% 0.1% 0 0%

In accordance with the expectation (see Engell et al. [27]) CR + SPT delivers a small TMean at the
expense of a higher TRMS and the opposite is true for SL/OPN. As said earlier, the first behavior is
typical for a SPT-based rule, and the second for a slack-based rule. The other three rules, RR, local RM,
and global RM, avoid large TMean and TRMS, respectively, which is in accordance with the results in
the literature, but they do not always deliver the best value. Nevertheless, the rule RR combines the
rules SPT and slack better than the CR + SPT rule. Further experiments indicate that the application
of the exponential function on the slack in the (two versions of the) RM rule, partially modified by
constants, uses the slack more effective than the other slack-based rules and delivers good results even
if it is beneficial to prefer the job with the smallest processing time. However, this is not enough to
ensure that both RM rules deliver better results than RR—indeed half of the figures for RR are better
than the ones for RM local. The better processing time costing of RM global compared to RM local
results in RM global always delivering the best results.

The results by the priority rules and the optimal scheduling are shown in Figure 2. The values for
Tmean determines a sequence of rules, which is in accordance with the results in literature, like Voß
and Witt [7], Raghu and Rajendran [28], Rajendran and Holthaus [29], Lawrence and Morton [36], and
Engell et al. [27].
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6. Conclusions

This paper presents an optimization model for a real world flow shop scheduling problem
with specific restrictions, which are not covered by the restrictions in the classification of scheduling
problems normally used in literature (see e.g., Brucker [21]). This optimization model is solved in a
rolling planning environment (called OS) as at the company site. The best solution—i.e., real optimal
solution—is achieved if all orders (of the entire simulation in our case) are known. In this case, such an
optimal solution is nearly delivered by OS in a runtime which is acceptable for this company. So, this
paper presents an application of a solver of linear optimization problems on a real-world problem.
Baker [4] expects that such a procedure will be applied in the future more often.

Further studies indicate that in the general case (especially, the job shop problem) there is typically
a relatively larger deviation between the schedule delivered by OS and the one to the (real) optimal
solution—together with a strong deviation in the performance criteria. This is caused by a higher
sensitivity (of the optimal schedule) to changes in the (forecasted) demands than in this study. As a
consequence, the needed horizon of known (and unchanged) orders to eliminate this effect is longer.
With tuning the material requirements planning the sensitivity of the optimal schedule to the uncertain
demand is significantly reduced. Thus, this paper contributes to a robust scheduling in a rolling
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environment. An extension of this approach to the general job shop problem or the realization of
other ideas, may be derived from the ones of Stadtler [37] who solved this problem for the single
uncapacitated lot-sizing problem or a control of workload, for which, typically, a release procedure is
used, are left to future investigations.

Conflicts of Interest: The author declares no conflict of interest.
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