
systems

Article

Improved Time Response of Stabilization in
Synchronization of Chaotic Oscillators
Using Mathematica

Mohammad Shahzad 1,*, Israr Ahmad 1,2, Azizan Bin Saaban 2 and Adyda Binti Ibrahim 2

1 College of Applied Sciences, Ministry of Higher Education, Nizwa 611, Sultanate of Oman;
iak_2000plus@yahoo.com

2 School of Quantitative Sciences, College of Arts & Sciences, UUM, Keddha 06010, Malaysia;
azizan.s@uum.edu.my (A.B.S.); adyda@uum.edu.my (A.B.I.)

* Correspondence: dmsinfinite@gmail.com; Tel.: +968-9958-4197

Academic Editor: Ockie Bosch
Received: 27 December 2015; Accepted: 15 June 2016; Published: 22 June 2016

Abstract: Chaotic dynamics are an interesting topic in nonlinear science that has been intensively
studied during the last three decades due to its wide availability. Motivated by much researches on
synchronization, the authors of this study have improved the time response of stabilization when
parametrically excited Φ6—Van der Pol Oscillator (VDPO) and Φ6—Duffing Oscillator (DO) are
synchronized identically as well as non-identically (with each other) using the Linear Active Control
(LAC) technique using Mathematica. Furthermore, the authors have synchronized the same pairs
of the oscillators using a more robust synchronization with faster time response of stability called
Robust Adaptive Sliding Mode Control (RASMC). A comparative study has been done between the
previous results of Njah’s work and our results based on Mathematica via LAC. The time response of
stabilization of synchronization using RASMC has been discussed.
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1. Introduction

The study of chaotic behavior in nonlinear systems has attracted much attention because of many
possible applications in various fields of science and technology. Most of the research has been devoted
to the modeling of new chaotic systems together with the control and synchronization [1]. Thus far
much work based on modeling, as well as various new control and synchronization techniques, has been
carried out and is worth citing. For example, the sliding mode control [2–5], adaptive control [6–8], linear
active control [9–13], linear feedback control [14–16], projective synchronization [17–19], nonlinear
active control [20,21] and backstepping control [22], to mention but a few.

A recent study of Shahzad [23] focused the attention of researchers on how to choose a model based
synchronization technique and the appropriate mathematical tools for simulation. Pourmahmood et al. [24]
have developed a Robust Adaptive Sliding Mode Control (RASMC) and implemented it successfully
on three well known chaotic systems (Lorenz, Chen and Liu) using MATLAB for all of the simulations,
but when the same study was done using Mathematica by Shahzad [23], remarkable changes were
observed in terms of time response to stabilize the synchronization.

Motivated by the aforementioned studies, we synchronize the identical and non-identical pairs
of Φ6—VDPO and DO using the LAC and RASMC, respectively. However, the synchronization
of Φ6—VDPO and DO using the LAC has already been done by Njah [12] but when the same
work of Njah [12] was repeated via LAC and using Mathematica, remarkable changes had been
found in the time response of stabilization of synchronization. On the other hand, the faster time
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response of stabilization of synchronization performances of the RASMC forced us to implement it
on the same pairs of systems studied by Njah [12]. To the best of our knowledge, this kind of study
has never been done before. The main objective behind the implementation of RASMC is that the
sliding mode control is one of the robust control methods and has many interesting features such as
low sensitivity to external disturbances and robustness to the plant uncertainties due to structural
variations and un-modeled dynamics. The sliding mode controller is composed of an equivalent
control part that describes the behavior of the system when the trajectories stay over the sliding surface
and a variable structure control part that enforces the trajectories to reach the sliding surface and
remain on it evermore. The adaptive control is a suitable approach to overcome system uncertainties,
especially uncertainties derived from uncertain parameters. The adaptive sliding mode control has the
advantages of combining the robustness of the sliding mode control with the tracking facilities of the
adaptive control ([24], and the references therein).

The rest of the paper has been organized as follows: In Section 2, the three identical pairs
of Φ6—VDPO and DO, respectively, and non-identical pairs of Φ6—VDPO and DO have been
synchronized using the LAC. Section 3 is devoted to the brief description of RASMC as well as
its implementation on identical synchronization of Φ6—VDPO and DO, respectively, and non-identical
pair of Φ6—VDPO and DO. Lastly, the whole study has been concluded in Section 4.

2. Synchronization Using LAC

In this section, we synchronize the identical and non-identical pairs of Φ6—VDPO and DO,
respectively, using the LAC technique for chaos synchronization that was proposed by Bai and
Lonngren [9] and it has recently been accepted as one of the most efficient techniques for synchronizing
both identical and non-identical chaotic systems because of its simple implementation in practical
systems [25–28]. It can be easily designed according to the given conditions of the chaotic system as
a way of accomplishing synchronization globally asymptotically, if the nonlinearity of the system is
known. There are no derivatives in the controller and no need to calculate the Lyapunov exponents to
execute the controller. These characteristics give an advantage to the technique over other conventional
synchronization techniques.

2.1. Description of the Models

Since the chaotic systems are very complex nonlinear systems, they are exceptionally sensitive
to tiny changes in their initial conditions and parameters variations. With the passage of time and
due to the potential applications of chaotic systems in certain scientific fields, many chaotic and
hyperchaotic systems have been investigated (Lorenz, Chen and Liu, etc.). In this direction, the
Φ6—VDPO and DO are periodically self-excited and have rich applications in various disciplines like
electronics, physics, engineering, neurology and biological sciences [29–31]. Njah [12] studied and
investigated the synchronizations of Φ6—VDPO and DO with applications to secure communication
using the LAC technique based on the Lyapunov stability theory and the Routh-Hurwitz criterion.
The synchronization schemes have been studied without considering the external disturbances and
model uncertainties. However, in practical applications, either environmental changes (noise) may
occur any time or lack of parameters knowledge may disturb the stability of the synchronized system
and this uncertainty or environmental noise cannot be simply ignored.

The Φ6—VDPO and DO are classical examples of self-oscillatory and periodic systems and
are now considered as very valuable mathematical models that can be utilized in much more
complex and modified systems. In these models, there exist two frequencies, namely periodic
forcing and self-oscillations. The energy is generated at low amplitudes and dissipated at high
amplitude. The dynamics of chaotic parametrically excited Φ6—VDPO [12] are given by the following
mathematical model:

Φ6 ´VDPO :
..
x´ µ1p1´ x2q

.
x`α1 t1` η1cosp2ω1tqu x`β1x3 ` λ1x5 “ f1cosω1t (1)



Systems 2016, 4, 25 3 of 21

The dynamics of another chaotic parametrically excited Φ6—DO [12] are given by the following
mathematical model:

Φ6 ´DO :
..
x` µ2

.
x`α2 t1` η2cosp2ω2tqu x`β2x3 ` λ2x5 “ f2cosω2t (2)

where the Φ6—VDPO and DO exhibit chaotic attractors for the following parameter values: µ1 “ 0.4,
α “ 1.0, β “ ´0.7, λ1 “ 0.1, η1 “ 0.7, f1 “ 9, ω1 “ 3.14 and µ2 “ 0.4, α2 “ 0.46, β2 “ 1, λ2 “ 0.1,
f2 “ 4.5, η2 “ 0.7,ω2 “ 0.86, respectively [12].

2.2. Synchronization of Two Identical Φ6—VDPO Oscillators via LAC

To achieve synchronization between two identical Φ6—VDPO, let us consider the master–slave
systems synchronization scheme for two coupled identical chaotic Φ6—VDPO that can be written by
choosing x “ x1 and

.
x1 “ x2 and x “ y1 and

.
x “ y2 in Equation (1) for master and slave systems,

respectively, as follows:

Master System :

# .
x1 “ x2,
.
x2 “ µ1p1´ x2

1qx2 ´α1 t1` η1cosp2ω1tqu x1 ´β1x3
1 ´ λ1x5

1 ` f1cosω1t
(3)

Slave System :

# .
y1 “ y2 ` u1ptq,
.
y2 “ µ1p1´ y2

1qy2 ´α1 t1` η1cosp2ω1tqu y1 ´β1y3
1 ´ λ1y5

1 ` f1cosω1t` u2ptq
(4)

where rx1ptq, x2ptqs
T and ry1ptq, y2ptqs

T
P R2 are the state variables of master and slave systems,

respectively; µ1, α1, β1, λ1, f1, η1 and ω1 are the parameters involved in Equations (3) and (4) and
uptq “ ru1ptq, u2ptqs

T
P R2ˆ1 are the control inputs yet to be determined.

Now, the error dynamics (ei “ yi ´ xi, for i “ 1, 2) from Equations (3) and (4) can be written
as follows:

.
e1 “ e2 ` u1ptq
.
e2 “ µ1e1 ´ µ1py2

1y2 ´ x2
1x2q ´α1 t1` η1cosp2ω1tqu e1 ´β1py3

1 ´ x3
1q ´ λ1py5

1 ´ x5
1q ` u2ptq

(5)

In order to make the error dynamics linear, let us redefine u1 & u2 as follows:

u1ptq “ v1ptq
u2ptq “ µ1py2

1y2 ´ x2
1x2q `β1py3

1 ´ x3
1q ` λ1py5

1 ´ x5
1q ` v2ptq

(6)

666 Now the linear error dynamical system can be written as:

.
e1 “ e2 ` v1ptq
.
e2 “ µ1e1 ´α1 t1` η1cosp2ω1tqu e1 ` v2ptq

(7)

The linear error dynamics (Equation (7)) is controlled by v1pe1, e2q and v2pe1, e2q that are

defined as:

˜

v1

v2

¸

“ D

˜

e1

e2

¸

where D “

˜

a b
c d

¸

is a constant feedback matrix yet to be

determined and the error dynamics (Equation (7)) can be written as:

˜ .
e1
.
e2

¸

“ C

˜

e1

e2

¸

where

C “

˜

a 1` b
c´α1 t1` η1cosp2ω1tqu µ1 ` d

¸

is the coefficient matrix. According to the

Lyapunov stability theory and Routh–Hurwitz criteria, choose a ` d ` µ1 ă 0 and
tc´α1p1` η1cos2ω1tqu p1` bq ´ apµ1 ` dq ă 0 for the stabilization of the synchronization of
Equations (3) and (4).
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Let a ` d ` µ1 “ tc´α1p1` η1cos2ω1tqu p1` bq ´ apµ1 ` dq “ ´E for E ą 0. We choose
a “ b “ 0 and E “ 1, which yields u1ptq “ 0 and u2ptq “ µ1py2

1y2 ´ x2
1x2q ` β1py3

1 ´ x3
1q ` λ1py5

1 ´

x5
1q ` tα1p1` η1cos2ω1tq ´ Eu e1 ´ pµ1 ` Eqe2.

For the same values of parameters (µ1 “ 0.4, α1 “ 1, β1 “ ´0.7, λ1 “ 0.1, f1 “ 9, η1 “ 0.7,
ω1 “ 3.14 and E “ 1) and initial conditions (x1p0q “ 0.1; x2p0q “ 0.2; y1p0q “ 2.2; y2p0q “ 0.05)
taken by [12], we have repeated all simulations using Mathematica. The following are the graphs of
synchronization of two identical Φ6—VDPO oscillators:

2.3. Synchronization for Two Identical Φ6—DO via LAC

To achieve synchronization between two identical Φ6—DO, let us consider the master–slave
systems synchronization scheme for two coupled identical chaotic Φ6—DO that can be written by
taking x “ x1 and

.
x1 “ x2 and x “ y1 and

.
x “ y2 in Equation (2) for master and slave systems,

respectively, as follows:

Master System :

# .
x1 “ x2,
.
x2 “ ´µ2x2 ´α2 t1` η2cosp2ω2tqu x1 ´β2x3

1 ´ λ2x5
1 ` f2cosω2t

(8)

Slave System :

# .
y1 “ y2 ` u1ptq,
.
y2 “ ´µ2y2 ´α2 t1` η2cosp2ω2tqu y1 ´β2y3

1 ´ λ2y5
1 ` f2cosω2t` u2ptq

(9)

where rx1ptq, x2ptqs
T and ry1ptq, y2ptqs

T
P R2 are the state variables; µ2, α2, β2, λ2, f2, η2 and ω2 are

the parameters involved in Equations (8) and (9); and uptq “ ru1ptq, u2ptqs
T
P R2ˆ1 are the control

inputs yet to be determined.
Using LAC technique as in Section 2.2, someone can find the controllers u1ptq “ 0 and

u2ptq “ β2py3
1 ´ x3

1q ` λ2py5
1 ´ x5

1q ` tα2p1` η2cos2ω2tq ´ Eu e1 ` pµ2 ´ Eqe2. For the same values
of parameters (µ2 “ 0.4, α2 “ 0.46, β2 “ 1, λ2 “ 0.1, f2 “ 4.5, η2 “ 0.7,ω2 “ 0.86 and E “ 1) and initial
conditions (x1p0q “ 0; x2p0q “ 1.5; y1p0q “ 0.5; y2p0q “ 1) as taken by Njah [12], we have repeated
all simulations using Mathematica. The following are the graphs of synchronization of two identical
Φ6—DO:

2.4. Synchronization for Φ6—VDPO and DO via LAC

To achieve synchronization between Φ6—VDPO and DO, let us consider the master-slave systems
synchronization scheme for two coupled Φ6—VDPO and DO that can be written by taking x “ x1

and
.
x1 “ x2 and x “ y1 and

.
x “ y2 in Equations (1) and (2) for master and slave systems, respectively,

as follows:

Master System :

# .
x1 “ x2,
.
x2 “ µ1p1´ x2

1qx2 ´α1 t1` η1cosp2ω1tqu x1 ´β1x3
1 ´ λ1x5

1 ` f1cosω1t
(10)

Slave System :

# .
y1 “ y2 ` u1ptq,
.
y2 “ ´µ2y2 ´α2 t1` η2cosp2ω2tqu y1 ´β2y3

1 ´ λ2y5
1 ` f2cosω2t` u2ptq

(11)

where rx1ptq, x2ptqs
T and ry1ptq, y2ptqs

T
P R2 are the state variables of master and slave systems; µ1,

α1, β1, λ1, f1, η1, ω1, µ2, α2, β2, λ2, f2, η2 and ω2 are the parameters involved in Equations (10) and
(11) and uptq “ ru1ptq, u2ptqs

T
P R2ˆ1 are the control inputs yet to be determined.

Using LAC technique, as it has been implemented in the last two subsections, someone can find
the controllers:

u1ptq “ 0
u2ptq “ pµ1 ` µ2qx2 ´ µ1x2

1x2 `α2p1` η2cos2ω2tqx1 ´α1p1` η1cos2ω1tqx1 `β2y3
1 ´β1x3

1
`λ2y5

1 ´ λ1x5
1 ´ f2cosω2t` f1cosω1t` tα2p1` η2cos2ω2tq ´ Eu e1 ` pµ2 ´ Eqe2

(12)
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For the same values of parameters (µ1 “ 0.4, α1 “ 1, β1 “ ´0.7, λ1 “ 0.1, f1 “ 9, η1 “ 0.7,
ω1 “ 3.14, µ2 “ 0.4, α2 “ 0.46, β2 “ 1, λ2 “ 0.1, f2 “ 4.5, η2 “ 0.7, ω2 “ 0.86 and E “ 1) and initial
conditions (x1p0q “ 0.1; x2p0q “ 0.2; y1p0q “ 0; y2p0q “ 1.5) as taken by Njah [12], we have repeated
all simulations using Mathematica. The following are the graphs of synchronization of Φ6—VDPO
and DO.

2.5. Results and Discussions

In Sections 2.2–2.4, three different pairs of Φ6—VDPO and DO have been synchronized using
LAC technique. In our study, all simulations are based on Mathematica that provide us the remarkable
changes in the time of stabilization of synchronization. Earlier, in the same study of Njah [12], for
identical pairs of Φ6—VDPO and non-identical pairs (i.e., Φ6—VDPO and DO), controllers were
activated at around t “ 60 and for identical pairs of Φ6—DO, the controllers were activated at around
t “ 100. On the other hand, for the same pairs and same technique (LAC) if Mathematica is being
used, someone can observe the remarkable changes in the time of stabilization (Figures 1–13). In our
study, for all of the cases, not only do controllers activate around t “ 4 but secure communication

scheme (Figures 3, 4, 7, 8, 11 and 12), convergence of errors defined by eptq “
b

e2
1ptq ` e2

2ptq (Figure 13)
also start to stabilize at the same time when simulation is done using Mathematica. Furthermore, it
may also be observed that the error states converged to the origin in the range of [´0.5, 1.5] very
smoothly and quickly as compared to the work done by Njah [12]. These features give advantages to
the current study.
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3. Synchronization Using RASMC

In this section, we synchronize the identical and non-identical pairs of Φ6—VDPO and DO
using RASMC technique that has a very quick response in stabilizing the synchronization of chaotic
systems [32–36]. Below we describe the technique in details.

3.1. Description of RASMC

For the n-dimensional master and slave systems with external uncertainties, disturbances and
unknown parameters, the RASMC [24] is described as follows:

Master system :
.
xptq “ fpxq ` Fpxqθ` ∆fpx, tq ` dmptq (13)

Slave System :
.
yptq “ gpyq `Gpyqψ` ∆gpy, tq ` dsptq ` uptq (14)

where xptq “ rx1, x2, . . . , xns
T are the state vectors, fpxq “ r f1pxq, f2pxq, . . . , fnpxqsT are the continuous

nonlinear functions, Fipxq, i “ 1, 2, . . . , n, is ith row of an n ˆ n matrix pFpxqq whose elements
are continuous nonlinear functions, θ “ rθ1, θ2, . . . , θns

T are the unknown vector parameters,
and ∆fpx, tq “ r∆ f1px, tq, ∆ f2px, tq, . . . , ∆ fnpx, tqsT and dmptq “

“

dm
1 ptq, dm

2 ptq, . . . , dm
n ptq

‰T are the
vectors of unknown uncertainties and external disturbances of the master system, respectively.
yptq “ ry1, y2, . . . , yns

T are the state vectors, gpyq “ rg1pyq, g2pyq, . . . , gnpyqsT are the continuous
nonlinear functions, Gipyq, i “ 1, 2, . . . , n, is ith row of an n ˆ n matrix pGpyqq whose elements
are continuous nonlinear functions, ψ “ rψ1,ψ2, . . . ,ψns

T are the unknown vector parameters,
∆gpy, tq “ r∆g1py, tq, ∆g2py, tq, . . . , ∆gnpy, tqsT and dsptq “

“

ds
1ptq, ds

2ptq, . . . , ds
nptq

‰T are the vectors
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of unknown uncertainties and external disturbances of the slave system, respectively, and
uptq “ ru1ptq, u2ptq, . . . , unptqsT is the vector of control inputs.

Assumption 1: Since the trajectories of chaotic systems are always bounded, then the unknown
uncertainties ∆fpx, tq and ∆gpy, tq are assumed to be bounded. Therefore, there exist appropriate
positive constants αm

i and αs
i , i “ 1, 2, . . . , n such that

|∆ fipx, tq| ă αm
i and |∆gipy, tq| ă αs

i , i “ 1, 2, . . . n (15)

ñ |∆ fipx, tq ´ ∆gipy, tq| ă αi, i “ 1, 2, . . . , n, where αi are unknown constants (16)

Assumption 2: In general, it is assumed that the external disturbances are norm-bounded in C1,

i.e., |dm
i ptq| ă β

m
i and |ds

i ptq| ă β
s
i , i “ 1, 2, . . . , n (17)

ñ |dm
i ptq ´ ds

i ptq| ă βi, i “ 1, 2, . . . , n, where βi are unknown constants (18)

To solve the synchronization problem, the error between the master system (Equation (13)) and
slave systems (Equation (14)) can be defined as eptq “ xptq ´ yptq. Then, from Equations (13) and (14),
the error dynamics can be written as:

.
eptq “ fpxq ` Fpxqθ` ∆fpx, tq ` dmptq ´ gpyq ´Gpyqψ´ ∆fpy, tq ´ dsptq ´ uptq (19)

It is clear that the synchronization problem can be transformed to the equivalent problem of
stabilizing the error system (Equation (19)). The objective of this paper is to show that for any given
master chaotic system (Equation (13)) and slave chaotic system (Equation (14)) with the uncertainties,
external disturbances and unknown parameters a suitable feedback control law uptq is designed such
that the asymptotical stability of the resulting error system (Equation (19)) can be achieved in the sense
that lim

tÑ8
|xptq ´ yptq| Ñ 0 is for the systems under consideration.

Let us consider now the appropriate sliding surface with the desired behavior. Therefore, the
sliding surface suitable for the technique can be designed as:

siptq “ λieiptq, i “ 1, 2, . . . , n (20)

where siptq P R psptq “ rs1ptq, s2ptq, . . . , snptqsq and the sliding surface parameters λi are
positive constants.

After designing the suitable sliding surface, let us determine the input control signal uptq to
guarantee that the error system trajectories reach to the sliding surface sptq “ 0 (i.e., to satisfy the
reaching condition sptq

.
sptq ă 0) and stay on it permanently. Therefore, to ensure the existence of the

sliding motion a discontinuous control law (with minimum chattering effect) is proposed as:

uiptq “ fipxq ´ gipyq ` Fipxqθ̂i ´ Gipyqψ̂i `
`

α̂i ` β̂i
˘

sgnpsiq ` kitanhpεsiq, for i “ 1, 2, . . . , n (21)

where θ̂i, ψ̂i, α̂i, and β̂i are estimations for θi, ψi, and αi, respectively, ki ą 0, i “ 1, 2, . . . , n are the
switching gain constant, and ε ą 0.

To tackle the uncertainties, external disturbances and unknown parameters, appropriate update
laws are defined as: .

θ̂ “ rFpxqsT γ, θ̂p0q “ θ̂0.
ψ̂ “ ´rGpyqsT γ, ψ̂p0q “ ψ̂0
.
α̂i “

.
β̂i “ λi |si| , α̂ip0q “ α̂i0 & β̂ip0q “ β̂i0

(22)

where γ “ rλ1s1, λ2s2, . . . , λnsns
T and θ̂0, ψ̂0, α̂i0 and β̂i0 are the initial values of the update parameters

θ̂, ψ̂, α̂i and β̂i, respectively.
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Based on the control input in Equation (21) and update laws in Equation (22) as used to guarantee
the reaching condition sptq

.
sptq ă 0 and to ensure the occurrence of the sliding motion, we have the

following theorem.

Theorem 1: Consider the error dynamics in Equation (19), this system is controlled by uptq in
Equation (13) with update laws in Equation (14). Then the error system trajectories will converge to
the sliding surface sptq “ 0.

In this regard, we consider a Lyapunov function (that is a positive definite function also) as follow:

Vptq “
1
2

n
ÿ

i“1

”

s2
i ` pα̂i ´αiq

2
`
`

β̂i ´βi
˘2
ı

`
1
2

||θ̂´ θ||2
`

1
2

||ψ̂´ψ||2 (23)

In order to apply the RASMC to synchronize the identical pairs of chaotic Φ6—VDPO; Φ6—DO
and non-identical pair Φ6—VDPO and DO, external uncertainty for master and slave systems have
been chosen as: ∆ fipxi, tq Ñ 0.5sinxi and ∆gipyi, tq Ñ ´0.5sinyi , respectively; external disturbance for
master and slave system: dm

i ptq Ñ 0.1sint and ds
i ptq Ñ ´0.1sint for all i “ 1, 2, respectively; ε “ 100;

initial values of update parameters θ̂ip0q “ 1, ψ̂ip0q “ 2, α̂ip0q “ 3 and β̂ip0q “ 4; and for secure
communication message signal pmq “ 0.05sin2t.

3.2. Synchronization of Two Identical Φ6—VDPO Using RASMC

In this section, we synchronize the identical pairs of chaotic Φ6—VDPO using RASMC under the
effect of external uncertainty and external disturbance for both master and slave systems. After adding
the external uncertainty and disturbances, Equation (1) can be written as a pair of master and
slave systems:

.
x “

«

0
A

ff

loomoon

fpxq

`

«

x2 0
0 x2

ff

loooooomoooooon

Fpx,tq

«

1
µ1

ff

looomooon

θ

`

«

0.5sinx1

0.5sinx2

ff

looooooomooooooon

∆fpx,tq

`

«

0.1sint
0.1sint

ff

loooooomoooooon

dmptq

(24)

.
y “

«

0
B

ff

loomoon

gpyq

`

«

y2 0
0 y2

ff

loooooomoooooon

Gpy,tq

«

1
µ1

ff

looomooon

ψ

`

«

´0.5siny1

´0.5siny2

ff

loooooooomoooooooon

∆gpy,tq

`

«

´0.1sint
´0.1sint

ff

looooooomooooooon

dmptq

`

«

u1ptq
u2ptq

ff

loooomoooon

uptq

(25)

where A “ ´µ1x2
1x2 ´ α1 p1` η1cos2ω1tq x1 ´ β1x3

1 ´ λ1x5
1 ` f1cosω1t, B “ ´µ1y2

1y2 ´

α1 p1` η1cos2ω1tq y1 ´β1y3
1 ´ λ1y5

1 ` f1cosω1t and uiptq for i “ 1, 2 are the controllers which govern
as per the rule (Equation (21)). Furthermore, during simulation, the initial values of states vectors in
master and slave systems are chosen as: x1p0q “ 0.1, x2p0q “ 0.2, y1p0q “ 2.2, y2p0q “ 0.05, respectively;
sliding surface parameters: λ1 “ 25, λ2 “ 10 and switching gain constants: k1 “ 1, k2 “ 5.

Therefore, using Equation (19), the error dynamics can be expressed as:

.
e1 “ e2 ` 0.5 psinx1 ` siny1q ` 0.2sint´ u1ptq,
.
e2 “ µ1e1 ´ µ1px2

1x2 ` y2
1y2q ´α1 t1` η1cosp2ω1tqu e1 ´β1px3

1 ´ y3
1q

´λ1px5
1 ´ y5

1q ` 0.5 psinx2 ` siny2q ` 0.2sint´ u2ptq.
(26)

where uiptq “ fipxq ´ gipyq ` Fipxqθ̂i ´ Gipyqψ̂i `
`

α̂i ` β̂i
˘

signpsiq ` kitanhpεsiq for i “ 1, 2 and the
unknown parameters have been taken as per Equation (22). The following are the time series of
synchronization errors (Figure 14), update parameters (Figures 15 and 16), states vectors (Figure 17)
and for secure communication scheme (Figures 18 and 19).
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where  

  3 5

2 2 2 1 2 1 2 1 2 21 cos(2 ) cosA t x x x f t        , 

  3 5

2 2 2 1 2 1 2 1 2 21 cos(2 ) cosB t y y y f t         

and ( )iu t  for 1,2i   are the controllers which govern as per the rule (Equation (22)). Furthermore, 
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3.3. Synchronization of Two Identical Φ6—DO Using RASMC

In this section, we synchronize the identical pairs of chaotic Φ6—DO using RASMC under the
effect of external uncertainty and external disturbance for both master and slave systems. After adding
the external uncertainty and disturbances, Equation (2) can be written as a pair of master and
slave systems:

.
x “

«

0
A

ff

loomoon

fpxq

`

«

x2 0
0 ´x2

ff

looooooomooooooon

Fpx,tq

«

1
µ2

ff

looomooon

θ

`

«

0.5sinx1

0.5sinx2

ff

looooooomooooooon

∆fpx,tq

`

«

0.1sint
0.1sint

ff

loooooomoooooon

dmptq

(27)
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.
y “

«

0
B

ff

loomoon

gpyq

`

«

y2 0
0 ´y2

ff

looooooomooooooon

Gpy,tq

«

1
µ2

ff

looomooon

ψ

`

«

´0.5siny1

´0.5siny2

ff

loooooooomoooooooon

∆gpy,tq

`

«

´0.1sint
´0.1sint

ff

looooooomooooooon

dmptq

`

«

u1ptq
u2ptq

ff

loooomoooon

uptq

(28)

where
A “ ´α2 t1` η2cosp2ω2tqu x1 ´β2x3

1 ´ λ2x5
1 ` f2cosω2t,

B “ ´α2 t1` η2cosp2ω2tqu y1 ´β2y3
1 ´ λ2y5

1 ` f2cosω2t

and uiptq for i “ 1, 2 are the controllers which govern as per the rule (Equation (22)). Furthermore,
during simulation, the initial values of states vectors in master and slave systems are chosen as:
x1p0q “ 0, x2p0q “ 1.5, y1p0q “ 0.5, y2p0q “ 1, respectively; sliding surface parameters: λ1 “ 12, λ2 “ 10;
and switching gain constants: k1 “ k2 “ 20.

Therefore, using Equation (19), the error dynamics can be expressed as:

.
e1 “ e2 ` 0.5 psinx1 ` siny1q ` 0.2sint´ u1ptq,
.
e2 “ ´µ2e1 ´α2 t1` η1cosp2ω1tqu e1 ´β1px3

1 ´ y3
1q ´ λ1px5

1 ´ y5
1q

`0.5 psinx2 ` siny2q ` 0.2sint´ u2ptq.
(29)

where uiptq “ fipxq ´ gipyq ` Fipxqθ̂i ´ Gipyqψ̂i `
`

α̂i ` β̂i
˘

signpsiq ` kitanhpεsiq for i “ 1, 2 and the
unknown parameters have been taken as per (22). The following are the time series of synchronization
errors (Figure 20), update parameters (Figures 21 and 22), states vectors (Figure 23) and for secure
communication scheme (Figures 24 and 25).
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3.4. Synchronization of Φ6—VDPO and DO Using RASMC

In this section, we synchronize the non-identical pairs of chaotic Φ6—VDPO and DO using
RASMC under the effect of external uncertainty and external disturbance for both master and slave
systems. After adding the external uncertainty and disturbances, Equations (1) and (2) can be written
as a pair of master and slave systems, respectively:

.
x “

«

0
A

ff

loomoon

fpxq

`

«

x2 0
0 x2

ff

loooooomoooooon

Fpx,tq

«

1
µ1

ff

looomooon

θ

`

«

0.5sinx1

0.5sinx2

ff

looooooomooooooon

∆fpx,tq

`

«

0.1sint
0.1sint

ff

loooooomoooooon

dmptq

(30)

.
y “

«

0
B

ff

loomoon

gpyq

`

«

y2 0
0 ´y2

ff

looooooomooooooon

Gpy,tq

«

1
µ2

ff

looomooon

ψ

`

«

´0.5siny1

´0.5siny2

ff

loooooooomoooooooon

∆gpy,tq

`

«

´0.1sint
´0.1sint

ff

looooooomooooooon

dmptq

`

«

u1ptq
u2ptq

ff

loooomoooon

uptq

(31)

where
A “ ´µ1x2

1x2 ´α1 t1` η1cosp2ω1tqu x1 ´β1x3
1 ´ λ1x5

1 ` f1cosω1t

B “ ´α2 t1` η2cosp2ω2tqu y1 ´β2y3
1 ´ λ2y5

1 ` f2cosω2t

and uiptq for i “ 1, 2 are the controllers which govern as per the rule (Equation (22)). Furthermore,
during simulation, the initial values of states vectors in master and slave systems are chosen as:
x1p0q “ 0.1, x2p0q “ 0.2, y1p0q “ 0, and y2p0q “ 1.5, respectively; sliding surface parameters: λ1 “ 12,
λ2 “ 10; and switching gain constants: k1 “ k2 “ 20.

Therefore, using Equation (19), the error dynamics can be expressed as:

.
e1 “ e2 ` 0.5 psinx1 ` siny1q ` 0.2sint´ u1ptq,
.
e2 “ µ1p1´ x2

1qx2 ´α1 t1` η1cosp2ω1tqu x1 ´β1x3
1 `β2y3

1 ´ λ1x5
1 ` λ2y5

1 ` f1cosω1t
`µ2y2 `α2 t1` η1cosp2ω2tqu y1 ` f2cosω2t` 0.5 psinx2 ` siny2q ` 0.2sint´ u2ptq.

(32)

where uiptq “ fipxq ´ gipyq ` Fipxqθ̂i ´ Gipyqψ̂i `
`

α̂i ` β̂i
˘

signpsiq ` kitanhpεsiq for i “ 1, 2 and the
unknown parameters have been taken as per Equation (22). The following are the time series of
synchronization errors (Figure 26), update parameters (Figures 27 and 28), states vectors (Figure 29)
and for secure communication scheme (Figures 30 and 31) as well as the derivative of Lyapunov
function p

.
Vptqq for all three pairs together (Figure 32).
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Figure 27. Time Series of θ̂1, θ̂2, ψ̂1 & ψ̂2.
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On the basis of these two points, we conclude that selection of appropriate mathematical tools 

for simulation and technique for synchronization is very important. 

Acknowledgments: The authors would like to express their gratitude to the honorable reviewers who suggested 

many worthwhile changes to improve the work of this manuscript.  

Author Contributions: Azizan Bin Saaban performed the literature review and proposed the problem. Adyda 

Binti Ibrahin and Israr Ahmad performed the analytical analysis and wrote the paper. Mohammad Shahzad 

performed the numerical simulations and revised the manuscript.  

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Shahzad, M.; Pham, V.T.; Ahmad, M.A.; Jafari, S.; Hadaeghi, F. Synchronization and circuit design of a 

chaotic system with coexisting hidden attractors. Eur. Phys. J. Spec. Top. 2015, 224, 1637–1652. 

2. Yao, L.; Cai, G. Chaos Synchronization of a New Hyperchaotic Finance System Via a Novel Chatter Free 

Sliding Mode Control Strategy. Int. J. Nonlinear Sci. 2014, 17, 176–181. 

V t for 6 VP & DO

V t for 6 VP

V t for 6 DO

0.0 0.1 0.2 0.3 0.4 0.5

3500

3000

2500

2000

1500

1000

500

0

Fig 32: Time Seriesof V t in all cases
Figure 32. Time Series of

.
Vptq in all cases.

3.5. Numerical Simulations and Discussion

The main aim of Section 3 was to implement the RASMC on the two identical pairs of Φ6—VDPO
and DO and one non-identical pair of Φ6—VDPO and DO for synchronization purpose. It has been
observed that not only RASMC is found to be very effective for all the three pairs under consideration;
it is also effective for a secure communication scheme. To the best of our knowledge, this has been
done for the first time using RASMC. The time of stabilization of synchronization is very short (nearly
t “ 0.2) for all the cases that can be observed in the plotted time series (Figures 14–32). We can say
now that the time response of stabilization of synchronization is much quicker in RASMC technique
than it was in LAC.

4. Conclusions

In this computational cum comparative study, the problem of chaotic synchronization of chaotic
systems is repeated using Mathematica via LAC technique. It has been found that the time response
of stabilization of synchronization is reduced by half when it is done using Mathematica. On the
other hand, when the same pairs are synchronized via RAMSC, the time response of stabilization of
synchronization is found to be much faster than the LAC technique. Finally, we conclude the following
remarkable features of our proposed study:

(1) The time response of stabilization of synchronization for LAC in our study was found to occur
with rapid convergence if simulation is done with Mathematica.

(2) For the same pairs of master and slave systems considered in our study, the RASMC is found to
be more effective in terms of time response of stabilization of synchronization.

On the basis of these two points, we conclude that selection of appropriate mathematical tools for
simulation and technique for synchronization is very important.
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