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Abstract: As technology advances towards new paradigms such as the Internet of Things, there is
a desire among business leaders for a reliable method to determine the value of supporting these
ventures. Traditional simulation and analysis techniques cannot model the complex systems inherent
in fields such as infrastructure asset management, or suffer from a lack of data on which to build
a prediction. Agent-based modelling, through an integration with data science, presents an attractive
simulation method to capture these underlying complexities and provide a solution. The aim of this
work is to investigate this integration as a refined process for answering practical business questions.
A specific case study is addressed to assess the return on investment of installing condition monitoring
sensors on lift assets in a London Underground station. An agent-based model is developed for
this purpose, supported by analysis from historical data. The simulation results demonstrate how
returns can be achieved and highlight features induced as a result of stochasticity in the model.
Suggestions of future research paths are additionally outlined.

Keywords: Internet of Things; infrastructure; asset management; predictive maintenance;
agent-based modelling; data science

1. Introduction

How do you reliably assess the business value of new technologies in the absence of real-world cases?
This question has become increasingly relevant in recent years as technologies continue to develop
at a rapid pace and businesses have a desire to utilise them in the most effective way to fulfil their
strategic objectives. The current work seeks to extend recent research in the fields of agent-based
modelling and data science to investigate a framework for determining the return on investment of
new ventures such as the Internet of Things and Smart Cities, applied within the scope of infrastructure
asset management.

With technological trends like the Internet of Things and Smart Cities beginning to emerge
following the recent ascension of Big Data, businesses could benefit from understanding how to
enhance their performance through realising the greatest value from investments in these technologies.
However, as they are new phenomena, there is a lack of historical data and real business cases regarding
their implementation and subsequent returns. Traditional techniques for estimating potential return
on investment fall short of providing an answer. This is slowing the uptake of technology that could
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lead to significant advances in fields such as infrastructure asset management and, beyond business,
the living standards of the general population.

The aim of this research is to investigate an integration of agent-based modelling and data science
as a practical solution to this problem, applied in particular to the theme of infrastructure asset
management. Agent-based modelling is a simulation method with roots in complexity science and
is used to provide understanding and predictive capabilities in environments with many interacting
entities. Data science is a wide field focused on deriving quantitative and qualitative insight from
datasets and encompasses many potential applications. Both of these fields can offer answers but
are hindered by their respective disadvantages. Through combining them, it is possible to alleviate
some of their individual limitations and reinforce their results. Infrastructure asset management is also
a large subject with the general objective of deriving value from an organisation’s assets. Hereafter,
any use of the term asset management refers to infrastructure asset management unless stated otherwise.

The rest of this paper is structured as follows. After this introduction, Section 2 covers background
information to this research through an extensive literature review in each key field, as well as examples
of agent-based models developed with similar features or motivations to the current research. Section 3
builds on insights from the literature review to specify the particular case study addressed in this
work. Practical considerations to this case are discussed in Section 4. Following that, a detailed
description of the developed agent-based model is provided in Section 5, including the validation
process. Finally, Section 6 presents the obtained results and a critical discussion before the paper is
concluded in Section 7.

2. Literature Review

2.1. Asset Management

The International Organization for Standardization (ISO) [1] defines Asset Management as the
‘coordinated activity of an organization to realise value from assets’ (p. 14). They define an Asset as
an ‘item, thing or entity that has potential or actual value to an organization” (p. 2). These are clearly
general definitions and apply to many organisations which may not previously have been considered
to involve asset management processes. Indeed, assets may be financial, human or physical in nature.
The effective management of assets is a crucial requirement for organisations to realise their strategic
objectives and achieve their stakeholders” expectations [2]. While the standards can be applied to any
form of asset management, this work will focus in particular on their application to the management
of infrastructure assets.

In 2014, the ISO 55000 series [1,3,4] was released as a development upon the previous PAS
55 standards. This represents the first international asset management standard that attempts to
capture the general terminology, requirements and methodology for successful asset management.
The Institute of Asset Management also released a comprehensive guide on the application of the
standards [2] through which they discuss the 39 key areas in the field. These recent developments
highlight the importance of asset management to businesses and society in general, driven by the
emerging areas of promising technology that could revolutionise the way we live our lives.

2.1.1. Internet of Things and Smart Cities

IBM, in a 2013 report on big data in smart infrastructures [5], identify four key ways through which
the utilisation of Big Data can be beneficial to asset management. Firstly, by boosting generated revenue
through more effective decision-making from a deeper understanding of the information affecting
a firm. Secondly, by allowing a company to increase its operational efficiency by optimising many of
its common processes. Thirdly, by realising optimal maintenance strategies throughout an asset’s life
cycle via monitoring and benchmarking techniques. Lastly, and perhaps most importantly, by reducing
risk through the application of predictive analytics to understand failure patterns of assets in order to
carry out more effective maintenance.
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The Internet of Things (IoT) is an emerging concept in wireless communications whereby
vast numbers of commonplace items throughout the world can be augmented with sensors and
microcontrollers that will enable them to interact with each other and users, resulting in a completely
immersive internet [6]. The Smart City paradigm is the application of the IoT within an urban context
that will allow asset management firms to manage infrastructure in a city environment more effectively,
thereby increasing citizen satisfaction and reducing operational costs [7].

The IoT is estimated to have potential to generate total value of $14.4 trillion in the private sector
in future years (given in a Cisco 2013 IoE Value Index Study) with the likely prospect of over 50 billion
devices connected to the internet by 2020 [8]. However its general uptake is currently hindered by
a lack of clear returns on the initial and ongoing technology investments. A recent World Economic
Forum report [9] stated uncertain return on investment due to a lack of real-world business cases as the
third largest barrier to the uptake of the IoT, closely following lack of standards and security concerns.
Whereas paths to alleviate the two largest problems exist, there is no clear solution for deriving
a reliable business value from these ventures. This is critical if business leaders are to enthusiastically
adopt the technologies.

2.1.2. Return on Investment

Business leaders in infrastructure asset management rely on metrics to assess their options
and make decisions. Return on Investment (Rol) is a key metric to assess the performance of an
investment strategy and compare it to alternatives [10,11]. Traditional Rol determines the efficiency of
an investment through cost savings (or revenue gains), and is usually given in percentage form by
Equation (1).

Cost savings — Investment

Rol =
Investment

)

For effective calculation of the Rol of a project, it is imperative to understand which savings
can be attributed to its implementation as well as how to determine the size of investment required.
The Investment value in Equation (1) is typically easier to predict than the Cost savings value as
investments are normally monetary in nature, can be easily quantified and are generally known as
they predominantly occur at the outset of the project. In comparison, for established endeavours, it is
common to use empirical equations based on assumptions derived from past experience to estimate
cost savings [12]. However, as was noted above, it is much more difficult to assess the tangible and
intangible benefits from emerging paradigms such as the IoT and Smart Cities where there is a lack of

historical data.

Due to the typical long-term nature of returns in organisational investments, it is often necessary
to calculate the discounted Rol rather than the traditional form [10,13]. Future returns are generally
considered to be worth less than the present due to the increasing uncertainty involved as they extend
forward in time. To account for this, they are discounted to their present values [10,13]. A standard
discount rate often exists within organisations for these calculations.

Figures that can be used in calculation of Rol are not solely monetary. Key Performance Indicators
(KPIs) are commonly employed to measure gains and losses by attaching value to an activity’s success.
They are an important aspect of monitoring the effectiveness of strategies in infrastructure asset
management firms [14,15]. KPIs are typically chosen specific to a firm’s activities. As an example,
asset managers in Transport for London (TfL) use Lost Customer Hours, representing customers’
time wasted due to service problems and delays, to measure the impact of disruptions throughout
their network.

Currently, standard analysis and prediction processes are used by asset management firms in
understanding the impact of business decisions. Traditional forecasting methods, such as moving
averages, can be utilised to predict the future trend of variables given their past performance [16].
Game theoretical techniques can also be employed to support strategy and decision-making.
Game theory is the analysis of decision-making between players in the game of business that takes
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into account interactions as well as benefits and costs [17]. While it requires logical thinking rather
than a wealth of data to use, its main limitation comes from one of its key pillars: that all players
must act rationally. This behaviour leads to a potential oversight in business strategy as sometimes
irrational behaviour is a more appropriate representation of reality [18]. Additionally, game theory is
often misused to provide an overly accurate, single answer to complex problems [19].

Despite the lack of historical data, a few attempts have been made to characterise a process for
assessing the value of IoT and Smart Cities to business [20]. However, these tend to adopt a qualitative
approach to the topic which makes it difficult to provide a solid foundation for a Rol value.

2.1.3. Asset Maintenance

The effective maintenance of physical assets is a key aspect of infrastructure asset management.
There are two broad categories of maintenance in this context: emergency (also known as corrective,
reactive or run-to-failure) and planned (also known as preventative) [21,22]. In practise, it is possible to
differentiate between all these maintenance tasks, for example corrective maintenance is not necessarily
"emergency" and can include remedial action due to issues identified during preventive maintenance
activities that could potentially result in failure (emergency and corrective could be categorised
as "reactive"). Similarly, a "run-to-failure" approach should be only implemented in very specific
circumstances because it can cause secondary damage to other components, for example through
excessive vibration or temperature, which can result in higher repair costs and more downtime. For
the sake of simplicity the present study will assume only emergency and planned maintenance tasks.

Emergency maintenance is carried out post-failure whereas planned maintenance is scheduled in
advance in an effort to reduce the chance of failure occurring. Planned maintenance is a time-driven
process. Standard methods involve carrying out services on assets at regular intervals based on an
assumed asset failure behaviour. In this way, the maintenance can be carried out at a time of day when
it does not affect the operation of the asset [21].

Predictive maintenance (also known as condition-based maintenance) is a form of planned
maintenance that makes use of condition monitoring to determine when repairs are required.
Measurements of specific variables (e.g., heat, vibration) are taken frequently during operation of the
asset. The collected data can then be analysed to estimate its current condition and the information
used to decide when maintenance tasks should be carried out [11,23]. This dynamic form of planned
maintenance contrasts the static form where maintenance policies have been set up prior to the asset
entering service.

For predictive maintenance solutions, the most direct and apparent saving is usually the reduced
overall cost of maintenance [11]. Emergency maintenance procedures can be four times as expensive
as planned work due to the requirement for engineers to be on call and the necessary quick response
time [22]. As such, any reduction in their frequency can represent a substantial saving. Generally,
an effective predictive maintenance strategy will also lead to reduced asset time out of service.
This brings significant, though less visible, indirect cost savings.

As a result of the IoT, it is now more cost effective to install remote sensors on physical assets
to provide continuous real-time data and enable predictive maintenance. These sensors are typically
connected in a distributed arrangement known as a Wireless Sensor Network (WSN) [24,25]. Each
sensor node generally consists of the monitoring technology (such as thermometers or accelerometers),
a means of communication (such as a radio transceiver), a power source (typically batteries) and
a microcontroller [25]. There are initial and ongoing costs related to the application of these solutions
within industry [26]. The initial investment is generally composed of the cost of the hardware and the
installation process. Ongoing costs are related to sensor upkeep (e.g., recharging batteries) as well as
data collection and storage.
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2.1.4. Failure Probability

Insight into an asset’s changing probability of failure over time is essential in order to reduce the
risk of unnecessary time out of service. In the field of reliability engineering, a number of key concepts
exist for evaluating the likelihood of asset failures [21,27] and are summarised below.

Firstly, if we let t = 0 be the time at which an asset is considered new, then the random variable
depicting failure time t = T may be described by a cumulative distribution function, F(t). This gives
the probability that an asset will fail before or at time t. The probability density function, f(t),
characterises the expected frequency of asset failures in the interval ¢ to t + dt. In reliability engineering
it is typically more common for these to be expressed in the form of a reliability function, given in
Equation (2), which represents the probability of no failure occurring up to time ¢.

R(E) =Pr(T > t) = 1 — F(t) = /toof(r)dr @)

Additionally, it is desirable to have an understanding of the intensity function (also referred to as
the instantaneous probability of failure or conditional density function) [21,27]. This is defined as the
instantaneous probability of failure at time ¢ conditional upon non-failure before this time and is given
in Equation (3).

Prt<T<t+dt|T>t) f(t)

u(t) = lim, dt R )

The probability that an asset will fail in a time interval ¢ to t + At, given it has not failed prior
to this period, can be approximated as u(t) x At. A number of methods have been proposed for
estimation of the intensity function. The choice of approach usually depends on a number of factors
including the quantity, quality and type of historical data available [28].

One of the most common methods to approximate failure probability from data describing
past failures is parametric estimation [28]. This involves making the assumption that failure times
of assets in a population approximate a specific probability distribution. The parameters of the
distribution that best fit the historical data are then determined. Among the most commonly used is
the Weibull distribution due to its flexibility through variation of its key parameters [29,30]. However,
these continuous distributions are generally only considered appropriate when the underlying system
is non-repairable [31,32].

In the domain of infrastructure asset management, assets are commonly repaired rather than
replaced upon failure. The nonhomogeneous Poisson process (NHPP) is considered one of the best
models for these cases [32,33]. The key parameters of the NHPP are the shape and scale, typically
denoted by B and A respectively. The intensity function of the NHPP is given in Equation (4).

u(t) = AptP~1 )

In the case when B = 1, this function is independent of time and the NHPP reduces to the
homogeneous Poisson process where failures occur randomly regardless of the age of an asset.
Maximum likelihood estimates are a common method used to evaluate the parameters of a NHPP
from historical failure data [31-33]. It is good to mention that time to the first failure of a NHPP has a
Weibull distribution and, as a result, it is also confusingly referred to as a Weibull process. However, it
is not the same as the continuous distribution with which it shares a name.

Markov models are a different approach to characterise how the failure behaviour of an asset
can change between distinct deterioration states [16,34]. A Markov chain is the most basic of this class
of models and demonstrates the fundamental concept. It is a stochastic process whereby an asset
occupies discrete states and can transition into other states with given probabilities. These probabilities
only depend on the current state the asset is in, and thus it is commonly referred to as a memoryless
process [16,30].
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Hidden Markov models build on the foundations of Markov chains and are particularly applicable
in the case of predictive maintenance [35]. These more advanced models take into account the
uncertainties underlying identification of which deterioration state an asset occupies. As such,
probabilities are assigned not only to which state an asset is in but also to whether condition monitoring
determines the correct state. Markov models can provide a comprehensive view of asset failure
probabilities over the entire life cycle. However, this very property necessitates a much larger historical
dataset from which to develop a model when compared to parametric estimation methods.

Bayesian updating is a further technique for characterising failure probabilities that is applicable
to situations where the asset undergoes condition monitoring. The previous cases have described
methods for assigning a single model to the failure behaviour of an asset from a family of potential
models. Bayesian updating presents a more robust approach whereby the predictions given by all
models in a set are weighted by individual probabilities and combined to give the overall failure
behaviour [36]. These weightings are determined from the condition monitoring data and are updated
following each new reading. For example, in the case of the NHPP, probabilities would be assigned
to different values of  and A which are continuously revised based on newly obtained condition
data. This approach to representing the probability of failure is considered particularly valuable in
cases where failures are rare events, and thus little historical data to assess the suitability of different
probabilistic models exists [37].

2.2. Agent-Based Modelling and Simulation

2.2.1. Principles

Agent-Based Modelling and Simulation (ABMS) is a relatively young paradigm in modelling
systems comprised of many independent and interacting entities that originates from the field of
complexity science [38]. ABMS has been utilised in a diverse range of applications throughout
multiple fields of research. This includes understanding the movement patterns of long-gone ancient
civilisations [39], assessing the potential of future tourism markets in space [40], analysing the impact
of different organisational strategies [41] and designing dynamic adaptations for traffic rules [42].
Axelrod et al. [43] state that ABMS can generally be considered appropriate when ‘the system is
composed of interacting agents’ (p. 1649) and ‘the system exhibits emergent properties, that is,
properties arising from the interactions of the agents that cannot be deduced simply by aggregating
the properties of agents’ (p. 1649).

One of the original, and most famous, examples of ABMS is given by the Schelling model [44,45].
This model simulates racial dynamics to help explain natural segregation in society. The agents can
be one of two or more different fypes. They exist together at initially random distinct locations on
a rectangular grid and prefer to reside next to those of the same type. At discrete time steps, the agents
are allowed to move to a random empty location if they are not satisfied with their current neighbours.
These basic rules lead to emergent behaviour on a large scale where groups composed of the same
type of agents form from the initial randomness.

ABMS excels in modelling Complex Adaptive Systems (CAS). CAS are large groups of interacting
components with communications occurring at a local level between the various entities. They can be
identified by a number of key characteristics [46]:

e Aggregation (allowance for the formation of groups).

*  Nonlinearity.

*  Flows (information and resources move between components of the system).
*  Diversity (system components can behave differently from one another).

These properties make ABMS particularly applicable to fields where mathematical equations for
understanding behaviour have not been formally defined.

CAS frequently exhibit emergent phenomena. This is where many simple nonlinear interactions
on a micro-scale can produce characteristic features on a macro-scale without any previous global
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assumptions [38,47]. It is commonly accepted that infrastructure can be characterised as a CAS [48-50].
Therefore, ABMS should present the ideal method to simulate the impact of different infrastructure
asset management strategies.

The usefulness of an Agent-Based Model (ABM) is supported by the argument that CAS can be
most effectively understood through a system of autonomous agents that possess simple attributes
and follow basic rules in their interactions [51]. These agents can represent almost any particular
entity in a system. In the field of business, they could be low-level maintenance workers or CEO-level
employees [38]. For infrastructure asset management, the physical assets themselves can also be
implemented as agents [52-54].

Although the field of ABMS does not have a formal definition, there are a number of commonly
accepted aspects that should be included in the simulation structure for it to be considered
agent-based [38,55,56]:

e Agents: the model should follow a bottom-up design approach where a set of agents are defined
with specific attributes and behaviours.

e Agent Relationships: these should be defined and govern how the agents interact to exchange
information or resources. A key feature of ABMS is that, during the simulation, agents can only
interact with a limited number of other agents. Thus information is confined to local regions and
global information does not exist in the system.

*  Environment: as well as communicating with other agents, agents also interact with and can
impact on the environment they exist in.

Additionally, there is a degree of ambiguity in the field of ABMS regarding the properties that
should define an agent. However, there are four characteristics that constitute a generally accepted
definition [38,55,56]:

e Autonomous: agents should possess behaviour that allows them to function without scripted
actions. These behaviours may be formalised by equations but are more generally applied as a set
of logical decision rules with an element of randomness.

*  Modular: agents should be self-contained, which by definition lends ABMS to implementation in
an object-oriented programming language.

®  State: agents should possess an internal state which varies over time. This constitutes their
essential internal variables that can be observed to measure and analyse the results of the
simulation.

®  Social: agents should interact with other agents and their environment.

Despite the apparent usefulness of ABMS, its widespread adoption has yet to be fully realised in
business [57]. Within specifically infrastructure asset management ABMS has only been considered
recently [58] and has rarely been applied to practical cases.

2.2.2. Advantages

ABMS presents a number of distinct advantages derived from its bottom-up simulation approach.
From a purely computational viewpoint, these include modularity, expressiveness, great flexibility
and the ability to be easily parallelised [59].

The key benefit of ABMS is its ability to capture local behaviour on a micro-scale and the resulting
emergent behaviour on a macro-scale. This multi-scale approach enables the simulation to represent
all of the heterogeneous entities in a system which can be given the capacity to evolve through both
time and space. These low-level adaptive decision-making processes which are central to ABMS do
not form a key role in traditional simulation methods [38,60].

Moreover, once the bottom-up simulation approach is understood, the design of the agents
themselves is an intuitive process. This can be accredited to the likeness between the structure and
dynamics of the real-life system and of the ABM [61]. Global idealised assumptions do not have to be
made in ABMS, only the local interactions [56].
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ABMS can also be used to form mathematical links between micro- and macro-level
behaviours [62]. This is particularly attractive to the fields of business and economics, where formal
equations are typically based on empirical or theoretical observations. For example, Helbing [63]
applied this technique to obtain an analytical representation of an agent-based traffic flow model with
fluid dynamics equations.

Recent research in the field of economics has shown ABMS is becoming a preferred
decision-making tool over more traditional means such as game theory [64]. In addition, the European
Union is currently developing an ABM to replace its traditional game theoretical approach in
understanding the European economy following the financial crisis [65].

2.2.3. Limitations

As with most recent technologies, ABMS exhibits limitations that are likely to be hindering its
widespread adoption. Some of these limitations can be partly addressed by integrating ABMS with
data science, which is the topic of Section 2.3.

Among the main criticisms of ABMS is the difficulty in developing models due to the lack of
visually-based software and standardised frameworks [61,66,67]. While there are a range of free Java
libraries and software packages available for ABMS [68,69], very few offer the ability to develop a model
without deep understanding of the field and/or experience with the Java programming language.

Another common criticism is the absence of generally accepted methods to verify (test of whether
a computer simulation has been created from an abstract model accurately) and validate (check
whether a model is a realistic representation of the real world situation it is aiming to represent)
ABMs [70]. These two actions are required for a simulation to achieve accreditation [71]. The root of
this problem rests with the flexibility of ABMS and, as a result, the wide range of fields in which it is
applied. Formulating a single validation procedure that remains compatible with this large number
of applications therefore remains a significant challenge [60,72]. This issue is explored further in the
next section.

An ABM typically has stochastic components and many potential parameter combinations.
Therefore, multiple simulation runs to sweep parameters are normally carried out producing large
volumes of hyper-dimensional data. Traditional statistical analysis methods for determining the
relationships between input parameters and output assume that the data is linear, continuous and
normally distributed [73]. However, in the case of ABMS, the data produced can be highly nonlinear,
discontinuous and power-law distributed. Techniques that take these factors into account, such as time
series decomposition and dynamic time warping for temporal-dependent variables, may therefore
have to be employed for tasks such as solution space exploration and results analysis [70].

2.2.4. Validation

Despite the absence of a commonly accepted method for validation of an ABM, multiple processes
have been suggested [72,74-78]. Kliigl [72] proposed one such approach for full validation of an ABM.
This comprehensive framework includes four key steps:

1. Face validation: this step involves the input of human experts with experience in the subject
of the model. The human experts assess the plausibility of the operation (both at micro- and
macro-levels) and output of the ABM.

2. Sensitivity analysis: the purpose of this stage is to assess the effect of different combinations of
parameters on the overall behaviour of the ABM and potentially identify redundant parameters.

3. Calibration: the aim of this step is to set unknown parameters to sensible values that will produce
output approximating the real-life system. In some cases, this stage may be combined with the
previous one.

4.  Statistical validation: this final step is carried out to show that the simulation is valid for datasets
other than the one it was calibrated from.
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Clearly, a limiting factor is that the majority of these stages rely on the availability of historical
data for comparison with the output from the model.

Many traditional data mining techniques such as regression, analysis of variance, cluster analysis
and association rules can be used for stages in this process [74]. Parameters Tuning by Repeated
Execution is a method that can be applied to aid the calibration step [74]. In this approach, parameter
space is explored through variation of single parameters and the use of statistical techniques to derive
relationships between input and output. Other suggestions of how to validate an ABM include the
use of human computation in social simulations [75,76] and approximate model checking where
a simplified version of the ABM is built and validated [77,78].

2.2.5. Comparison with Alternative Simulation Methods

Simulation processes other than ABMS are more conventionally employed in the infrastructure
asset management field. The most common of these are System Dynamics (SD) and Discrete Event
Simulation (DES). Both can be potentially replaced or enhanced by ABMS [79].

SD uses differential equations to simulate the various components of the asset management
system [80]. Flows of key entities within processes are represented by variables forming these equations.
These are then arranged into feedback loops in the structure of the system being modelled. SD requires
detailed information concerning the overall process being modelled whereas an ABM can be developed
from comparatively little global data [58]. Additionally, SD cannot typically incorporate a spatial
element into the model and so ABMS should be used if both spatial and temporal elements are to be
considered [38]. Approaches to integrate SD and ABMS have been suggested to allow investigations
into processes at both macro- (SD) and micro-scales (ABMS) [81].

DES is another simulation method that can be used to model complex systems [38]. It is based
on predicting the impact of decisions made at successive events in a series representing the entire
system being modelled [82]. Compared to ABMS, DES does not focus on interactions between agents
in a system, rather the focus is on the flow of resources through defined processes. Therefore, it is not
suitable when micro-interactions are expected to have a substantial effect on the overall behaviour of
a system [38,58].

2.3. Data Science Integration

2.3.1. Data Science

Data science is an interdisciplinary field concerned with studying trends and extracting
meaningful insight from data. The field combines a number of elements including machine learning,
statistics (especially Bayesian), data structures, Knowledge Discovery in Databases, correlation and
causation [73,83]. Given the huge volume of data generated in the world each day, the field is becoming
increasingly relevant in business situations.

Despite growing adoption, there are a number of limiting factors to the usefulness of data science
techniques. A key limitation is low quality or unstructured data which can take time to clean and
prepare before meaningful analysis can take place. If data is of poor quality it can also lead to reduced
ability to follow business strategies, ill-informed decision-making and loss of firm reputation due to
public dissatisfaction [84,85]. As a result, some business decision-makers have become sceptical of
data science and the results it can offer [86].

A further limitation of the effective use of data science is lack of the appropriate volume of data
for analysis. This was partially discussed previously as a reason for the lack of a clear Rol of new and
emerging technologies. Clearly, a certain amount of collected data is required to derive worthwhile
insights but in the case of new ventures this data simply does not exist.
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2.3.2. Integration with ABMS

There are many examples where the techniques of data science are harnessed for quantitative
and qualitative analysis across a range of fields. There also exists a great number of ABMs developed
to provide understanding in wide varieties of complex systems. In recent years, there have been
suggestions of further integration between the two fields of data science and ABMS to build on their
individual advantages and alleviate some of their disadvantages. Despite this, examples of integration
between these two areas of study remain scarce.

Baqueiro et al. [87] suggest that applications of data science within ABMS may be separated
into two broad categories: endogenous and exogenous. Endogenous strategies involve the use of data
science by the agents in the simulation to improve their capabilities, thereby effectively increasing
their intelligence and the complexity of the model. Exogenous applications are concerned with the use
of data science techniques with the output of an ABM and can be extended to aid model calibration,
validation and analysis.

Improving the intelligence of agents in the simulation can be achieved by incorporating
methods such as regression analysis or classifier systems into the decision models of agents [87,88].
Dogra et al. [89] apply this technique to allow agents to change their individual processes as a result
of environmental dynamics, thus retaining the validity of their ABM over time. In some sense,
these approaches can be considered as a form of artificial intelligence [90].

Data science techniques can also be applied to aid the calibration step in ABMS. An example is
the Parameters Tuning by Repeated Execution technique [74] mentioned previously. More current
developments call for a closer integration of real-world data into the calibration step [91]. A recent
application was given by Heppenstall et al. [60] in the calibration of a large scale ABM representing
a city population.

Following from the calibration step, data science may also be incorporated into statistical
validation of an ABM. Techniques, such as regression or clustering, can be used to deduce whether the
simulation matches the real-world data from the system it is aiming to represent within appropriate
bounds [74,92,93]. A novel method in this area is Pattern-Oriented Modelling [94]. In this approach,
various patterns in the output of both the ABM and the real-world system are compared to analyse
similarities and differences between the structures of the system on multiple scales.

Potentially the most relevant integration strategy to this work addresses one of the typical
limitations of data science initiatives, namely the common lack of either the appropriate volume or
sufficient quality of available data. Once an ABM has been calibrated and validated, it can be used to
generate a set of quasi-real data of the appropriate size and quality for specific data mining tasks [87].
This is particularly valuable for organisations that may have only recently begun to gather datasets
concerning their processes and so do not have a wealth of historical data to rely on [95].

Novel data science techniques can be implemented to enhance understanding of the output
data from an ABM [70]. This aspect of integration can be applied through Data-Driven Agent-Based
Modelling that focuses on using data science in all aspects of ABMS, but especially analysis [96].
Sibertin-Blanc et al. [97] apply this technique in an ABM of a river management program in France.
More recently, statistical emulators have been used to analyse the uncertainty of the output and in
sensitivity analysis of an ABM [98].

In more current developments, Pruyt et al. [99,100] discussed how data science, particularly for
Big Data, could impact the field of SD and also modelling and simulation in general. They mainly
consider methods through which data science could be applied to large volumes of data output,
both from the model and the real-world system. These applications include using insights from
real-world Big Data to inform the design of a model, calibration of model parameters and output
analysis. However, most interestingly, a future vision is presented where the simulation is connected
directly to real-time data sources to continuously reduce uncertainties in parameters or even to infer
new model structures. In turn, the output from the simulation can provide extra high-quality data in
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addition to the real-world source to be analysed using data science techniques, providing a deeper
understanding of the system under observation [99].

2.4. Related Agent-Based Models

2.4.1. Infrastructure Asset Management

This section briefly summarises related ABMs concerned primarily with infrastructure asset
management, discussing their key features and any methodological gaps. These ABM implementations
tend to be quite theoretical in nature and research in this field frequently points out the lack of
practically implemented ABM for infrastructure asset management, despite describing it as a promising
area [53,54,101]. It is, however, possible to derive some insights from models in other fields such as
construction management [53].

While ABM has been used in the past as a tool to further understand the underlying interactions
leading to a final result, it has yet to be adopted as a method to determine a practical Rol value for
business strategies, which is the aim of this research. Table 1 summarises the models discussed in
this section.

Sanford Bernhardt et al. [52] present the case for ABM as a logical tool for civil infrastructure
management. The paper focuses initially on explaining the need for a new paradigm in the field to aid
decision-making and describing the shortcomings of more traditional tools. The authors then detail
their framework for an ABM of pavements, users, maintenance personnel and regulators, but stop
short of actual implementation and analysis of a simulation.

Moore et al. [102] describe a similar ABM for pavement asset management. The authors implement
two models, the first using Matlab and the second using RePast. The Matlab ABM makes use of real
data sets and pavement deterioration models while the RePast model relies on author perspective and
assumptions. The authors investigate the effect of different decision algorithms for the decision-makers
in the system, contrasting a worst-first maintenance method with real Benefit-Cost-Analysis scenarios.
Difficulty was noted in quantitatively defining interactions which were only understood in a qualitative
way but the authors do not present a particular framework for overcoming this.

Osman [53] develops an ABM of a generic asset management system with agents as assets,
users, asset managers and policy makers. The author recognises the lack of a clear relationship
between an asset’s physical condition and its perceived level of service and aims to provide further
understanding in this area. The simulation has a focus on user behaviour and a detailed behavioural
model is adapted from the services domain to accommodate this. In addition, the ABM was validated
by presenting it to domain experts, who agreed on its relevance and usefulness. The agent-based
approach is compared to traditional SD models and was found to produce better performance
indicators due to its ability to embed feedback mechanisms from agents during the simulation process.

Batouli et al. [54] provide an example ABM of roadways, users and maintenance agencies with
a greater focus on modelling the condition of the asset. They incorporate a mathematical degradation
model of roadways into the ABM to study the impact of budget constraints and the sensitivity of
the simulation to roadway traffic growth behaviours. However, there is no clear validation process
presented in the paper and it was not applied to a real-world scenario.

A study of reactions to a contamination event in water infrastructure management is discussed by
Zechman [103]. The ABM is combined with a water system model, EPANET, to give an example in
a virtual city. The simulation tests the response of utility managers and how water consumption choices
of the users affect the spread of a contamination. The author noted the difficulty in validation of the
model due to the lack of data but suggested it was useful to assess what-if scenarios for decision-makers.
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Table 1. Summary of related agent-based models.

12 of 46

Author(s)

Application/Model Implementation

Agents

Definition of Agent Behaviours

Model Evaluation

Sanford Bernhardt et al. [52]

Infrastructure management/None

Assets, Users, Asset
managers, Regulators

Undefined

n/a

Moore et al. [102]

Infrastructure management/Matlab &
RePast

Assets, Users, Asset
managers, Regulators

Viewpoint of author(s), Empirical data &
Mathematical models

Illustrative example

Osman [53]

Infrastructure management/AnyLogic
& Excel VBA

Assets, Users, Asset
managers, Regulators

Viewpoint of author(s) & Case studies

Case study, Verification &
Validation

Batouli et al. [54]

Infrastructure management/AnyLogic

Assets, Users, Asset
managers

Viewpoint of author(s) & Mathematical
degradation model

Illustrative example

Infrastructure management/AnyLogic

Viewpoint of author(s) & Water distribution

Zechman [103] & EPANET Users, Asset managers system model Case study

Infrastructure management/Swarm, Regulators, Water appliance Viewpoint of author(s), Empirical data & -
Chu et al. [104] Visual Basic & Matlab market, Users Mathematical models Case study & Validation
Bhamidipati et al. [101] Infrastructure Assets, Users, Asset Viewpoint of author(s) & Mathematical models Case study

management/GAMA [105]

managers

Du et al. [106]

Construction management/Not stated

Staff, Managers, President

Viewpoint of author(s) & Case studies

Case study, Verification &
Validation

Zhu et al. [107]

Construction management/AnyLogic

Designers, Workers, Risk
Managers

Viewpoint of author(s)

lustrative example

Knoeri et al. [108]

Construction management/NetLogo

Employees, Stakeholders,
Authorities

Empirical data

Case study & Validation

Remondino et al. [74] Biological /JAS Species Viewpoint of author(s) Case study & Parameter tuning
Arroyo et al. [96] Population dynamics/RePast Population Viewpoint of author(s) & Empirical data gzi;?;?iz & Clustering
Bijak et al. [98] Population dynamics/RePast Population Viewpoint of author(s) & Empirical data Case study & Statistical

emulators
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Chu et al. [104] created an ABM they termed a Residential Water Use Model and include
a case study of Beijing water infrastructure to understand behavioural characteristics of residential
water users. The model is implemented through a combination of Swarm, Visual Basic and Matlab
programming. It broadly contains three kinds of agents: regulators, the water appliance market
and households. Most interestingly, the authors recognise the data shortage for their case and use
an uncertainty analysis technique to calibrate parameters and validate the model.

Bhamidipati et al. [101] have more recently developed an ABM incorporating a Geographic
Information System (GIS) to study the interconnectedness of different infrastructure assets. They use
the GAMA platform [105] with agents representing various assets (pavements, sewers, electricity),
car users and asset managers. The assets reside on different layers of the simulation environment.
This integrated simulation model is subsequently used in a case study of a potential flood event in the
Netherlands to understand how the degradation of one asset can have an effect on connected assets.
Although the full concept is outside the scope of the current work, the layered method is a novel
approach to infrastructure management simulation.

In the field of construction management, Du et al. [106] present a framework to create an ABM
of an organisation. Their Virtual Organizational Imitation for Construction Enterprises method
provides a technique to allow the overall performance of a construction project to be estimated from
micro-level processes in the ABM. They break down business processes into individual tasks which
are subsequently assigned to different agents in the firm. Additionally, the authors provide extensive
verification and validation of the model as suggested in [38,109]. Zhu et al. [107] developed a similar
concept in an ABM to investigate manager behaviour on construction project time length.

Lastly, Knoeri et al. [108] created an ABM of a construction material recycling market based on
empirical data. Their approach places particular emphasis on the method through which the empirical
data is used to obtain a realistic simulation of the real-world case. The authors determine that one of
the most important factors is incremental model development, where levels of complexity are added
to the ABM in progressing steps.

A key conclusion from these models is that the vast majority rely predominantly on author
perspective in formulating agent behaviour definitions. Additionally, models are generally
implemented in a theoretical application for understanding purposes, rather than attempting to
assess the value of potential solutions to problems in their fields.

2.4.2. Data Science and ABM Integration

In order to extend the concept of integrating data science with ABM, models which have
implemented some of the features discussed in previous sections were also reviewed. Although
these processes have not been applied to infrastructure asset management specifically, many of the
core ideas could be carried over from other fields.

Remondino et al. [74] apply the process of Parameters Tuning by Repeated Execution, described
previously, to an ABM of a specific biological phenomenon. The authors implement the technique to
successfully uncover hidden patterns of prime number life cycles of cicadas in North America [110].
In addition, they discuss the process of iterative model development through cycles involving model
evaluation with data mining techniques.

Arroyo et al. [96] created an ABM through a data-driven approach and discuss applying clustering
techniques to understand its output. The simulation was designed to represent changes in political
and religious values in historic Spain, taking into account different groups of the population and their
beliefs. As well as analysis of the simulation output, clustering techniques were also applied to provide
pattern-based validation of the model.

Finally, Bijak et al. [98] extend the Wedding Ring ABM [111] designed to analyse marriage
behaviour in the UK. Most interestingly, they present the use of Gaussian process emulators (statistical
models of the main ABM) as a comprehensive method to analyse the uncertainty in the results of
the simulation.
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3. Problem Specification and Motivation

The question that this case study aims to address is what is the Rol of installing remote condition
monitoring sensors on lift assets in the London Underground? The objective is to utilise ABMS and data
science in providing an answer to the problem. As originally outlined in Section 2.1.3, the installation of
these sensors would enable predictive maintenance capabilities through continuous remote condition
monitoring. It would represent a significant step in the direction to realise the IoT in Smart Cities.

There is interest in this type of solution within industry. For example, the lift manufacturer
ThyssenKrupp is pursuing continuous condition monitoring in a collaboration with Microsoft [112].
However, a clear value of Rol does not exist for this application and, as a result, few leading asset
management organisations are confident enough to invest in the technology. The development of an
ABM makes it possible to potentially provide a justification to the investment by investigating the
what-if scenario where sensors are installed.

In light of initial analysis of failure data (see Appendix A), the application of this ABM was further
specified. It was not considered feasible to encompass every station and possible lift failure type within
the research timescale. Therefore, the installation of condition monitoring sensors to the lift doors at
Covent Garden station was selected as the most logical solution to have the greatest financial impact.

To the best of the author’s knowledge, the current work represents the first ABM developed for
the practical application of determining the Rol of an IoT venture, both within and outwith the scope
of asset management. It is hoped that this work will initiate a drive towards an increased application
of ABMS as a comprehensive tool to aid business decision-making processes in similar future cases.

4. Practical Considerations

4.1. Available Historical Data

Historical data was provided by a client of Amey Strategic Consulting, namely Asset Performance
Jubilee Northern Piccadilly (APJNP), who manage all operational aspects of the Jubilee, Northern
and Piccadilly lines in London Underground. Some applicable data was also obtained from public
sources (i.e., the passenger count data was obtained from TfL Legacy Data Feed, the TfL Business Case
Development Manual was obtained from a Freedom of Information request). The quality of the raw
datasets meant they required cleaning and preparation before relevant insight could be gained, as with
much data gathered on a large scale [86]. Table 2 gives a summary of the key datasets used in this
research, including the name by which they will be referred to hereafter.

Table 2. Summary of data used in development of the ABM.

Name Timeframe Relevant Content

27 June 2010-16 March Failure events related to lifts and escalators

Failures Dataset 2016 across the APJNP network.

Details of work orders on lifts and escalators

1January 2015-23 March across the APJNP network. Includes both

Work Orders Dataset

2016 planned and emergency maintenance.
. o Technical specifications of lift assets
Lift Specifications n/a managed by APJNP.
Failure Mode and Effect n/a Lift system reliability study completed by
Analysis (FMEA) APJNP engineers.
TfL Passenger One week, November 2012 Entl"y / exit counts to London Underground
Count Data stations in 15-min intervals.

TfL Business Case
Development n/a
Manual [113]

Details of considerations for business cases
in the London Underground.
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The Failures Dataset includes a Lost Customer Hours (LCH) cost for each failure entry. This is
an important KPI within the London Underground. It relates to the cumulative number of hours of
customers’ time wasted due to service disruptions and can be converted to a financial value within the
organisation. However, while a seemingly basic concept, the calculation process used in obtaining
a LCH value has evolved over many years to become significantly complex.

4.2. Remote Condition Monitoring Hardware

Potential hardware was evaluated to provide realistic estimates of investments required in this
venture. An effective approach to infer lift door condition is the use of accelerometers to collect motion
and vibration data [114]. This data can then be transmitted to an online platform where data science
techniques are applied to study the evolution of these variables over time. Observed trends can signal
deterioration in condition or imminent failure which may be prevented by scheduling a maintenance
activity on the offending component.

The sensors would be deployed within a small space in an industrial setting. Thus, in addition
to the key features mentioned in Section 2.1.3, they should be compact and possess industrial
certifications if possible. Extended battery life would also be advantageous as the frequency of
battery recharge/replacement will negatively affect the value of the proposal.

Three potential sensors were evaluated: Libelium’s [115], the Genuino 1000 [116] and Wzzard
sensing hardware [117]. While the Genuino sensor is supported by a strong open source community,
the specifications show that it does not possess the comprehensive power management capabilities of
those designed primarily for an industrial setting. Additionally, its lower purchase price would be
more than offset by extra costs incurred in the process of certifying this hardware. The Wzzard sensor
has the highest unit price and its dimensions would potentially restrict its installation onto the lift
door. These considerations suggest the Libelium Waspmote would be the most suitable platform in
this application.

5. Simulation Model

5.1. Design

ABMs are notorious for being difficult to describe. There are few specific frameworks for this
process, none of which are considered standard by a majority of the ABMS community. Among the
most prominent of these is the Overview, Design and Details (ODD) protocol [118,119]. It was initially
introduced in 2006 to address criticisms of published ABMs being irreproducible, with the aim to
standardise model descriptions in an effort to make them more complete. An update was subsequently
provided in 2010 following calls for less ambiguity in the original framework. The updated protocol
includes seven stages, organised by increasing levels of detail.

The following description of the ABM developed in this work aims to comply with the ODD
protocol. Unified Modelling Language (UML) diagrams are considered an intuitive method to present
the design of an ABM to a reader [120] and so are also employed in this section. The model was
programmed in AnyLogic 7.2.

5.1.1. Purpose

The broad purpose of the model is to investigate a process for establishing the Rol of ventures
related to the IoT in infrastructure asset management. More specifically, the aim of the ABM is to
assess the Rol of installing condition monitoring sensors on lift assets across the Jubilee, Northern and
Piccadilly lines of the London Underground. This would allow the asset manager, APJNP, to schedule
predictive maintenance before potentially costly failures occur. The scope of this simulation covers
door-related failures at Covent Garden station as these incur a significant economic impact.
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5.1.2. Entities, State Variables and Scales

The model comprises four types of agents: Users, Lifts, Contractors and an AssetManager.
Additionally, there are four key objects that do not represent agents. These exist to provide
an abstraction layer in the model for adaptation to future work (which may be based on different
types of assets). They are: Components, Behaviours, Tasks and Policies. Figure 1 presents a UML class
diagram showing links between agents and objects. Additionally, Table 3 provides a summary of all
entities and their corresponding attributes.

AssetManager
Environment -threshold: double
— - 1 +emList: Task[0..*]
-lifts: L_lfg‘l.. ]1 . +pmList: Task[0..*]
-users: User[1..*] * -policies: Policy[0..*]
-assetManager: AssetManager[1] 1 -monitorParts: Component[0..*]
-contractors: Contractor[1.."] Task /
-scheduleTask(type: TaskType)

+finishTime: double

+type: TaskType
+targetLift: Lift 1 1
+createTime: double
1. +firstOnSiteTime: double *
1.*

User Contractor 1 1 Policy
. 1 ot *°
_type: UserType +currentTask: Task +t_asl§L|st.lTask[1.. |
_targetLift: Lift -responseDelay: double +liftList: Lift[1..*]
ey tne: Gl -repairTime: double +intervals: int[1..%]
! Y : -plannedEffect: double

-waitTimeWeight: double
-onLiftTimeWeight: double
-valueOfTime: double

-emergencyEffect: double
-predictiveEffect: double 1

-maxWaitTime: double -responseDelay() *
+repairLift(lift: Lift)

-chooselLift()
+boardLift(lift: Lift)
+exitLift(lift: Lift)

Lift
-travel: double
-speed: double

* -capacity: int
-actualCapacity: double
. -boardingTime: double
. +hasSensor: boolean
Behayvioly Component / -topQueue: User[0..*]
-beta: double . -bottomQueue: User[0..*]
” 1 . | +failProb: double * 1 ! i
-lambda: double \1 _failBehaviour: Behaviour +parts: Component[1..*]
+updateFailProb() -timeFromLastFail: double -updateCondition()

-failWeighting: double
-parent: Component
-children: Component[0..*]
-ownerLift: Lift

Figure 1. Unified Modelling Language (UML) class diagram of entities in the agent-based model.
Double side bars represent agents and single side bars represent objects. The colours correspond to the
role of the entity in the simulation: blue represents people, yellow are part of the assets and green are
included as an aspect of maintenance.

Lift

These agents represent the lift assets themselves. Lift agents are characterised by a number of
attributes: travel (distance between landings), average speed, capacity, boarding time at each landing,
whether a remote sensor is installed for condition monitoring and lists of User agents waiting at the
top and bottom queues or currently on board the Lift.

The stated capacity is multiplied by a reduction factor to account for the fact that it is unlikely the
maximum capacity would be feasible during operation. Each Lift agent also contains a hierarchical
structure of Component objects, which are described later in this section.

User

User agents represent London Underground customers travelling on lifts in the station. They are
described by the following attributes: type, target lift, journey time, time weightings for different parts
of the journey, financial value of time and a maximum waiting time.
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Type defines whether a User is entering or exiting the station and, as a result, where it will initially
appear in the simulation environment. The target lift indicates which Lift agent a User has currently
chosen to queue for and travel on. Journey time is split between time waiting for a Lift and time
travelling on a Lift. These each have separate weighting factors outlined in the TfL Business Case
Development Manual. In combination with the value of time parameter also provided in the manual,
this allows individual User journeys to be quantified. Maximum waiting time accounts for reneging in
the queueing process.

Table 3. Overview of entities for the simulation model.

Entity Name Attribute Name Attribute Type Description
Lift travel double Vertical distance between floors (m)
speed double Average vertical speed (m/s)
capacity int Stated maximum passengers
actualCapacity * double Factor accounting for real capacity
boardingTime double Time for unload/load cycle at floor (s)
hasSensor boolean Indicator for sensor installation
topQueue/bottomQueue  List<User> Queues for this Lift
riders List<User> Users on board this Lift
parts List<Component>  Component objects of this Lift
User type UserType Direction of travel ({Exiting, Entering})
targetLift Lift Current lift choice
journeyTime double Recorded time (min)
waitingTimeWeight double Weighting factor for time in queues
onLiftTimeWeight double Weighting factor for time on board Lift
valueOfTime double Financial value of time (£/min)
maxWaitTime * double Limit to waiting time (min)
Contractor responseDelay double Time to respond to emergency maintenance (min)
repairTime double Time to repair Lift (min)
currentTask Task Assigned Task object
plannedEffect * double Effect of planned maintenance
emergencyEffect * double Effect of emergency maintenance
predictiveEffect * double Effect of predictive maintenance
AssetManager  threshold * double Measure of risk aversion
emList List<Task> List of emergency Tasks
pmList List<Task> List of planned/predictive Tasks
policies List<Policy> List of all Policies
monitorParts List<Component>  Components monitored by sensors
Component failProb double Current instantaneous failure probability
failBehaviour Behaviour Characterises failure probability in time
timeFromLastFail double Time from previous Component failure (min)
failWeighting double Weighting factor used to determine failure probability
parent Component Component above in hierarchical structure
children List<Component>  Component(s) below in hierarchical structure
ownerLift Lift Lift under which Component lies
Behaviour beta double Shape NHPP parameter
lambda double Scale NHPP parameter
Task type TaskType Maintenance type ({Planned,Emergency,Predictive})
targetLift Lift Lift corresponding to this maintenance
createTime double Time of Task creation (min since sim start)
firstOnSiteTime double Time of Contractor arrival (min since sim start)
finishTime double Time of Task completion (min since sim start)
Policy taskList List<Task> List of planned maintenance Tasks
liftList List<Lift> Lifts for this maintenance schedule
repeatIntervals List<double> Repeating time schedule for Tasks (days)

Starred (*) attributes were not derived from analysis of historical data, as the required data does not
exist or could not be obtained. Other attributes are either parameters based on analysis of historical
datasets or aspects of model operation.

Contractor

The Contractor agents embody the engineers who physically perform maintenance work. In this
simulation, they are defined by the following attributes: response delay, repair time, the task they are
currently completing (if any) and parameters relating to the effectiveness of maintenance carried out.
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The response time represents the time difference between a Lift failure occurrence and the
Contractor arriving on site. It is drawn from a lognormal distribution based on the Work Orders
Dataset. A similar process is used to determine repair time (further details can be found in Appendix B).

Asset Manager

The AssetManager is a single agent with: lists of different types of maintenance Tasks, a list of
Policy objects, a list of the Component objects it is monitoring via installed remote sensors (if any) and
a predictive threshold parameter.

If a Component is being monitored, it allows the AssetManager to have visibility of its underlying
failure probability. The threshold level is the maximum failure probability the AssetManager will
observe before a predictive Task object is created in response. It therefore serves to represent the
AssetManager’s risk aversion.

Component

The Component objects represent the constituent parts of a Lift agent that can potentially cause
a failure event. They are characterised by: an instantaneous failure probability, a failure Behaviour
object, time since the last failure occurred and lists defining where they are located in the hierarchical
structure of Components under a Lift agent. Additionally, each Component has a failure weighting
parameter. This is used in conjunction with the Behaviour object to determine the failure probability of
an individual Component.

Behaviour

The probability of failure for each Component is described by a Behaviour object. In the current
model it is based on a nonhomogeneous Poisson process (NHPP), as detailed in Section 2.1.4. It has
shape (B) and scale (A) parameters that define this process.

Task

Task objects encompass the maintenance work carried out by Contractor agents. They are defined
by the following attributes: type of maintenance, the corresponding Lift agent and timestamps for
different stages of the maintenance process. The type can be either Emergency which is created in
response to a Lift failure, Planned which is scheduled from a Policy object or Predictive when based
on sensor data. Planned Tasks have an effect on each Component in a Lift, whereas emergency and
predictive Tasks target specific Components.

Policy

The Policy objects are used by the AssetManager to generate Task objects as part of a planned
maintenance schedule. Their attributes include: a list of Tasks carried out as part of the Policy, a list of
Lift assets to which the Policy applies and recurring times for Tasks. These repeat intervals are given
in days as planned maintenance is assumed to always occur at the same time of day when the Lift is
not in use.

Simulations are run continuously in time with AnyLogic time units set as minutes.
The environment and spatial scales are modelled so that Lift movements and timings correspond
to the real-world system. Only the discrete movement of Users is simulated such that they can either
be waiting in a queue or travelling on a Lift, as further detail on this level was not necessary. Similarly,
Contractor agent movement is not explicitly simulated.
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5.1.3. Process Overview and Scheduling

Events occur dynamically as the simulation progresses and individual agents interact with each
other. The general processes underlying each agent are described in this section. Details of specific
actions will be provided in Section 5.1.7.

Lift

Figure 2 shows a UML state diagram of the Lift agent. This agent follows a cyclic process of
moving between landings to serve Users waiting at either end. The maximum number of Users allowed
to board a Lift agent is determined by its capacity. To account for heterogeneity in passenger size,
at each cycle the actual capacity variable of a Lift is re-drawn from a normal distribution. This provides
a variability to the feasible capacity.

At discrete time intervals, the failure probability of Components in the Lift are tested to determine
if it remains in the Working state through the next interval. If the test fails, the Lift agent will randomly
enter the Failure state during the following interval. While in the Failure or Service state, the Lift cannot
function until attended by a Contractor agent.

.—i
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.r\ ~N fail Failure
AtLanding
‘ repaired
dle L no queues " el
users at current landin il_D
S
Service
Loading
N\ Y, serviced
loading time finished —
Moving Ji
called from other landing arrive at landing service due

N J

Figure 2. UML state diagram for the Lift agent during the simulation.

User

During initial simulations runs, it was found to be computationally expensive to continuously
generate and simulate many Users when only the impact on their overall journey times during
disruptive events is desired. In order to make it possible to run repeated multi-year simulations
with the available computational resources, a solution was designed whereby User agents are only
generated around times of disruptions. Figure 3 presents the UML state chart for this agent.

User agents activate dynamically during the simulation at Lift failure events. Users were designed
with inactive/active states to allow a population to be created at the beginning of the simulation. This
avoids dynamic generation and destruction of large numbers of agents as the model runs. The design
was implemented in this way for performance improvements. The rate of activation is based on the
TfL Passenger Count Data for Covent Garden station. Users entering the station activate randomly at
this rate. Those exiting activate in batches within 3 to 7 min intervals to imitate train arrivals at the
station. After activation, a User agent independently follows the process of choosing a Lift, queueing,
boarding the Lift once it arrives (and has space), travelling and exiting the station (i.e., deactivating). If
the User agent spends too long in the Waiting state it immediately deactivates. This is to account for
customers finding another way to complete their journey in extreme cases (e.g., taking the stairs).
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A User agent records its time in both the Waiting and OnLift states. These are subsequently
weighted and combined to give an overall journey time. The change in these journey times during a Lift
failure event is recorded to determine the indirect impact caused by each disruption. These deviations
are calculated from reference cases when no failures occurred (Section 5.1.6 expands this point further).
The excess User journey times are translated into Lost Customer Hours (LCH) costs. It was not
possible to use the TfL method for determining LCH costs as it is closed source and significantly
complex. However, the literal LCH values obtained in this simulation offer an alternative with similar
characteristics. Equation (5) gives the method used to calculate the LCH of a disruption where N Users
each with overall journey time T are affected.

N
LCHdisruption - Z (Ti - Treference) &)
i=1
e M
Active
. - ~ | user generated
V OnLift
. N
Waiting
ExitingLift
lift failed

lift completes|journey Inactive

MovingWithLift

lift starts|moving

e W board lift s|  EnteringLift

- J
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join queue lift full

- _/

maximum waiting time reached

Figure 3. UML state diagram for the User agent during the simulation.

Contractor

Figure 4 shows the Contractor agent’s UML state diagram. These agents follow three phases in
a simple cyclic process: idle (no Task object currently assigned), a response delay prior to arrival at
a Lift and repairing/servicing a Lift. As a Contractor agent completes a Task, they assign the temporal
state variables to the Task object (i.e., firstOnSiteTime, finishTime).

The nature of the response delays and repair times vary depending on whether the Contractor is
completing emergency or planned/predictive maintenance. As planned/predictive maintenance is
carried out in engineering hours (time of the day when London Underground is closed to the public,
typically every day between 00:30 to 04:30, although this is changing in 2016 with the night tube)
there is no disruptive impact to this work. Therefore, response delays or time taken to repair are not
necessary in these cases.
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Figure 4. UML state diagram for the Contractor agent during the simulation.

Asset Manager

Finally, the single AssetManager agent handles the creation and scheduling of planned, emergency
and predictive Task objects. This agent does not follow a structured process but rather reacts
dynamically to interaction with other agents, its own Policy objects and failure probabilities of its
monitored Components.

5.1.4. Design Concepts

Basic Principles

The model is used to test the hypothesis that installing condition monitoring sensors on doors
of lifts at Covent Garden station will reduce the costs associated with operating the assets. The basic
principle includes comparing results from a base setting, where no predictive maintenance is carried
out, to simulations with predictive maintenance. The impact of its introduction can then be assessed
relative to sensors installation and running costs.

Emergence

By altering the threshold parameter of the AssetManager agent, and thus the degree of predictive
maintenance that is scheduled, it is expected that the project Rol will vary in complex ways.
In balancing the benefit of savings with the costs of condition monitoring sensors and additional
maintenance, an optimum solution may emerge.

Adaptation

User agents re-select their target Lift if it enters the Failure state or reaches maximum capacity
before they can board. The AssetManager agent’s behaviour is fully adaptive as the creation of all
Tasks is based on changes in other agents (i.e., Lift failure) or objects (i.e., maintenance work of a Policy
object being due).

Sensing

A User agent can sense which Lift will be next to arrive on its floor and incorporates this into its
decision model. This can be justified, for example, by a light display typically found above landing
doors of London Underground lifts. The Contractor agent is aware of its current Task and records
timestamps to this object as it moves through different states. The AssetManager is aware of its Policy
objects so that it is able to generate planned Tasks for Lifts at the correct intervals. This agent can also
sense the failure probability of specific Components on Lifts with sensors installed.

Interaction

As a Lift enters the Failure state, it alerts the AssetManager to schedule emergency maintenance.
User agents inform a Lift of their presence upon joining a queue, which drives Lift movement.
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Additionally, Contractor agents interact with failed Lifts to return them to the Working state. Lastly,
the AssetManager constantly communicates with Contractor agents to assign maintenance Tasks.

Stochasticity

To apply variability to the maximum number of Users that can travel on board a Lift, its capacity
parameter is reduced by multiplication with an actual capacity variable. This variable is drawn randomly
from a normal distribution in each Lift cycle. While the generation rates of Users are determined,
their actual activation time is a random process. For the Contractor agent, response and repair times
for emergency maintenance are drawn from lognormal distributions based on analysis of the Work
Orders Dataset. Finally, Components are tested for failure throughout the simulation using random
values drawn from a uniform distribution against their failure probability.

Observation

The output gathered from the simulation for subsequent analysis includes details of each Task
created and corresponding LCH costs for every Lift failure event.

5.1.5. Initialisation

Table 4 summarises all parameter values in the ABM. Four Lift agents are present in the model,
representing the number that exist in Covent Garden station. Their parameters are predominantly
derived from the Lift Specifications and TfL Business Case Development Manual. The actual
capacity distribution is based on the common acceptance that human size is normally distributed and
observation of typical passenger numbers on lifts at the station. Only door failures are considered in the
model, so each Lift has a main Door Component. Immediately underlying this parent Component are
child Components determined from entries in the FMEA document. Additionally, only a subset of these
Components could have their condition inferred from accelerometer data. Therefore, the AssetManager
only has visibility of this subset’s failure probabilities when sensors are fitted (Appendix F provides
further details).

Table 4. Parameter values for entities in the simulation.

Entity Attribute Value Units Source

Lift travel 35.3 m Lift Specifications
speed 1.5 m/s Lift Specifications
capacity 50 Users Lift Specifications
actualCapacity N(pu=08,0=0.1) n/a Estimate from observation
boardingTime 40 s BCDM [113] (Appx D1)
parts see Appendix F n/a FMEA

User waitingTimeWeight 2.5 n/a BCDM [113] (Table E3a)
onLiftTimeWeight 2.0 n/a BCDM [113] (Table E3a)
valueOfTime 10.15 £/hour BCDM [113] (Table Ela)
maxWaitTime 10 min Estimate

Contractor responseDelay InN(p =3.71,0 = 0.54) min Work Orders Dataset
repairTime InN (u = 4.46,0 = 0.75) min Work Orders Dataset
plannedEffect 0.7 n/a Calibration
emergencyEffect 1.0 n/a Calibration
predictiveEffect 1.0 n/a Equal to emergencyEffect

AssetManager policies see Appendix F n/a Work Orders Dataset

Component failWeighting see Appendix F n/a FMEA

Behaviour beta (shape) 1.53 n/a Failures Dataset
lambda (scale) 243 x 1074 n/a Failures Dataset

Policy taskList see Appendix F n/a Work Orders Dataset
repeatIntervals see Appendix F n/a Work Orders Dataset

The User agent parameters are largely obtained from the Business Case Development Manual.
An estimate is used for their maximum waiting time. This is appropriate as this parameter was initially
only introduced to account for rare, but severe, disruptions when the station would likely be closed in
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the real system. Without this limit, instabilities could arise in the simulation. User agents generally do
not reach the maximum time and it serves to allow the model to continue running through these events.

One Contractor agent is created for each Lift agent (as the concept of Contractor availability
is incorporated into its response delay time). The Contractor agents are initialised with mean and
standard deviation parameters for the lognormal distributions describing their response and repair
times. These are derived from the Work Orders Dataset (see Appendix B). Additionally, the planned
and emergency maintenance effect parameters are specified through the calibration process detailed in
Section 5.2 and held constant during the simulation. The predictive maintenance effect is set equal
to the emergency effect as both target specific Components, whereas planned maintenance affects
all Components.

The AssetManager is initialised with a single planned maintenance Policy for all Lift agents.
The Task objects included in the Policy, and their corresponding repeat intervals, are specified from
analysis of the Work Orders Dataset (see Appendix C). At the start of a simulation, the times until each
of the planned Tasks are next created is randomly selected from a uniform distribution between 0 and
the Task’s repeat interval.

The parameters of the NHPP for the single Behaviour object are determined from analysis of the
Failures Dataset (see Appendix D). Figure 5 shows the intensity function (i.e., instantaneous failure
probability) and reliability function of the process for the entire Lift door. Failure probabilities for
individual child Components are obtained from this Behaviour object using their individual times
since last failure and failure weightings. These weightings are established from their respective
Occurrence ratings in the FMEA analysis. At the outset of a simulation, the time since last failure of
each Component is drawn from a uniform distribution between 0 and its mean time between failures.
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Figure 5. Failure intensity and reliability functions in time of the approximated nonhomogeneous
Poisson process.

5.1.6. Input Data

In addition to the datasets described above, the TfL Passenger Count Data is provided to the
model. This dictates the User generation rates for each 15-min period in different days of the week.
Reference values of journey times without disruptions are also required to evaluate differences due to
Lift failures. This data was generated from repeated simulations in which the 15-min mean journey
times of User agents were recorded through each day. Lift failures were disabled for these runs.
This dataset is provided as input data to calculate increases in journey times during disruptions
(see Appendix G for further details).
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5.1.7. Submodels

User - chooseLift

Firstly, failed Lifts are excluded from consideration. After that, preference is placed on the next
Lift to arrive at the User’s landing. If the length of queue at the next Lift to arrive is equal to or
greater than a User’s perception of the Lift’s capacity, then the User will consider the next best option.
This perception level is obtained from the same distribution that determines the Lift’s actual capacity
(though drawn independently). If all queues are considered too busy, a random selection is made.

Lift - updateCondition

For the Components of a Lift, the time since last failure is updated and the failure probability
recalculated. Time units of the NHPP are in days, therefore the instantaneous probability values
obtained from the Behaviour object can be interpreted as the probability of failure in the next day.
To determine the failure probability within a specific time interval, this probability is multiplied
by the interval’s fraction of one day. After being updated, these probabilities are each tested using
a value drawn from a uniform distribution between 0 and 1. If the random number generated for any
Component is lower than its failure probability, the Lift will fail.

Contractor - repairLift

For planned Tasks, the failure probability of all Components in the Lift is reduced using the
plannedEffect parameter. For emergency and predictive Tasks, only a single targeted Component’s
failure probability is reduced using the respective parameter. In either case, the reduction is achieved
by multiplying the Component’s effective time since last failure by one minus the corresponding
effect factor.

Behaviour - updateFailProb

To provide an updated failure probability to a Component, the Behaviour object firstly determines
the probability from the NHPP intensity function corresponding to the Component’s time since last
failure. This value is then multiplied by a Component’s individual failure weighting attribute.

5.2. Validation

The validation steps suggested by Kliigl [72] were carried out as extensively as was possible.

5.2.1. Face Validation

The face validation procedure was carried out by presenting the simulation to experienced
consultants within the Amey Strategic Consulting team with backgrounds in simulation and modelling.
This step predominantly involved discussion of the structure underlying the key agents and objects
within the model. The logic forming the foundation of agent behaviour was affirmed at this stage.
Simulation results were also presented to experienced Lift Asset Managers from London Underground,
this step involved discussions around Lift failure rates and Contractors performance.

5.2.2. Sensitivity Analysis and Calibration

The sensitivity analysis and calibration processes can be combined into a single step [72]. The main
concern at this stage was to appropriately calibrate parameters that were not directly derived from
historical data analysis. In this ABM, the most critical of these are the effects of a Contractor agent
carrying out maintenance on a Lift asset. As explained in Section 5.1, these parameters are defined as
emergencyEffect and plannedEffect. Predictive maintenance was disabled for these simulation runs as it
does not exist in the historical data.
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Multiple simulations with varying combinations of these parameters were completed over the
same time period. Five separate runs were carried out at each combination to account for the stochastic
nature of the model. Total time out of service (OOS) of the Lift agents was then compared to the true
value from historical data.

Data for door lift failures at Covent Garden station was available from the Failures Dataset
between January 7, 2012 and March 16, 2016. In order to ensure unseen data remained for the following
statistical validation step, a subset of this data between 7 January 2012 and 7 January 2015 was taken
as the calibration dataset. The total lift time OOS in this period for the real system was evaluated at

255.5 h (to 1 decimal place).

Figure 6 shows the absolute difference between the total lift time OOS output from the ABM and
the value from historical data for each combination of the parameters. The plots provide different
illustrations of the same surface which was fitted using local regression. The left graph displays red
points representing the mean output of multiple runs for each parameter combination to demonstrate

the parameter space tested. The right graph uses an additional dimension (colour) to offer further
detail of the surface itself.
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Figure 6. Surface fitted to calibration simulation runs of the ABM. Parameters being varied are the
effect of maintenance on failure probability. The output measured is the absolute difference in total lift

time out of service in the time period 7 January 2012 to 7 January 2015 compared to the historical value.
On the left plot, each red point represents the mean of five simulation runs.

Two key observations can be drawn from Figure 6. Firstly, it is immediately apparent that the

output value is far more sensitive to variations in plannedEffect than emergencyEffect. This is an intuitive
result as planned maintenance in the model reduces the failure probability of every Component under
a Lift agent rather than targeting a specific Component.

The second observation is that a clear optimum value of approximately 0.7 exists for the
plannedEffect parameter, shown by the valley in the fitted surface. It is more challenging to gain
insight into how the simulation responds to variation of the other parameter. However, the right plot in
the figure illustrates that the difference in output value subtly decreases as emergencyEffect is increased.
This implies that the calibrated value is towards the maximum for this parameter, i.e., a Component is
completely repaired upon failure.

Using this understanding, it is possible to take a slice of the three dimensional data at a constant
value of 1.0 for emergencyEffect. Figure 7 shows the resulting graph. Stochasticity of the ABM is evident
here in the spread of output values from multiple simulation runs. The linear best-fit line confirms that
the calibrated plannedEffect value is likely to lie between 0.6 and 0.8. Based on this analysis, values of

0.7 and 1.0 for the plannedEffect and emergencyEffect parameters respectively were carried through to
the final validation step.
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Figure 7. Linear best-fit line for calibration of plannedEffect parameter showing difference in total lift
time out of service between simulation runs and the real value from historical data. The shaded area
shows 95% confidence intervals for the fitted line.

5.2.3. Statistical Validation

In this final stage of the validation process, the ABM was compared to a previously unseen dataset
to confirm that the simulation applies generally to the system it is describing and not simply the
data from which it was calibrated. As such, the subset of the Failures Dataset in the period from
7 January 2015 to 16 March 2016 was used in this stage of the process. Twenty separate simulation
runs were conducted through this period with the maintenance effect parameters held constant at their
calibrated values.

In the real system, the total lift time OOS due to door failures was 94.4 h within this period.
The simulation results give an output of (97.9 + 3.4) hours in the same time. There is a 4% relative
difference between the mean value from the simulation and the true value, which suggests that the
simulation is appropriate for the system it is modelling.

5.3. Financial Quantification of Simulation Output

In order to obtain Rol values from the output of the ABM, it is necessary to financially quantify
simulation results alongside practical considerations. The equations used for determining each entry
in the Rol equation (Equation (1)) can be formulated into Equations (6) and (7). Time, t, is measured in
years from sensor installation and C variables represent costs. Future costs are shown discounted to
their present values [10,13] and use the TfL standard discount rate of ¥ = 3.5% per annum.

Investment = Nsensors X Csensor + Cinstallation (6)

t

[t
Cost savings :/ Cpase — Coredictive )¢~ MIF)Tgy — y e
ving 0( base pred ctive) 1221 1+ )

Crunning

@)

Nsensors 15 the required number of condition monitoring sensors of unit price Csensor- The initial
purchase costs of sensors can be determined from the price of Libelium Waspmotes given in Section 4.2
(£148), with eight sensors required for each of the four lifts (two mounted on each door in the shaft
and car). APJNP asset managers were able to provide an estimate to the full cost of installation on
all assets as around £15, 000 (This value is composed of: £1500 for preparation work, £1500 for time
spent preparing method statements and risk assessments and £3000/asset for manual installation
work). This brings the total investment at the outset of the project to approximately £19,700 (to the
nearest £100).

Maintenance and asset downtime during simulation runs result in direct and indirect costs.
Chase and Cpredictive represent these average annual costs for simulation cases with and without sensors



Systems 2017, 5, 4 27 of 46

respectively. Their difference gives the annual saving rate from predictive maintenance. This is
assumed to accrue continuously after sensor installation and so continuous discounting is used for
this calculation.

Direct costs are built up from charges for physical maintenance carried out due to the required
manpower, equipment and materials. The Amey Strategic Consulting team, with insight from
APJNP, was able to provide an estimate for the direct cost of a single planned maintenance task as
approximately £780. It is more difficult to determine a corresponding value for emergency maintenance
work due to variation in the nature of each task. However, as mentioned in Section 2.1.3, standard
estimates in industry are four times the planned value [22] and this is assumed to be appropriate
here. Similarly, as predictive maintenance work is only applied to an individual Component whereas
planned maintenance affects all Components in a Lift agent, the assumed cost of this work is reduced
by the same factor.

Indirect costs in this application would be predominantly incurred by the disruptive effects on
customers due to asset failures. As discussed previously, the financial value of the LCH output can
be obtained directly from the simulation. While indirect costs typically also include administration
and utilities, as this case only concerns a single station these values were more difficult to obtain and
would not be expected to change significantly following the introduction of condition monitoring.

Sensor upkeep and data collection/storage fees, Crunning in Equation (7), reduce the savings
realised. The Waspmote sensors are stated to have a battery life of 1 to 5 years depending on
usage. The running cost of annual battery recharges is therefore assumed to incur a further planned
maintenance task each year. APJNP asset managers estimated the data collection and storage costs as
£260 per annum. This results in running costs of £1000 per year (to the nearest £100). These occur at
annual intervals so are discounted in a discrete manner.

Costs and Benefits Not Included in the Model

In order to ensure that results are effectively validated /verified, the complexity of the model was
kept to a manageable level. This means that some costs and benefits commonly attributed to IoT were
not considered in the present study. Costs in the following areas were not accounted:

Research & Development: As it will be shown in the results section, variables such as time
Out-Of-Service strongly depends on parameters such as the instantaneous probability of failure
threshold or model accuracy which is related to the proportion of false positives and false negatives (false
positives are also known as false alarms and it refers to events that require you to take some action such
as performing some maintenance task unnecessarily; false negatives are the other side of the coin, in
which no action is taken when it is actually necessary). Finding the right (or most suitable) models and
tuning parameters is currently an active area of research in industry and academia that will require
substantial investment. Only companies and/or universities with the right expertise and investment
will be able to afford and improve such capabilities.

Consultancy: In order to develop a detailed IoT venture like the one performed in this project,
it is essential to have very specific “data” and “knowledge” about the complex adaptive system
under consideration. Based on extensive experience from Amey Strategic Consulting, such data
and knowledge is not always readily available from clients (even those with ISO 55000 certification),
fortunately APJNP is one of the clients with such expertise [121].

Network & Communication: Assets and facilities in Covent Garden have easy access to the
Internet (e.g., wifi). Set up of network access, particularly wired connection, in difficult locations can
substantially increase installation costs of IoT technology.

Just as the above costs were excluded from the present study, a series of benefits were also
excluded. Figure 8 shows results from a survey on the Industrial Internet of Things about potential
near term benefits of adopting IoT technology [9]. The present study only considers benefits in two of
the areas covered by such survey, namely reduce operational costs (reduction of emergency maintenance)
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and enhance customer experience (reduction of LCH). Benefits in all other areas were not accounted,
for example:

Optimisation of Resources and Assets: APJNP, similar to most Asset Management driven
enterprises, spends a substantial amount of their budget in staff followed by expensive equipment,
tools and supplies. In the specific case of Lift maintenance, detailed monitoring of resource usage could
help to reduce unnecessary staff, equipment, tools and supplies. For example, contractors/consultant
fees could be reduced if London Underground employees could perform most of the maintenance
tasks themselves (only possible if very few emergency maintenance tasks were required). Another
example of potential savings from the present work is related to extending the life of Lift assets as it is
well known that assets could be operational beyond their design life if are properly maintained.

Improve Worker Productivity and Safety: Another key opportunity that early adopters of the
Industrial IoT are pursuing is the improvement of worker productivity, safety and working conditions.
Detailed monitoring of variables such as plannedEffect or emergencyEffect can help to identify
best practices in the work force (best team of contractors) which can then be spread across the
entire organisation. Safety could also be improved by reducing the exposure of staff to hazardous
environment (reduction of routine inspections).

The list of potential benefits of IoT is continuously expanding, particularly when data from
many different interacting systems is explored. For example, engineers at APJNP have experienced
consistent problems with some lift doors. A hypothesis that has been considered by engineers is that
the pressure difference generated around the lift when trains are approaching the station could be the
reason for the currently inexplicable large rate of incidents of these lifts (the same brand and model of
lifts installed is in use at other locations within London Underground and elsewhere and no similar
problems have been observed). Data behind all these systems (e.g., Lift, Lift Shaft, Trains, Ventilation
Ducts, Station Geometry, etc) combined with the right analytic (e.g., Machine Learning, Computational
Fluid Dynamics) could one day make such type of problems trivial to identify and solve.
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Figure 8. World Economic Forum industry survey [9].

6. Results and Discussion

6.1. Simulation Output

Repeated runs of the ABM were executed for the time period from 7 January 2012 to 16 March
2016 (1530 days). Base cases were run where no sensors were attached to the Lift agents and only
emergency and planned maintenance work was completed. What-if cases with predictive maintenance
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were then performed for each entry in a range of AssetManager thresholds. The values tested were
0.005, 0.006, 0.007, 0.008 and 0.009 as well as the no sensors instance. In each case, 100 simulation runs
over this time period were carried out to investigate the full spectrum of results that could be achieved.

Figure 9 presents the output at each simulation setting. The left graph shows box plots of the
annual time Lift agents have spent out of service (OOS). The centre box plot displays the annual Lost
Customer Hours (LCH) value accrued by the User agents as a consequence of disruptions. The right
bar chart presents the same LCH values summarised as means, to avoid scaling to outliers.

A number of observations can be made from the left plot. Firstly, there is significant variation in
the time OOS between simulations at the same threshold setting. This is a consequence of the stochastic
nature of the ABM; each simulation run is distinct as different values are drawn from probability
distributions embedded in the model. Secondly, a general trend is observed of reducing time OOS as
the threshold parameter is lowered. At the threshold values of 0.008 and 0.009 the plot shows little
impact from the addition of predictive maintenance into the model. However, once the threshold is
reduced below this level the response becomes more apparent. This is an intuitive concept, as a lower
threshold value would imply more predictive maintenance tasks were scheduled and the installation
of condition monitoring sensors has a greater effect.
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Figure 9. Effect of threshold parameter on annual asset time out of service and Lost Customer Hours.

The magnitude of the reduction from the base case is perhaps not as significant as might be
expected from the introduction of predictive maintenance capabilities. A potential cause for this
rests in an assumption made in development of individual Component failure weightings: that they
correspond to the Occurrence value from the FMEA document. This is not an unreasonable assumption
as the FMEA analysis was completed by skilled engineers. However, exploratory frequency text mining
of manually-typed Problem Description fields in the Failures Dataset provides opposing evidence to
those values (see Appendix E). As the sensors are only assumed to monitor a subset of Components in
a Lift, their impact is limited by these weightings.

The remaining plots in Figure 9 show the annual LCH for each threshold setting. The variation in
these values is greater than for the previous output discussed and the box plot indicates a much larger
number of outliers. The bar graph shows that the mean of the 0.006 threshold level is particularly
affected by these anomalies. The reason for this large variation is believed to be a combination of the
LCH calculation method, processes in the real system which the current model does not account for
and the relatively short time period over which simulations were run.

As mentioned in the description of the User agent process, the LCH values calculated from these
simulations use a literal interpretation of the term in absence of the method applied in the real system
(see Equation (5)). Moreover, the model in its current form does not account for situations where
a station can be closed as a result of asset failure. In the case of Covent Garden station, a single lift
failing at a peak time of day (when over 1000 customers could be expected to travel through the station
in either direction within a 15 min period) can force the station to shut. In these situations, the LCH
value attributed to the event in the real system effectively has an upper bound.

In contrast, if one of these rare events occurs within the simulation, it can have a significant impact
on an individual run due to the lack of this upper bound. Figure 10 illustrates this effect. The plot
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shows the LCH accumulated over the course of multiple simulations (in this example the base case
with no sensors) and three specific runs are highlighted in which these rare events arose. While the
maximum waiting time of individual User agents was implemented to provide some stability in these
circumstances, additional measures may be required to further take them into account.

Cumulative LCH in time for base simulation runs
120000

Cumulative LCH (hours)

Simulation time (days)

Figure 10. Cumulative Lost Customer Hours over time for 100 simulation runs at base settings
(no sensors installed). So-called rare events are highlighted as sharp jumps in a few simulations leading
to a dramatic effect in the final output.

Although a minor downward trend is observed in annual LCH with the introduction of sensors,
it is difficult to assign a confident value in the face of this large variation. Nonetheless, this aspect
of the results identifies a potentially useful, if unintended, application for the model in risk analysis
(for example in estimating the likelihood of specific undesirable events occurring).

6.2. Return on Investment

It was possible to quantify the direct costs in the ABM results using the values discussed in
Section 5.3. However, for the indirect costs, the LCH output obtained from the model was highly
variable. Therefore, to characterise these indirect costs as a result of asset downtime in a more consistent
way between simulations, a reference rate was inferred from the base model runs. The median of the
LCH values from the base simulations was calculated and converted to an indirect cost per hour asset
downtime (the median was used here as it is less affected by extreme outliers in the dataset and therefore
an improved descriptor of the typical case in this situation). This reference value was subsequently
applied in establishing indirect costs throughout the other simulations.

The average annual costs accrued during simulations were determined for each threshold setting.
Initially, a very small set of values were observed to be having a significant impact on the mean costs.
These were removed by setting limits at 2.5 absolute deviations around the median [122]. The annual
saving rates were subsequently calculated by taking the difference between the annual costs for the
base and predictive cases. Table 5 presents these results alongside mean multi-year Rol values. It is
important to note there are large uncertainties introduced into these figures from the stochastic nature
of the ABM, making it more challenging to draw conclusive insights.

Table 5. Summary of annual saving rates for each threshold value and multi-year returns on investment
for those resulting in a net saving.

Threshold Savings Rate from Sensor Running Mean 5-Year Mean 10-Year = Mean 20-Year

Simulations (£/Year) Costs (£/Year) Rol (%) Rol (%) Rol (%)
0.005 5600 + 2700 —1000 8 98 239
0.006 4300 + 2900 —1000 —23 42 143
0.007 3900 + 2900 —1000 -32 25 114
0.008 —(2100 =+ 3200) —1000 - - -

0.009 — (3700 + 3100) —1000 - - -
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As the threshold parameter is reduced, the results show that savings from predictive maintenance
increase. These values also highlight a possible tipping point between thresholds of 0.007 and 0.008.
Above this value, there is no beneficial effect of predictive maintenance. This implies that monitored
Components would generally fail before reaching the required threshold for the AssetManager to
schedule predictive maintenance. Once this threshold is reduced, savings are achieved as additional
predictive maintenance is performed in response to condition monitoring.

It may be expected an optimum should exist where the extra cost of predictive maintenance
outweighs the realised benefits. However, the simulation results show no optimum value within the
range of threshold levels investigated. A possible explanation for this could be additional complexities
in the real system which the current model does not take into account.

These initial results were presented to experienced consultants within Amey Strategic Consulting
and APJNP asset managers. Their feedback highlighted that at low values of the threshold level,
the risk of false positive sensor readings could increase dramatically. In the real system, these type
I errors can be introduced if minor deviations from an asset’s normal operating conditions breach
a low failure threshold level despite there being no underlying problem. In these cases, if a decision is
made based solely on whether asset conditions exceed this threshold, predictive maintenance could
be carried out needlessly. This would incur extra cost without a corresponding benefit. Furthermore,
this cost is not solely monetary. If a maintenance engineer is assigned to repair a part that is already in
good condition, they may become sceptical of the true value of condition monitoring. These issues
have the potential to undermine the effectiveness of the entire venture within an organisation.

Given the amount of predictive maintenance that occurs in the simulation at the lowest threshold
in comparison to other levels, it was suggested that extra costs incurred as a result of the above
considerations could significantly reduce or eliminate any benefit realised. The threshold settings
at 0.006 and 0.007 were recommended to represent a more appropriate estimation of the Rol in this
predictive maintenance strategy.

Figure 11 shows further detail of the estimated mean returns (Cost savings minus Investment)
and discounted Rol for the threshold level of 0.006. The grey shaded area in the Rol plot represents
the range of outcomes as indicated from the variation in simulation results. A key aspect in both of
these plots is the time taken to achieve a positive Rol. After this stage, the initial investment has been
reclaimed and true returns start to be realised. The mean savings in both plots suggest this time would
occur between 6 and 7 years after the initial installation (albeit with significant uncertainty).

Returns Return on investment
30000 4
20000 34
10000 - 21
[e]
[hd

-10000 A

Cost savings — Investment (£)

—20000 -

0 5 10 15 20 0 5 10 15 20
Time (years) Time (years)

Figure 11. Returns and discounted return on investment over time for threshold level of 0.006.
The range of possible outcomes is highlighted by the shaded area in the return on investment plot.

The stochastic nature of the ABM also offers an insight into best- and worst-case scenarios. It is
important to take these potential possibilities and risks into account when interpreting the results
from the model. The right plot in Figure 11 shows that, in the worst-case, it could take a far greater
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period of time for a positive Rol to be realised. This is a consequence of lower savings and discounting
applied to future values. Conversely, in the best-case scenario, the results suggest a positive Rol could
be achieved approximately 3 years after sensor installation.

The question that this case study was initially developed to address was what is the Rol of installing
remote condition monitoring sensors on lift doors in Covent Garden station? The current results suggest
that a positive Rol can be realised in approximately 6 to 7 years, after which returns would continue
to accrue and increase the Rol value. However, it is important to note the wide range of outcomes
observed in the ABM output.

The results also imply that a positive Rol will only occur if an effective predictive maintenance
strategy is implemented alongside the sensor installation. If readings from the sensors are disregarded
and not acted upon (i.e., the threshold parameter is above the tipping point), the benefits of such
a system may not be achieved. Similarly, if the data is not analysed appropriately and the derived
information interpreted incorrectly by the asset manager (i.e., the threshold parameter is too low),
extra costs can be incurred by unnecessary maintenance which could offset any potential benefit.

6.3. Suggestions for Future Work

The results produced by this ABM present an interesting view of the business case for installing
condition monitoring sensors on lift assets. It would be desirable to use the insights gained up to this
point to progress development of the model further, in keeping with the previously suggested data
mining revision process [74,87]. Unfortunately, this was not possible within the scope of the current
work. This section proposes questions which could be addressed in future research to realise a more
complete approximation of the real system.

6.3.1. How Does the Failure Model Affect the Results?

The failure behaviour developed in this model only represents one of a number of ways to
describe this aspect of the system. A more complex behaviour could be developed using one of the
techniques discussed in Section 2.1.4, such as hidden Markov models or a form of Bayesian updating.
A major limitation to the development of the former would be the lack of sufficient data regarding
door lift failures, but this could be somewhat alleviated through a combination with the latter.

An advantage of redesigning the failure behaviour using the Bayesian updating approach would
be that the sensors themselves could be more rigorously simulated. It was noted in the previous section
that at lower threshold levels we could expect more false positive alerts, but the current ABM does not
account for this. As Bayesian updating allows one to assign probability values to the sensor correctly
identifying the asset’s condition state, the method would enable the ABM to capture this additional
level of complexity.

A further factor to consider in the failure probability could be to build an interaction between the
Behaviour object and the User agents. The theory behind this consideration is that the lifts may be
more likely to undergo treatment that leads to failure when a large number of customers are passing
through them, for example by trapped objects in doors. This heightened likelihood of failure could be
characterised by temporarily increasing the failure probability of specific Components during busy
periods throughout a day.

In addition, insight gathered from APJNP asset managers suggested that heterogeneity could be
an important consideration in the nature of asset failures. Each lift in this ABM is assumed to follow
the same general failure behaviour but a future extension could incorporate a variation of behaviours
between separate assets.

6.3.2. How Is the Rol Affected If the Extra Predictive Maintenance Is Offset by Removal of
Planned Maintenance?

This case study has focused on applying predictive maintenance in addition to an existing
planned maintenance schedule. The results highlight the need for a changed approach to maintenance



Systems 2017, 5, 4 33 of 46

within the asset management organisation if a condition monitoring strategy is to be effective.
The introduction of predictive maintenance led to savings in emergency maintenance costs. However,
these were partly offset by the existing planned maintenance schedules which remain constant
between scenarios.

It only became apparent after these results were analysed that it would be valuable to study
how a reduction in the frequency of maintenance tasks within predefined schedules would affect the
overall Rol of the venture. For example, this could potentially be implemented by skipping planned
maintenance in the simulation if condition data observed by the AssetManager agent suggests failure
is unlikely. A difficulty here would be that the sensors are assumed to only provide information
relating to certain Component objects. Therefore, reducing the planned maintenance would be
removing work on some Components without supplying an alternative. A further consideration
is that some of the planned maintenance work is required to satisfy industry standards in the real
system. Further investigation would need to be conducted into which specific tasks could potentially
be excluded.

6.3.3. Will Agent Intelligence Improve the Rol Outcome?

The complexity of the current model could be further increased through the introduction of more
advanced agent decision-making processes. For the AssetManager agent, it would be interesting to
incorporate forecasting ability into the predictive maintenance scheduling. Rather than the basic case
of a constant threshold level to initiate predictive maintenance, the AssetManager could be extended
with the ability to observe trends in condition. Further interviews with asset managers could also be
conducted to design a more realistic behaviour for this agent.

The queueing system for the User agents could also be enhanced. The current model only
takes into account two choice preferences. Application of more advanced queueing theory may
create interesting interactions between Users in different queues waiting for Lifts, which could have
a consequential effect on their efficiency in passing through the station. For example, jockeying could
be added where Users dynamically move between queues if they believe they may be able to board
an earlier Lift.

6.3.4. How Does the ABM Scale in Time?

A number of assumptions had to be made when considering how the results evolved over long
periods of time. The current failure behaviour is based on relatively recent historical data and so it may
not continue to apply far into the future. Additionally, the complete refurbishment or replacement of
lift assets is not accounted for in the ABM. Finally, the possibility of the sensor hardware itself failing
and requiring replacement is not considered in the calculations. In extending the model, it would be
valuable to assess how incorporating these longer-term aspects affects the value added by condition
monitoring.

6.3.5. How Does the ABM Scale in Space?

This work only addresses the installation of sensors at a single, but critical, station on the London
Underground. In future work, it would be valuable to investigate whether similar returns can be
realised at other locations with different agent parameters. It could perhaps be expected that the sensor
network would not offer a good investment at quieter stations, where the same indirect cost savings
could not be achieved from reducing asset downtime. From a more ambitious perspective, the scope of
the ABM could be increased dramatically by combining multiple station models to represent an entire
network of lift assets.

6.3.6. Could We Set Threshold Values in Order to Optimise KPIs?

A key aspect that could be explored when running large scale simulations (i.e., covering all lift
assets) of the presented work is regarding the effect of different threshold values for different lifts.
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The reasoning behind this is that not all assets are equally important to an organisation, even when the
assets could be exactly the same. As pointed out in this report, lifts at Covent Garden have a much
greater influence on KPIs such as LCH than any other lift in the network. This implies that it is possible
to tolerate lift failure at stations with low number of passenger (high threshold values could be used)
while it is unacceptable to have lift failures at key stations such as Covent Garden (requiring low
threshold values). In fact, threshold values could become a function of not just space/location but also
time among other variables (lift failures at Covent Garden are more damaging on Saturday afternoon
than on weekdays).

7. Conclusions

This research has investigated the potential of integrating ABMS and data science to answer
practical business questions within infrastructure asset management. A specific application was
addressed in the installation of condition monitoring sensors to London Underground lift assets in
Covent Garden station. The developed ABM was supported by analysis of historical data to present
an authentic view of the real system. Key areas for future work were also outlined.

The results from the case study offer a number of conclusions. The ABM suggests that condition
monitoring sensors on lift assets for predictive maintenance could realise a positive Rol approximately
6 to 7 years following the initial installation. However, difficulty was noted in obtaining a conclusive
result as there was a significant range of achievable outcomes owing to the stochastic nature of the
model. It was also determined that, to realise a positive Rol, the asset management firm must ensure
that the predictive maintenance strategy is appropriately implemented and adopted within its current
maintenance system.

A key objective of this research was to investigate opportunities for combining ABMS and data
science in the field of infrastructure asset management. Based on insights from this work, it is clear
that this integration possesses great capacity for capturing the complexity of the modern world when
compared to other forms of simulation and analysis. However, it has yet to fully graduate from
its origins in theoretical application to a refined process for answering practical business questions.
The hope is that the current work has highlighted the underlying value in this approach and will serve
to further this emerging paradigm.
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Appendix A. Initial Failure Analysis

Before commencing the design of the structure and agents of the ABM, it was necessary to
further examine the nature of lift failures on the London Underground. This allowed insight to be
obtained on the type of sensors that could be potentially installed to realise the greatest value from
their measurements. After initially cleaning the Failures Dataset it was possible to evaluate the total
LCH costs due to different lift component failures. Figure Al shows these results. Note that only the
data gathered from January 1, 2012 contained the fields required to categorise the failures in this way
and entries with missing failure labels were excluded. The results show that Landings and Doors failures
account for a vast majority of asset problems for this case, causing over 30,000 LCH in this period.

Additionally, analysis was conducted into the most critical stations in terms of LCH costs.
The same dataset as above was used for this analysis. Figure A2 presents the outcome. This plot
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shows that particular stations on the network have historically incurred higher LCH costs, with Covent
Garden and Russell Square as the worst offenders.

Total LCH disruptions due to lift component failures
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Figure Al. Total incurred LCH costs from lift component failures across the Jubilee, Northern and
Piccadilly lines. Data shown is from the period 1 January 2012 to 16 March 2016.
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Figure A2. Total incurred LCH costs from lift failures across stations, showing highest values.
Data shown is from the period 1 January 2012 to 16 March 2016.

Appendix B. Contractor Response and Repair Times

The Work Orders Dataset was used to determine probability distributions from which the
Contractor response and repair times could be drawn. After cleaning, the data was filtered to include
only failures classified as Landings and Doors. The subsequent analysis process is outlined below.

Firstly, a ResponseTime field was created for each entry to be the time difference in minutes between
the CreateDate and FirstOnSite timestamps for each failure event. Similarly, a RepairTime field was
generated as the difference between FirstOnSite and RTSDate (return to service) timestamps. To clean
the data, erroneous entries due to incorrect input were excluded. This involved the removal of negative
time values and manual investigation of extreme outliers.

For the ResponseTime variable, maximum-likelihood fitting was applied to approximate the data by
a lognormal distribution. Figure B1 shows the histogram and fitted distribution. Figure B2 presents the
corresponding Q-Q plot (a method for graphical comparison of a dataset with a theoretical distribution
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to assess the goodness of fit). A lognormal distribution was also fitted to the RepairTime variable and
the corresponding plots are shown in Figures B3 and B4. Table B1 gives the parameters and standard
errors for both estimated lognormal distributions.

The logarithmised mean and standard deviation, denoted as y and ¢ respectively, can be related
to the non-logarithmised mean and standard deviation, denoted as m and /v, by Equations (B1)
and (B2). For the response time, m and /v were determined as 47.3 and 27.7 min respectively. For the
repair time, m and /v were evaluated at 114.9 and 100.6 min.

m

u=In \/T? (B1)
o= /In (1+%) (B2)

In both cases, the figures show that the lognormal distribution fits the data relatively well. The Q-Q
plot of ResponseTime deviates slightly from the fitted distribution at the right, indicating that this data
is light-tailed. This would be expected of a bounded dataset when compared to an unbounded
distribution. Furthermore, it is interesting to note the steps in Figure B4 which are likely a result
of manual data entries by maintenance engineers leading to duplicate repair times at round values.
Despite these minor discrepancies, these fitted distributions are an appropriate approximation to the
real case for the purposes of the simulation.

Table B1. Estimated parameter values of the lognormal fit for response and repair times with standard
errors, all given to 3 significant figures.

Response Time Repair Time

Estimate SE Estimate SE

Log mean 3.71 0.0169 4.46 0.0235
Log SD 0.543 0.0120 0.754 0.0166

Histogram of response time
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Figure B1. Histogram of response time to emergency maintenance of lifts with a fitted lognormal
distribution shown.
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Figure B2. Q-Q plot of response time to emergency maintenance of lifts with lognormal line shown.
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Figure B3. Histogram of repair time of emergency maintenance of lift doors with a fitted lognormal
distribution shown.
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Normal Q-Q Plot for Repair Time
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Figure B4. Q-Q plot of repair time of emergency maintenance of lift doors with lognormal line shown.

Appendix C. Policies

In the absence of information on the specific planned maintenance schedules for different lifts,
the Work Orders Dataset was analysed to identify the different schedules. Each lift asset in the dataset
was plotted on a graph showing the total number of work orders against the percentage of Planned
Maintenance (PM) work orders. Figure C1 displays the output of this process. The graph additionally
has a colour scale denoting the proportion of Emergency Maintenance (EM) work orders for each

individual asset.
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Figure C1. Total number of work orders plotted against proportion of Planned Maintenance (PM) work

orders for each lift asset. Colour scale represents proportion of Emergency Maintenance (EM) work

orders for each asset.
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There is clear banding present in the plot, as highlighted by the dashed lines. It appears that each
of these bands corresponds to a maintenance schedule on the network. The various schedules include
different types of PM work, each carried out at distinct regular intervals. The names of different PM
tasks could be determined from description fields in the data. Covent Garden station resides in the
uppermost band, which represents the most intensive PM schedule.

Once the type of planned policy was understood, the dataset was subsequently used to determine
the time intervals between the different tasks. Table C1 shows the values obtained for the group
containing Covent Garden station.

Table C1. Mean time intervals and standard errors for planned maintenance schedule denoted as
Schedule 1 in Figure C1. All values given to 1 decimal place.

Time Interval (Days)
Mean SD SE

Maintenance Name

Type A Service 27.4 42 0.2
Type B Service 57.2 6.4 0.5
Type C Service 58.5 8.0 0.6

Six Monthly Clean 1874 290 51

Appendix D. Component Failure

In order to determine a probabilistic view of Component failure rate, the nonhomogeneous
Poisson Process (NHPP) as discussed in Section 2.1.4 was used to characterise the nature of lift failures
over time. The equations developed by Crow [31] were used to approximate the parameters of the
NHPP. What follows is a brief description of these equations and the approximation process.

We assume an asset is observed from time t = Sto t = T, and that N failures occur in the observed
time. Additionally, let X; denote the time of each failure within the observed time for (i = 1,...,N).
The following equations can then be used to calculate maximum likelihood estimates for the shape, j3,
and scale, A, parameters of the NHPP for the asset [31].

N

P=——7v (D1)
SNEY
~ N

The maximum likelihood estimates were calculated using the Failures Dataset. Initially, data
was filtered to include only door-related failures at Covent Garden station. Failures were regarded as
door-related when the Problem field of the dataset included the word Door. A single asset (lift 1) was
selected for the analysis as it possessed the greatest number of data points. Using the above equations,
maximum likelihood estimates were calculated to be § = 1.53 and A = 2.43 x 104

The compatibility of the probability model can be evaluated using the Cramér-von-Mises
goodness-of-fit test. This test was adapted for the NHPP by Crow [31] and the full process is outlined
in that work. The parametric Cramér-von-Mises statistic, C,%V was evaluated as 0.249 for the maximum
likelihood estimates calculated above with the real failure data. This is below the corresponding critical
value at the 1% significance level for the number of data points that exist ([31] Table 2).

Appendix E. Text Mining Failure Descriptions

In order to assess the validity of the assumption that Component failure weightings correspond
to Occurrence values from the FMEA analysis, manually typed fault description fields of the Failures
Dataset were analysed using text mining. Common English words were ignored and derivations of
the same word (e.g., plurals) combined in this process. The results, shown graphically in Figure E1,
contrast quite dramatically to the FMEA document. Most strikingly, locks and skates were not considered



Systems 2017, 5, 4 40 of 46

to be the most frequent occurrence in the FMEA but are mentioned far more often that other parts in
the Failures Dataset.

Most Frequent Words in Fault/Resolution
Descriptions of Door Failures
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Figure E1. Specific word frequencies in fault descriptions of the Failures Dataset. Component words
are highlighted. The results only show the highest frequency words and words relating to Components.

Appendix F. Initialisation Details

Table F1. Task details as part of the Policy assigned to all Lifts in the simulation.

Task Time Interval (Days)
Type A Service 27
Type B Service 57
Type C Service 59
Six Monthly Clean 187

Table F2. Details of door Components of Lifts in the agent-based model.

Component Name FMEA Occurrence Rating Failure Weighting  Condition from Sensor?
Safety edges 8 0.190 Y
Drive controls 7 0.167 N
Running tracks 8 0.190 Y
Locks and skates 5 0.119 Y
Gearbox 5 0.119 N
Knuckle/solenoid 4 0.095 N
Other 5 0.119 N

Appendix G. User Agent Reference Journey Costs

The reference journey costs for assessing the impact of disruptions on a User agent’s journey
time through the station were generated by running multiple simulation runs over a three day period
with no Lift failures. During each run, in every fifteen minute time period the mean journey cost for
a User was evaluated. Ten simulation runs were completed using this process. The results were then
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averaged to produce the reference dataset used during the simulation. Figure G1 illustrates the output
of this process.

User reference journey costs across day types
200 : -

Weekday Saturday Sunday

150 1

100 1

50

15 min mean User journey cost (pence)

0 1000 2000 3000 4000
Simulation time elapsed (minutes)

Figure G1. User reference journey costs with no lift failures. Each grey line represents one simulation
run, the red line is the mean of the 10 simulation runs.
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