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Abstract: Systems involving agriculture and natural resources (AGNR) management and representing
integrations of biologic, geologic, socio-economic, and climatic characteristics are incredibly complex.
AGNR managers purport using a systems-oriented mental model while many observed management
and policy strategies remain linear or symptom-driven. To improve AGNR professionals’ systems
thinking abilities, two programs, the King Ranch® Institute for Ranch Management at Texas A&M
University-Kingsville (KRIRM) and the Honors College at South Dakota State University (SDSUHC),
implemented the famous Production Distribution Simulation Game (a.k.a. the Beer Game) into their
programs beginning in 2003 and 2011. A Beer Game database consisting of 10 years of trials or over
270 individual players was compared to seminal work in the literature as well as to one another.
We found that AGNR managers and students performed worse than players in a seminal Beer Game
study. More interestingly, we found that younger players adapted more readily to inventory surpluses
by reducing the order rates and effective inventories significantly when compared to older players
(p < 0.10 for retailer and distributors, and p < 0.05 for wholesales and factories). We substantiated
our results to those in more recent studies of age-related decision-making and in the context of
common learning disabilities. Lastly, we discuss some implications of such decision-making on 21st
century AGNR problems and encourage AGNR disciplines to better integrate system dynamics-based
education and collaboration in order to better prepare for such complex issues.

Keywords: dynamic decision making; systems thinking; Beer Game; agricultural systems;
domain experience

1. Introduction

The nature of agricultural and natural resource (AGNR) systems is inherently complex due to
biologic, geologic, economic, social, policy, and climatic characteristics and delays which are powerful
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and oftentimes longer than in corporate settings. Contemporary AGNR problems have worsened
over time, increasingly affecting the livelihoods of producers, local communities, and food systems
globally. These 21st century challenges operate at multiple temporal and spatial scales and include
problems such as climate variability and change [1–3], water resource scarcity [4–7], soil erosion
and land degradation [8–11], biodiversity loss [12–14], and limits to agricultural productivity and
food security [15–20], among others. These problems feedback on one another making sustainable
resource management even more perplexing. Tomek and Robinson [21] introduce such problems in
the following:

“Although the agricultural sector is a declining component of most national economies, agricultural
product prices remain important both economically and politically. They strongly influence the level
of farm incomes, and in many countries the level of food and fiber prices are important determinants of
consumer welfare and the amount of export earnings. A decline of only a few cents per pound in the
prices of such internationally traded commodities as sugar, coffee, and cocoa can have serious political
and economic repercussions in such countries as Mauritius, Colombia, and Ghana. As Deaton [22]
pointed out, inaccurate forecasts of commodity prices led to poor policy prescriptions for African
nations. Even in the United States, a large drop in the farm price of hogs was reported as likely to
drive 24,000 pork producers out of business.” [23]

They then describe several reasons why such problems persist:

“The characteristics of agricultural product price behavior relate importantly to the biological nature of
the production process. Significant time lags exist between a decision to produce and the realization of
output, and actual production may exceed or fall short of planned production by a considerable margin.
At least a year is required for producers to change hog production, 3 years to change the supply of beef,
and 5 to 10 years for growers to increase the output of tree crops such as apples. Yields vary from year
to year because of variability in weather conditions and the presence or absence of diseases or insect
infestations . . . ” [21]

Farmers’ mental models are also central to understanding the dynamics of AGNR systems:

“Farmers’ production decisions are based partly on their expectations about future yields and prices
(i.e., expected profitability) of the alternative commodities they might produce. Since these expectations
are not always realized, price and yield risks exist in farming, and the way expectations are formed
and acted on by farmers may affect a cyclical component to supply and prices.” [21]

Lastly, interactions between economics, decision-making processes, and the constraints of
fixed resources converge to create complex dynamics that are difficult to manage due to delayed
information feedbacks:

“The nature of resources, like land and equipment, used in farming is such that producers cannot easily
make major changes in production plans in response to expected price changes . . . [typical demand
assumptions are] of one-way causation from prices to quantities, but this assumption is the opposite of a
common view about the way that prices for agricultural commodities are thought to be determined. That
is, current production of agricultural commodities is based on decisions made by farmers many months,
even years, in the past. Thus, current supply may be influenced very little by current price. If so, then
causality runs essentially from quantity to price; quantity is predetermined by prior events.” [21]

From its genesis, system dynamics (SD) has taken an interest in such problems (e.g., [24]).
Many AGNR systems offer few incentives to adopt systems-oriented mental models that facilitate
addressing root causes of issues. Most management efforts have relied on easily accepted (reductionist)
methods promoted from within disciplinary silos [25] that often expose learning disabilities in
complex systems (described below). As a result, many AGRN problems have gone unaddressed [26].
For example, scientists from a variety of disciplines have criticized reductionist approaches most
commonly used in AGNR systems:
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“An approach is required which takes account of ecological, economic and social aspects of change and
that is able to interpret and synthesize information, generated from a range of sources in a manner
which is policy relevant.” [27]

“I doubt if we stand a good chance of achieving understanding of the components, and of the interactions
among them, as long as we insist on maintaining the comfort of our specialist or discipline zone.
All indications to me are that we need more integrations of our disciplinary efforts both within and
among beef cattle problem areas if we are to make the greatest contribution to developing technology
for maximizing the amount of edible beef of a given quality per unit of resource use.” [28]

To improve and enhance the educational outcomes of AGNR educational programs to better
prepare managers for 21st century challenges, in 2003 the King Ranch® Institute for Ranch Management
(KRIRM) at Texas A&M University-Kingsville established an innovative curriculum grounded in system
dynamics. The KRIRM mission is to educate professionals that will improve resource management
across agricultural systems throughout the world. To achieve this, KRIRM offers an intensive two-year
graduate program, a less intensive certificate program, and a distance education leadership program
for those professionals in industry who cannot attend full-time. The core of each of these programs is
a week-long lectureship course in systems thinking that serves as the foundation to each program.
Noticing similar needs in undergraduate education, in 2010 the South Dakota State University
Honors College (SDSUHC) implemented a systems thinking workshop to enhance students’ learning
capabilities prior to completing undergraduate research experiences.

With no “go-to” agricultural educational tool capable of providing as powerful insights as the
Beer Game, KRIRM and SDSUHC have used the game as the students’ first exposure to decision
making in complex systems. The Beer Game, played for decades in corporate workshops as well as
management, business, or systems modeling classes, introduces important lessons about complex,
dynamic systems. Designed as a simplified supply chain, the game encourages students to adopt a
systems-oriented (i.e., nonlinear system dynamics) perspective. For AGNR managers, possessing a
systems-oriented mental model is often purported while the implemented strategies remain linear or
symptom-driven. These linear mental models have been reinforced via the fragmented, siloed nature
of AGNR education, similarly observed in other fields. Since the inception of the KRIRM and SDSUHC
programs, Beer Game performance records have been collected in an integrated database used for
debriefing new students each year.

The purpose of this paper is to examine how the decisions among participants with differing
domain experience varied from older (KRIRM) to younger (SDSUHC) players. In many industries,
experience and wisdom can differentiate effective and successful managers from the pack. It is
thought that these managers think more systemically than others since their experiences over time
have enhanced their ability to make dynamic inferences less obvious to novices. However, results
from dynamic decision-making research has shown that accumulated experiences do not improve
performance [29,30]. We aimed to explore this hypothesis further.

First, we review literature on the Beer Game and mental models and dynamic decision-making.
We then describe the participants represented in our database and how performance data were screened
using a Beer Game simulation model prior to analysis of individual decisions. Results are presented
and discussed, including: (a) how well our participants performed compared to seminal Beer Game
studies [31,32]; (b) some significant performance gaps observed between the two groups (KRIRM and
SDSUHC); and (c) how overcoming the common learning disabilities seen in complex systems will
require effective education regarding the dynamics of complex systems. We conclude with a challenge
for all practitioners in systems science and AGNR to increase collaboration and support a wider array
of educational and research opportunities due to the important role AGNR managers will have in
addressing complex 21st century challenges.
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2. Beer Game Overview and Decision-Making Research over Time

2.1. Rules of the Beer Game

The Beer Game portrays a production-distribution system characterized by an inventory stock for
each of four respective players: factory (or brewer), distributor, wholesaler, and retailer arranged in a
linear distribution chain [31,33]. Pennies or plastic chips represent cases of beer. Flows influencing
each of the stocks include the information flow of orders from the retailer toward the brewer and the
physical transport of goods from one stock to the next through the supply chain, including a two-week
delay. Exogenous to the system are consumer orders (delivered through a deck of cards at the retailer
end of the chain) and the inputs to the brewer’s inventory production (i.e., supply of chips the brewer
has access to). For each week of the game, customers purchase from the retailer, who then orders
from the wholesaler, who then orders from the distributor, who then orders from the factory, who then
produces additional cases of beer to meet the anticipated demand. The objective of the game is to
minimize total costs throughout the supply chain, where holding inventory costs each player $0.50
per case per week or $1.00 per case per week penalty when inventory is in backlog (representing lost
revenues and discontent of customers when stockouts persist). Each player manages their respective
inventory through forecasting demand, which is informed by the orders of their customer one-step
down the supply chain, and placing orders to their suppliers one-step up the supply chain. However,
only the retailer can see the actual demand from customer orders week by week. This information
limitation is further constrained since players are not allowed to communicate with one another,
therefore coordination is impossible [31,33]. Although simplified from real world systems, the game
has revealed important characteristics and limitations in human decision-making (described below)
and the principles of systems (Section 4).

2.2. Research on Decision-Making in Relation to the Structures of Complex Systems

Research into human decision-making and performance in complex systems has been aided
by management flight simulators which have allowed system dynamicists to study an individual’s
decision-making within simple system structures, similar to that of the Beer Game (Table 1).
Rouwette et al. [34], Aramburo et al. [35], and Mohaghegh and Furlan [36] have summarized the key findings
of the major works in this area based on characteristics of the system or task complexity: Delays, strength
and types of feedback, exogenous change, use of heuristics or pattern matching mental models, systems
thinking skills, and domain experience. In general, the presence of time delays as well as the length of
delays tends to reduce performance [32,37], stronger feedback loops tend to reduce performance [32,37–42],
while exogenous changes have shown either reduced [40–42], improved [43], or no effect on performance [44].
Additionally, research has found consistent use of several decision making heuristics, particularly ones
that employ pattern matching reasoning [30,36,45–54], while others have found evidence of poor systems
thinking skills to be pervasive throughout most individuals [55–58].
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Table 1. Summary of results from research regarding individual’s abilities of task performance in
dynamic decision-making environments.

Dynamic Decision-Making
Characteristic Key Findings (with Sources)

Misperceptions of feedback

• Individuals are generally unable to account for delays and feedback
effects because of highly simplified mental models and poor ability to
infer correct behavior of simple feedback systems [37].

• Strategies were insufficiently adjusted to account for strength of
feedback between information and material flows [38].

• Misperceptions of feedback have been attributed to poor recognition of
delays and preference to maintain static decision rules [32,40,59,60].

• Misperceptions of feedback not only result in suboptimal performance
but often lead to strategy and decision making that is in opposite
direction of optimal changes in decision making [31,32,39,41].

Types, transparency, and scale
of models; types of feedback

• Transparency of model (including interface design) and prior
knowledge of structural information can improve task performance in
dynamic decision-making contexts [61–63].

• Given an increasing time scale, participants are not likely to
consistently or steadily improve performance [64].

• Types of feedback (e.g., numerical, graphical, or both) are known to
influence behavior [32,42,65–67].

Environmental and Contextual
Characteristics

• Coordination risk contributes to bullwhip effects since behaviors of
other individuals are not known with certainty [68].

• Stressors such as larger orders, backlogs, or late deliveries trigger
hoarding and phantom ordering even though such behaviors are
known to be irrational [69].

Whenever the context of the decision situation changes (e.g., changing the decision interval in order
to speed up or slow down experience generation; increasing the transparency and therefore knowledge
of the model or task being managed; or the nature of the decision information such as interface design
and types of feedback provided to the user), participants tend to do somewhat better [61–64,66,67,70,71],
or at least no worse than their prior performance without the added transparency [38,43,46,65,70,72–74].
Lastly, personal characteristics that likely impact performance (e.g., stated goals; mental model or
cognitive styles; the number of players in the simulator) have also shown mixed results, with improved
performance resulting from whole system goals and a higher degree of similarity in participant mental
model with the structure of the simulation [74–78]. Other studies have shown no effect on performance
due to personal characteristics [42,67,72–74].

More recent advances in decision making research using simulations of the Beer Game task have
shown that coordination risk (the risk that individuals’ decisions contribute to a collective outcome but
the decision rules followed by each individual are not certain) which contributes to the bullwhip effect
can be mitigated with coordination stock (holding additional on-hand inventory) but that the behavioral
causes of the supply chain instability are robust [68,79–81]. Sterman and Dogan [69] show that because
of this persistence of instability, individuals are likely to seek larger safety stocks (hoarding) or order
more than what is demanded of them (phantom ordering). These irrational responses were shown to
be triggered by environmental stressors, which overwhelmed individuals’ rational decision-making
abilities or when individuals inappropriately applied decision heuristics incompatible with effective
performance in the game. Emotional, psychiatric, and neuroanatomical factors are also discussed in
Sterman and Dogan [69,82,83].
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Finally, task performance studies that test domain experience, which is often used to understand
expertise and where it is assumed that individuals with greater experience employ more powerful
heuristics than novices [84,85], have shown that domain experience does not influence task
performance [29,42]. This has been found for tests between participant groups (experienced versus
inexperienced [29]) or where participants were allowed multiple attempts, given training or an
intervention, or with varying feedback protocols [30,49,51,55,85–89].

3. Materials and Methods: Natural Resource Managers and Students Play the Beer Game

Two notes from the literature are important to make before introducing this study. First,
Rouwette et al. [34] found that participants in dynamic decision-making task experiments have primarily
been sampled from university student populations, with professionals (e.g., university staff) being only a
small subset of the participants. This is important because (a) students, however knowledgeable, generally
lack the real-world experience and accumulated wisdom that seasoned managers possess and, (b) simulated
games could likely represent industries or management situations that differ from the students’ own,
making it more difficult for students to comprehend or self-motivate themselves to think systemically
about their performance compared to those that begin with more accumulated experience and are therefore
able to relate their task performance to real world experiences. Second, previous research has shown that
experience does not improve performance on dynamic decision tasks (e.g., [29,30,49,51,55]), but several
limitations of those studies warrant reconsideration of that conclusion. For example, Brunstein et al. [29]
concluded that domain experience was not a strong indicator for overcoming failures in stock-flow tasks,
however, participants only differed by 1.5 years between experienced and inexperienced groups and where
each group made decisions under separate environments (one on paper and one online). Additionally,
although some studies have utilized both undergraduate students versus graduate students with at least
several years of management experience, they did not compare results between groups at the same task
(i.e., some experiments only used undergraduates, some experiments only used graduate students [30]).

In this study, we overcome both of these limitations since all participants were subject to the same
experimental conditions: All played the traditional Beer Game for a period of about two hours up to
35 weeks, and all trials were facilitated by the same Beer Game instructor. We examined the domain
experience hypothesis by analyzing a Beer Game database created from over 10 years of classes at KRIRM
and SDSUHC. The process of the study may be summarized as follows (Figure 1) with details in the
sections below: Each groups’ decisions were organized into a single database where the team costs were
calculated and ranked based on participant entries on the Beer Game record sheets, then the decisions
were used as inputs to a Beer Game model to generate model predicted team costs and ranks. Comparison
was done between team costs and ranks using participant record sheets and the model predictions to
screen for teams that used improper accounting and those teams were removed from final analysis of the
participant decisions.
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3.1. Participant Profiles

Since the KRIRM programs target agriculture industry leaders, natural resource conservation
professionals, and up-and-coming farm and ranch managers, the majority of participants already
possess four year degrees (B.S. or B.A.), in some cases graduate degrees (M.S. or Ph.D.), and arrive
with at least 15 years (ranging from 10–40 years) of professional experience in production agriculture
or resources conservation (mean age = 45.58 years, ranging from 23 to 65). Generally, the systems
these participants operate within are laden with time-delays (e.g., crop and livestock production begin
with producers making genetic selections on the types of production they wish to market, which take
years to decades for payoffs to realize; growing seasons generally allow only one harvest per year
and livestock replacement and maintenance efforts requiring two years or longer). Since participants
come from agricultural businesses embedded with the agricultural food system, they have intimate
knowledge of supply chain dynamics, since in the real world they sit at the producer, distributor,
wholesaler, or retailer positions. We were highly interested in analyzing the decisions made in the Beer
Game by these groups, since similarities between participant mental models and dynamic decision
contexts have been shown to improve performance. Similarly, conservation professionals operate
in organizations whose goals are inherently holistic and long-term, since ecosystem restoration or
conservation operates at decadal to century time scales. Graduate students in AGNR disciplines
but without significant professional experience have also participated, however they have generally
been no more than 20% of the participants. Few, if any, undergraduates have ever participated in the
KRIRM classes. However, the attendees at the SDSUHC course has been weighted to Honors College
undergraduate students (many from family farms or ranches but without managerial experience)
that are preparing for undergraduate research experiences (>80%). The SDSUHC class participants
(mean age = 23.89 years, ranging from 19 to 55) have also included faculty members throughout the
College of Agriculture and Biological Sciences (e.g., animal scientists; wildlife and fisheries scientists;
agricultural economists; <20%). In total, there were 55 KRIRM teams and nine SDSUHC teams.
Although age does not always equate to professional experience, in this study mean participant age
provides the best proxy for experience, given the professionals attending KRIRM would not have
done so if not for the experience and managerial responsibility they hold in their organization and the
students attending SDSUHC are full-time undergraduates with devoted time to research and were
much less dependent on work experience. Although there are a few outliers in each case (graduate
students at KRIRM, faculty in SDSUHC), the influence these individuals had on overall performance
was controlled for by placing no more than one graduate student or faculty on any individual team.

3.2. Database Description

The data was compiled in Microsoft Excel™ beginning in 2004 (Figure 2), the first year the Beer
Game was played at KRIRM. The SDSUHC games were added for the years 2012 through 2014.
Orders for retailers, wholesalers, distributors, and factors were kept on one sheet (‘Orders’ tab),
with weeks 1 through 35 repeated for each position down the spreadsheet. A similar convention was
used to record inventory or backlog (‘Inventory’ tab). The entries for each team stop at 35 weeks to
reduce leveling effects (see [31]). In total, the raw data included 64 teams.
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Data for orders and inventories were obtained directly from each team’s record sheets. For reference,
each team’s total cost was entered at the top of each tab (beginning in cell B5), however, costs at
each player position were not recorded. Average costs of each year’s teams were also calculated
(e.g., cell C5). The remaining tabs of the database included graphs of trends-over-time of participant
performances (e.g., average, best, and worst performances) used as visual aids in the debriefing sessions
of participants in the KRIRM and SDSUHC classes (excluding the current year teams, which used the
record sheets from their own performances).

The database includes two kinds of uncertainties that must be recognized. The first error common
to all Beer Game results is due to human mistakes made playing the game (e.g., getting ahead or
behind the weekly schedule; correctly recording inventory or backlog; correctly calculating costs, etc.).
However, our database includes another risk of error due to the transfer of information contained on the
record sheets into the Excel file. Since the games were played at the beginning of a week-long systems
thinking class, results were generally entered by graduate students the following week, or about one
week after the completion of the game itself, which precluded any clarification of results, inaccuracies,
or illegible entries by participants, as well as the human error involved in the actual transfer of data.

Before proceeding to the analysis, these errors had to be reconciled in the database or teams simply
removed from the analysis due to such large errors in effective inventory and costs. Sterman [31] identified



Systems 2020, 8, 37 9 of 30

that Beer Game teams with the highest costs were the most prone to accounting errors, and therefore,
reduced that sample size from 48 to 11 teams, which were generally the best performing. However,
successful teams can be just as susceptible to human accounting errors, since mistakes (or variance from
optimum decision levels) made around a given average order quantity will not affect the overall rank of
teams given lower average orders and therefore inventories. Besides addressing these errors, we also
had to reconcile the costs of each player position, since only the total costs per team were entered in the
database (which was critical if comparisons were to be made to previous results presented in the literature).
Rather than discarding only the poorer performing and analyzing the most successful, but not necessarily
lesser flawed teams, we developed a Beer Game model to compare the observed team performances
with expected performance given equal accounting standards. The model (described below) aided in
identifying the teams with the greatest accounting errors that should be discarded from the final analyses
as well as captured costs of each player position, allowing us to compare a more representative range of
teams rather than only the most successful to previous research results.

3.3. Beer Game Model

The Beer Game model was developed in Vensim™ (Ventana Systems, Inc., Harvard, MA, USA)
in the same table top configuration of the Beer Game, with physical flows for inventories and
information flows for orders (Figure 3; player positions are abbreviated to Retailer = r; Wholesaler = w;
Distributor = d; Factory = F, and are aggregately described in the italicized names that represent
formulation for each of the positions). Equations were developed from previous Beer Game models [31,90]
and are provided in Appendix A. Stocks of inventory (inventory [position]) are controlled by flows of cases
(in[position] and sold[position]). Backlog stocks account for unmet demand along each position and are
used to calculate effective inventory (eff inv [position]). ORDer represented customer orders, beginning at
four cases and which steps to eight at the fifth week. Rather than using the decision order algorithms from
either [31] or [90] (i.e., a smooth function which provides first order exponential smoothing to represent
an averaging process to place orders from each sector), observed orders made by our participants were
input into the model (import [position] placed orders). This allowed for the least error prone data in the
database, orders placed (where no calculations are required for record keeping), to be used to evaluate
teams using equal accounting standards.
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Figure 3. Beer Game model developed following [31,90]. The structure is identical except that the
algorithm used to compute placed orders in the Kirkwood [90] model formulation was replaced with
observed placed orders of participants (indicated by the red italicized import variables) using the
record sheets inside the Beer Game database. Equations to replicate the model are provided in the
references cited above as well as Appendix A.
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3.4. Data Analyses

Initial data analyses consisted of screening the database entries for teams with the greatest errors
by comparing observed total team costs and team ranks to the expected total costs and ranks given
equal accounting standards. This was achieved via the Beer Game model. Outlier teams were identified
and removed from the dataset. For the teams remaining, actual player orders and the modeled
team and position costs were used for the analyses. Modeled costs were used to ensure comparison
between teams was fair given the likelihood of unknown errors in the dataset and we attempted to
minimize these through the screening process used to identify and discard teams. The remaining
teams were then used to conduct two different analyses: (1) Due to the similar background and
interests of all participants in natural resources management, we examine the performance of all
teams. Since no control and treatments were conducted in our Beer Game trials, we simply examine
the participant performances in the database with the results of experiments presented in the SD
literature (H0: Databasetc = Reportedtc). (2) Due to the unique participant profiles at the two locations
(mostly experienced professionals at KRIRM, mostly undergraduates at SDSUHC) we compared team
performances between the more experienced and less experienced groups (H0: KRIRMtc = SDSUHCtc).

4. Results and Discussion

4.1. Model Comparison of Team Performances

The database included both KRIRM (n1 = 55) and SDSUHC (n2 = 9) teams since 2004 (total n = 64).
Initial screening of the team performances revealed strong fit between total costs (Figure 4a) and team
rank (Figure 4b). Overall, the expected costs and ranks of teams fit fairly well, r2 values of 0.90 and
0.89, respectively (Table 2). Despite the overall strong correlations, we identified 20 teams that clearly
did not fit the expected costs pattern between the modeled and observed costs of the majority of teams,
resulting in a total n of 44 (n1 = 38; n2 = 6). Importantly, the discarded teams were fairly normally
distributed throughout the database, with three teams removed from the top quartile, six from the
third quartile, eight from the second quartile, and three from the bottom quartile.
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Table 2. Comparison of observed (recorded) and expected (modeled) team costs and ranks before and
after discarding outlier teams from the analysis.

Full Dataset (n = 64) Adjusted Dataset (n = 44)

Costs
r2 0.90 0.97
slope coefficient p-value 1.84 × 10−32 1.21 × 10−32

ave. error ($) 414.3 338.4
ave. error ($/week) 11.8 9.7
ave. error (cases/week) 15.8 12.9
root mean squared error 149.2 97.0
Ranks
r2 0.89 0.98
slope coefficient p-value 4.1 × 10−31 2.66 × 10−35

exact ranks (% of n) 6 (9%) 11 (25%)
within 1 rank (% of n) 13 (20%) 13 (30%)
within 2 ranks (% of n) 8 (13%) 10 (23%)
within 3 ranks (% of n) 2 (3%) 5 (11%)
error >3 ranks (% of n) 35 (55%) 5 (11%)

Removing these teams significantly improved the match between observed and expected team
performances and ranks, with r2 values of 0.97 and 0.98 (Table 2; Figure 4c,d). Average errors (in terms
of total $ costs, $/week, or cases/week) decreased $75 and $2, respectively. Removing the teams
with inconsistent costs relative to the remaining teams created a significantly improved fit in team
ranks (e.g., from six to 11 exact rank matches, or from nine to 25 percent; only five teams with rank
discrepancies greater than three positions, down from 55 to 11 percent). Utilizing the Beer Game model
in this way allowed us to screen the database for the teams that most likely had the greatest accounting
errors and gave added confidence that the remaining teams, although not perfect in their accounting,
were accurate enough to allow comparison across the dataset. The proportion of discarded teams
due to likely accounting errors (31% of the original database) was therefore much smaller than [31],
which discarded 75% of that database due to errors, indicating that players may do a better job of
accounting than was previously expected.

4.2. Participants’ Performance across the Database

The team average total costs relative to the benchmark costs (identified in [31]) are shown in Table 3.
The average team cost was over 23 times the benchmark and twice the average reported in [31] (Table 3;
Figure 5), although that study only reported scores of the best performing teams. The wholesaler,
distributor, and factory ratios of actual to benchmark costs were as high as 30 times greater than
optimal cost levels, however, the retailers in our group performed similarly to other studies (Table 3).
The differences in total costs and costs of each sector to the benchmark costs were all highly significant,
and compared to Sterman [31], all sectors were significant except the retailer. To identify how well
the best performing teams in our database performed relative to previous studies, total team and
individual position costs were summarized into quartiles (Table 3). The top performing teams in [31],
whose team average ($2028) and position average costs (retailer $383, wholesaler $635, distributor $630,
factory $380) fell most closely between our third and fourth quartile of team performances, indicating
similar performance between the above average teams. These results held across positions (Table 3).
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Table 3. Comparison of participant and benchmark costs identified by Sterman [31] as the upper bound
estimate of optimal performance.

Team Total Retailer Wholesaler Distributor Factory

Benchmark comparison
mean (n = 44) $4802 $412 $1197 $1564 $1629
benchmark $204 $46 $50 $54 $54
ratio (mean/benchmark) 23.5 9.0 23.9 29.0 30.2
t-statistic 7.97 5.85 5.66 7.53 7.75
H0: mean cost = benchmark p < 0.00+ p < 0.00+ p < 0.00+ p < 0.00+ p < 0.00+
Sterman [31] comparison
Mean (n = 11) $2028 $383 $635 $630 $380
ratio 2.4 1.1 1.9 2.5 4.3
t-statistic 4.81 0.46 2.77 4.65 6.15
H0: mean cost = Sterman [31] p < 0.00+ p = 0.64 p = 0.008 p < 0.00+ p < 0.00+
Quartiles
4th (top 25% of teams) $1410 $174 $273 $421 $542
3rd (50–75%) $2637 $210 $560 $824 $1043
2nd (25–50%) $5017 $385 $1143 $1688 $1801
1st (bottom 25% of teams) $10,143 $879 $2812 $3323 $3129

Similar oscillations, amplifications, and phase lags were observed between our team performances
and common Beer Game results (Table 4; Figure 6). Orders and inventories expressed large fluctuations,
with average inventory recovery of 25.5 weeks. Backlogs of inventories migrate from the retailer to the
factory similar to typical Beer Game results (Figure 6), with the peak order rate at the factory being
over three times the peak order rate of the retailer. Closed loop gains (∆[factory orders]/∆[customer
orders]) averaged nearly 1400%, or double that reported by Sterman [31]. Maximum backlogs averaged
35 cases and occurred between 34 and 35 weeks (Table 4). As expected, inventories overshoot initial
levels, peaking at week 35. Phase lags were more evenly distributed than typical Beer Game runs,
however this was likely due to the larger sample size smoothing out the week of peak order rates.
Participants’ anticipated minimum inventory (date of minimum inventory minus date of week order
rate) were generally delayed by one or two weeks, indicating reactive strategies that did not account
for orders in the supply line (orders placed but not yet received) and perpetuated extreme inventory
levels later in the game.
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Table 4. Summary of experimental results from the database (n = 44). * Closed-loop gain is measured
as change in output relative to that of the input.

Customer Retailer Wholesaler Distributor Factory

Periodicity
Time to recover initial
inventory - 24 27 26 25

Date of minimum inventory - 17 21 20 20
Date of maximum inventory - 33 35 35 35
Amplification
Peak order rate (cases/week) 8 16.9 23.8 39.0 59.5
Variance of order rate
(cases/week) 1.6 14.4 42.1 138.1 293.7

Peak inventory (cases) - 69.84 73.45 152.80 144.27
Minimum inventory (cases) - −4.02 −56.05 −64.27 −56.00
Range (cases) - 73.9 129.5 217.1 200.3
Closed-loop gain * 3.23 4.95 8.74 13.89
Phase lag
Date of peak order rate (week) 5 18 20 18 19
Anticipated minimum
inventory −1 1 2 1

Systems 2020, 8, x FOR PEER REVIEW 13 of 30 

 

Table 4. Summary of experimental results from the database (n = 44). * Closed-loop gain is measured 
as change in output relative to that of the input. 

 Customer Retailer Wholesaler Distributor Factory 

Periodicity      
Time to recover initial inventory - 24 27 26 25 
Date of minimum inventory - 17 21 20 20 
Date of maximum inventory - 33 35 35 35 
Amplification      
Peak order rate (cases/week) 8 16.9 23.8 39.0 59.5 
Variance of order rate (cases/week) 1.6 14.4 42.1 138.1 293.7 
Peak inventory (cases) - 69.84 73.45 152.80 144.27 
Minimum inventory (cases) - −4.02 −56.05 −64.27 −56.00 
Range (cases) - 73.9 129.5 217.1 200.3 
Closed-loop gain *  3.23 4.95 8.74 13.89 
Phase lag      
Date of peak order rate (week) 5 18 20 18 19 
Anticipated minimum inventory  −1 1 2 1 

 
Figure 6. Illustration of effective inventories for the best worst teams (R-retailer; W-wholesaler; D-
distributor; F-factory) in the database. 

Figure 6. Illustration of effective inventories for the best worst teams (R-retailer; W-wholesaler;
D-distributor; F-factory) in the database.



Systems 2020, 8, 37 14 of 30

Although the overall scores were poorer than team performances reported in the literature, the
top 10 teams in our database (or ≈25%) performed better than the top 25% reported in Sterman [31]
and held across all game positions except for the factory (Table 5).

Table 5. Evaluation of results from the top 10 performing teams in the database used for comparison to
teams reported in the literature. * Closed-loop gain is measured as change in output relative to that of
the input, e.g., ∆Factory orders/∆Customer orders = (21.12 − 4)/(8 − 4) = 4.28.

Team Total Retailer Wholesaler Distributor Factory

Top 10 performing teams (n = 10) $1278 $172 $228 $335 $543
Sterman [31] (n = 11) $2028 $383 $635 $630 $380
t-statistic −8.45 −22.69 −20.81 −6.67 2.59
H0: mean cost = Sterman [31] p < 0.00+ p < 0.00+ p < 0.00+ p < 0.00+ p = 0.02
Periodicity
Time to recover initial inventory - 22 22 22 22
Date of minimum inventory - 12 16 16 14
Date of maximum inventory - 24 27 30 27
Amplification
Peak order rate (cases/week) - 10.6 12.1 15.9 21.1
Variance of order rate
(cases/week) - 2.8 4.7 13.3 27.9

Peak inventory (cases) - 14.2 24.2 37.1 41.1
Minimum inventory (cases) - −2.2 −3.4 −9.7 −12.7
Range (cases) - 16.4 27.6 46.8 53.8
Closed-loop gain * 1.65 2.03 2.98 4.28
Phase lag
Date of peak order rate (week) - 17 13 16 17
Anticipated minimum inventory −5 3 0 −3

Retailer, wholesaler, and distributor costs were all significantly lower (which contributed to an
overall significantly lower team total cost), while the factory costs were significantly higher. Periodicity
and phase lags were noticeably shorter and amplification lower than the Sterman [31] teams. Of the
top 10 teams of our database, the SDSUHC groups were disproportionately represented. Eight of the
top 10 teams came from the KRIRM participants (≈21% of the KRIRM sample) while two teams came
from the SDSUHC participants (≈33% of the SDSUHC sample).

4.3. Comparison of Performances from More and Less Experienced Participants

We hypothesized that the older, more experienced group (KRIRM) would perform better on
the Beer Game task than the less experienced players, primarily undergraduate students (SDSUHC).
We found no evidence to support this (Table 6), as neither the team total costs nor any of the player
position costs were significantly different. This corroborates previous conclusions that management
experience may not mitigate misperceptions of feedback [38]. However, qualitative analyses of the
trends in effective inventory and order rates tell a more interesting story (Figure 7). The SDSUHC
teams appeared to achieve maximum inventory earlier than the KRIRM groups and by week 35 were
reducing their overall inventory levels back toward the ‘anchored’ inventory level of 12. This was
achieved through overall lower average order rates (Table 6; Figure 7). Although retailer orders were
similar, wholesaler, distributor, and factory average order rates differed from as low as one to as
high as six cases per week. After initial inventory recovery, discrepancies in order rates were even
larger (up to eight cases at the factory level) and were all statistically significant across positions
(Table 6). Based on the change in slope of order rates and effective inventories after week 29 for the
SDSUHC teams, it appears the younger players began accounting for cases in delivery much sooner
than the KRIRM groups, whose maximum effective inventory levels continued to rise. It is possible
that several interesting features are at work that created the divergence in trends of effective inventory
between players.
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First, the older KRIRM participants could have continued to order more cases after the initial
inventory recovery as a way to accumulate “coordination stock” to hedge against the risk that customer
orders will significantly change in the future (based on their perception of customer orders as well
as experience in the real-world) or in case the other players deviate from the near equilibrium
(but-suboptimal) position that the game reaches by week 30 (i.e., compensate for obvious weaknesses
in their teammates) [68]. Relying on real-world experience requires participants to determine strategy
via comparison of the game to previous experience by analogy, however, decision makers who reason
by analogy in complex dynamic situations have not performed as well as those who do not [71].
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Table 6. Comparison of King Ranch Institute for Ranch Management (KRIRM) and South Dakota State
University Honors College (SDSUHC) class performances.

Team Total Retailer Wholesaler Distributor Factory

KRIRM (n = 38) $4988 $400 $1227 $1644 $1717
SDSUHC (n = 6) $3623 $488 $1008 $1057 $1070
t-statistic 0.809 −0.475 0.367 1.005 1.095
H0: KRIRM = SDSUHC 0.423 0.637 0.715 0.321 0.280
KRIRM
Inventory recovery time - 24 27 26 25
Week of minimum inventory - 17 21 19 20
Week of maximum inventory - 35 35 35 35
Peak order rate (cases/week) - 17.3 24.4 41.2 59.5
Mean order rate (cases/week) - 9.5 11.9 16.9 21.2
Mean order rate post-inventory recovery - 7.1 a 7.2 b 9.2 a 13.8 b

Variance of order rate - 13.8 42.2 147.0 304.3
Peak inventory (cases) - 67.8 76.4 163.4 148.5
Minimum inventory (cases) - −4.4 −54.7 −64.8 −54.6
Week of peak order rate - 18 21 18 19
SDSUHC
Inventory recovery time - 23 27 26 25
Week of minimum inventory - 13 20 22 20
Week of maximum inventory - 29 35 30 32
Peak order rate (cases/week) - 19.3 25.2 44.3 60
Mean order rate (cases/week) - 9.6 10.7 13.2 15.9
Mean order rate post-inventory recovery - 6.0 a 5.5 b 5.0 a 5.2 b

Variance of order rate - 20.3 51.2 123.6 276.6
Peak inventory (cases) - 95.3 54.5 98.3 143.5
Minimum inventory (cases) - −2.7 −65.5 −69.5 −64.7
Week of peak order rate - 17 20 17 19

a—p-value < 0.10, b—p-value < 0.05.

Second, the older participants were likely less inclined to lower their order rates after inventory
recovery, since the initial strategy (increase the order rate to get out of backlog) eventually paid off.
In other words, so long as they achieved zero backlog, they were not as heavily anchored to the
initial inventory level as the younger players. It has been shown that experience with a particular
set of behaviors improves performance, but that as opportunity costs of trying new strategies rises,
individuals will experiment with fewer decisions and are less likely to identify superior methods
compared to their status quo [91,92]. It is likely that the opportunity costs to change strategies appeared
to be too high for the older players.

Third, the younger, less experienced players in the SDSUHC teams significantly lowered their
order rates after inventory recovery compared to the KRIRM group (Table 6). Although inventories
are affected by the choices of the other players, participants are forced to discretely place new orders
based on each new inventory level, and new order rates represent desired change in the stock of the
individual player. Therefore, each choice in order is aimed at closing the gap between desired and
actual states of inventory (albeit with the necessary receiving and shipping delays).

Our older players increased order rates to get out of backlog, and rather than decreasing order
rates once effective inventories recovered, continued to order at relatively high rates (i.e., they were
heavily anchored to the choices that worked to get themselves out of backlog), while our younger
participants made a more abrupt shift to lower order rates upon inventory recovery and escalation.
Younger players in our sample were more heavily anchored to the initial inventory level and were
therefore more responsive to escalating inventory levels (and therefore costs) by lowering their order
rates significantly (Table 6).

Recent psychology research strengthens these conclusions. For example, research on dynamic
decision making choices of younger versus older adults has shown that older adults (age 60–84)
perform better on choice-dependent tasks, which require learning how previous choices influence
current performance and making a new decision based on that knowledge [93,94]. Older players in
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our sample were more heavily anchored to their previous strategy that worked (order more cases to
get out of backlog), and because of that success continued to do so. Research on younger decision
makers (age 18–23) has shown that they perform better on choice-independent tasks (where learning
requires exploiting the options that give the highest reward on each new trial [93,94]) and students
have best learned dynamic decision making in systems by ‘doing’ and ‘failure’ rather than ‘knowing’
or relying on experience [70]. Older adults have also been shown to base their decisions on changes in
states, compared to younger adults, who are more apt to change decisions based on comparison of
expected values of new trials [95].

Several cognitive mechanisms or learning impairments may be underlying these patterns.
For example, work has shown that age-related impairments in learning may result from declines in
phasic dopaminergic signals in older versus younger adults [96], likely contributing to the deficits in
feedback-driven reinforcement learning in older adults [97]. In two exploratory choice task experiments
to understand how younger and older adults differ in their exploratory choices, Blanco et al. found
that strategies by the two groups were qualitatively different (with older adults performing worse),
in part due to older adults applying a strategy shaped by their wealth of real-world decision-making
experience that may be ill-suited in some decision environments due to increased working memory
loads [98]. Worthy et al. suggested that older adults’ departures from state-based decision strategies
in favor of immediate reward strategies were due to age-related declines in the neural structures
needed for more computationally demanding (e.g., goal oriented) decision making [99]. This cognitive
burden on working memory load likely leads participants to focus more on immediate versus delayed
consequences of decisions [100]. Lastly, Kurnianingsih et al. found that older adults (aged 61–80) were
significantly more uncertainty averse for both risky and ambiguous choices and exhibited strategies
with decreased use of maximizing information [101], which likely contributes to learning deficits
observed in healthy older adults driven by a diminished capacity to represent and use uncertainty to
guide learning [102]. This corroborates others who have shown that younger adults more willingly
explore task structures when unexpected rewards or costs indicate a need for a shift in decision strategy,
compared to older adults who show preservative behavior and have deficits in updating expected
values of alternative decisions [103].

Our results coincide with those observed in age-related studies [93–103] that likely explain the
discrepancy in order rates between groups (Table 6; Figure 8). Our results are also strengthened
by the conclusions in Rouwette et al. [34]. Rouwette et al. [34] found that: (1) there exist few to no
fundamental differences between system dynamics-oriented tasks and performance task games from
other social science disciplines, and (2) it was important to note that simulation players have primarily
been sampled from university student populations. The psychology literature supports a difference
in task performance by age and we have overcome the weakness of relying on university student
populations by including a majority of teams composed as working professional in AGNR fields.
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4.4. Implications for Agricultural and Natural Resource Management

There are a number of key lessons from the Beer Game in general and from this study in particular
that are of interest for AGNR management. The boom–bust nature of the Beer Game occurs due
the inherent ordering and shipping delays coupled with the overwhelming tendency of players to
ignore their supply line. Natural resource managers embedded in real-world systems with extremely
long time-delays (e.g., year to decadal scales) performed just as bad, if not worse, than managers
from corporate contexts at identifying and managing the delayed-inventory management task in the
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Beer Game. Results closely corresponded to typical results of other Beer Game trials, indicating that
our participants, despite intimate knowledge of AGNR systems had adopted a similar decision rule
identified by Sterman [31], where participants anchor their initial expectations to the starting inventory
level that inevitably produces extremely poor results. This is due to the misperception of delayed
feedback between placing and receiving orders and not fully accounting for cases in the supply line,
both of which lead to over-ordering and instability in even the best performing teams (Figure 5).
Even those that recognize and manage systems with many time delays that often vary from months to
years in length, they still commit the same errors as ones without such experience with delays.

What are some examples from AGNR systems of failures to account for such delays and
supply-on-order and what implications might there be for AGNR management in the 21st century?
Unfortunately, numerous AGNR cases can be found. First, it is important to recognize how supply-lines
are adjusted in AGNR systems. Producers typically have two leverage mechanisms: adjusting the
number of units in production (e.g., total land under cultivation; total animal inventory, etc.) or adjusting
the production per unit (e.g., production per unit of cultivated area in cropping systems; yield per
head in livestock systems, etc.). Employing either of these options poses interesting trade-offs in the
ability to adequately adjust the supply line. Increasing the number of units in production subjects
producers to delays on the order of two to four years, while reducing units in production can occur
quite rapidly (within a year). On the other hand, increasing the production per unit (through selective
plant or animal breeding to enhance production potential) shortens the delay in increasing the supply
line, but the genetic enhancement of the overall population makes reduction in per unit productivity
extremely difficult if not impossible. To illustrate the importance of these two mechanisms to AGNR
systems, consider two recent examples from the United State: corn market boom-and-bust and the
contraction of the dairy industry.

The U.S. corn market for decades saw market prices oscillate between $2–4 per bushel and
producers’ land use decisions remained relatively stable around 78 million acres (Figure 9). In response
to a step change in demand in the mid-2000s arising from renewed energy policies incentivizing
ethanol production (similar to the step change observed in the Beer Game), prices rose to a peak of
between $6–7 per bushel between 2011 and 2013 due to the inventory shortages resulting from the
surge in capacity utilization to fill the increased demand. Producers, aiming to capitalize on the rising
prices, began expanding planted area of corn by 20%, much of which onto land that had previously
been retired from cultivation. Inevitably, there was a delay in productivity (which continues to increase
with investment in crop production potential) as these areas came out of retirement. Failing to account
for the supply line (i.e., newly converted land that had not reached its full production potential yet),
total production over-shot the increased demand, resulting in a collapse of corn prices back to historical
levels by 2014. As of 2020, no significant land use correction has occurred (Figure 9).
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Figure 9. Corn market dynamics illustrating U.S. corn acreage and the mean area before and after 2007
(top left panel), the trend in crop productivity (top right panel), and the average annual corn prices
(bottom panel) [all data provided by USDA NASS; quickstats.nass.udsa.gov].

The corn market example is a conspicuous case. A more subtle but just as powerful example
may be found in the U.S. dairy industry. Dairy production is highly seasonal, peaking in late spring
and bottoming in winter. Likewise, dairy production consumption is seasonal, peaking in the late fall
during the holiday season. Because of the mismatch in peak supply and demand periods, managing
inventory is critical for a stable market environment. As a result, prior to 1960, the U.S. dairy industry
experienced cycles of expansion and contradiction similar to many other livestock industries as a
result of its commodity cycle (Figure 10). Farm policy interventions in the U.S. began managing these
dynamics by purchasing and storing large volumes of milk inventory to buffer seasonal variations in
supply and establishing minimum price supports that helped minimize price volatility. Under these
conditions, dairy herds were able to consolidate, with 50% fewer head in 1980 compared to 1960.
Simultaneously, investments in animal potential yielded a 200% increase in per head productivity.
In the late 1980s, U.S. farm policy lowered support prices and government inventories (or coordination
stocks) ceased to function as a buffer against seasonal supply and demand imbalances. This increased
the price volatility (which has weakened farm business planning, debt repayments, and dairy farm
solvency) and the importance of private inventory holdings [104,105].



Systems 2020, 8, 37 21 of 30

Systems 2020, 8, x FOR PEER REVIEW 21 of 30 

 

 
Figure 10. Dairy market dynamics illustrating U.S. dairy cow inventory (top left panel), the trend in 
dairy cow productivity (top right panel), and the average monthly farm milk price (bottom panel) [all 
data provided by USDA NASS; quickstats.nass.udsa.gov]. 

Why the increasing price volatility (amplitude) despite a stable dairy herd level? In part, 
seasonality of milk production inevitably creates oscillations in inventory and therefore price. 
However, the amplitude has significantly increased, with greater gaps between seasonal highs and 
lows, indicating large shifts in inventory (booms and busts similar to the Beer Game). Booms in 
supply (which drive price declines) have resulted not from increasing animal units, but increasing 
production per head (up 400% compared to 1960), and the industry has not counteracted this 
productivity with reducing total animal units. Instead, inventory corrections have been made 
through dumping (119 million pounds in 2016, 170 million pounds in 2017, over 145 million pounds 
in 2018; greater dumping rate is expected in 2020 due to the coronavirus pandemic; [106–108]). 
Clearly, as indicated in farm gate milk prices, this is a low leverage strategy that only temporarily 
corrects inventory and prices and prolongs the stress to remaining dairy producers as the volatility 
rises due to the continual rise in incoming inventory (that necessitates increased dumping) that will 
not soon change due to investments over time in herd productivity (i.e., permanent gains in genetic 
potential that has raised milk yield per head) that have accrued or have not yet been realized due to 
delays in the system. 

What are the implications for the future of AGNR systems management? Without accounting 
for the supply line on order in AGNR supply chains, AGNR managers will continue to respond in 
ways to perpetuate the problems stemming from inherent oscillations and will continue to look for 
external causes to blame (e.g., environmental variability, government policy change, consumer 
behavior, etc.) for internal industry dilemmas [104]. System structure can be defined by the basic 
interrelationships that influence, regulate, or control behavior (including external constraints), but 
structure more importantly is the endogenous decision-making rules, operating policies, goals, and 
modus operandi, many of which are unwritten and embedded in the culture of industries and 
organizations. For example, given the productivity-driven goals and mental models of the dairy 
industry, order rate (i.e., investment in per head productivity) has not slowed, despite the recognition 
that the market is over-supplied. Failure to recognize how our decisions interact with the system as 
a whole hinders our ability to find and effectively apply leverage to systemic problems (leverage 
often comes from new ways of thinking [109]). 

Figure 10. Dairy market dynamics illustrating U.S. dairy cow inventory (top left panel), the trend in
dairy cow productivity (top right panel), and the average monthly farm milk price (bottom panel)
[all data provided by USDA NASS; quickstats.nass.udsa.gov].

Why the increasing price volatility (amplitude) despite a stable dairy herd level? In part,
seasonality of milk production inevitably creates oscillations in inventory and therefore price. However,
the amplitude has significantly increased, with greater gaps between seasonal highs and lows, indicating
large shifts in inventory (booms and busts similar to the Beer Game). Booms in supply (which drive
price declines) have resulted not from increasing animal units, but increasing production per head
(up 400% compared to 1960), and the industry has not counteracted this productivity with reducing
total animal units. Instead, inventory corrections have been made through dumping (119 million
pounds in 2016, 170 million pounds in 2017, over 145 million pounds in 2018; greater dumping rate is
expected in 2020 due to the coronavirus pandemic; [106–108]). Clearly, as indicated in farm gate milk
prices, this is a low leverage strategy that only temporarily corrects inventory and prices and prolongs
the stress to remaining dairy producers as the volatility rises due to the continual rise in incoming
inventory (that necessitates increased dumping) that will not soon change due to investments over
time in herd productivity (i.e., permanent gains in genetic potential that has raised milk yield per head)
that have accrued or have not yet been realized due to delays in the system.

What are the implications for the future of AGNR systems management? Without accounting for
the supply line on order in AGNR supply chains, AGNR managers will continue to respond in ways to
perpetuate the problems stemming from inherent oscillations and will continue to look for external
causes to blame (e.g., environmental variability, government policy change, consumer behavior, etc.)
for internal industry dilemmas [104]. System structure can be defined by the basic interrelationships that
influence, regulate, or control behavior (including external constraints), but structure more importantly
is the endogenous decision-making rules, operating policies, goals, and modus operandi, many of
which are unwritten and embedded in the culture of industries and organizations. For example,
given the productivity-driven goals and mental models of the dairy industry, order rate (i.e., investment
in per head productivity) has not slowed, despite the recognition that the market is over-supplied.
Failure to recognize how our decisions interact with the system as a whole hinders our ability to
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find and effectively apply leverage to systemic problems (leverage often comes from new ways of
thinking [109]).

AGNR professionals must overcome the same common learning disabilities that are seen in
humans across cultures and contexts [60,95] and the barriers that impede our learning about complex
systems [33]. Almost regardless of history or experience, when inserted into a given position
within a system or organization, the structure incentivizes that we “become our position.” In AGNR,
managers often view their position as “producers” or those who “feed the world,” reinforcing
tendencies to view success based on their own productivity rather than how effectively they have
met consumer expectations or balanced socio-economic and environmental concerns (e.g., the soil
and water externalities cited above). Since many externalities are never felt by those that made the
decisions that created the problems and because AGNR delays are particularly lengthy, our ‘knee jerk’
reactions are to assign blame to others around us and we fail to effectively learn from experience and
the collective wisdom of others in the system:

“To oscillate, the time delay must be (at least partially) ignored. The manager must continue to initiate
corrective actions in response to the perceived gap between the desired and actual state of the system
even after sufficient corrections to close the gap are in the pipeline . . . Learning to recognize and
account for time delays goes hand in hand with learning to be patient, to defer gratification, and to
trade short-run sacrifice for long-term reward. These abilities do not develop automatically. They are
part of a slow process of maturation. The longer the time delays and the greater the uncertainty over
how long it will take to see the results of your corrective actions, the harder it is to account for the
supply line.” [110]

Similar learning disabilities and the consequences they exert on decision making have been
observed in other natural resource management studies [111–113].

To overcome these disabilities and barriers, the SD profession has prioritized and advocated for
systems-based education from K-12th grade levels up to university graduate programs (see the Creative
Learning Exchange at clexchange.org, as well as works of Forrester [114–119] and others [50,55,120,121]).
Given the results of our Beer Game database and our experience in the AGNR professions, the need
for systems education in these disciplines is as desperately needed as ever if effective change is to be
expected and gaps in the 21st century challenge begin to sustainably close.

AGNR professionals with systems education could likely achieve significantly different results
compared to professionals without systems-oriented education. For example, thinking in systems forces
us to recognize the interconnectedness and dynamic complexity of the problem at hand, the physical
stocks and flows central to the issue, and time-delays between decisions and results. Systems thinking
and system dynamics modeling also encourages us to maintain an unwavering commitment to the
highest standards and rigor of scientific method by recognizing and correcting our hidden biases and
documenting and testing our assumptions about the problem. By doing so, we can explore a wider
decision space for new or previously unrecognized leverage points to achieve our goals [59]. Achieving
the 21st century agriculture challenge requires input and collaboration across disciplines and cultures.
System dynamics can provide a common unifying language to facilitate such collaboration.

4.5. Study Limitations

There are a number of limitations of the study as presented. First, for general research purposes,
our use of the traditional board, pencil, and paper based Beer Game is unconventional, and it has
been noted that this use of the Beer Game is no longer acceptable because of the high rate of clerical
and data recording errors. All modern Beer Game studies are expected to use a computer version
of the game to prevent such errors and to offer tight controls on information availability among the
players. Due to the structure of the lectureships where our participants played the traditional Beer
Game and the available computer resources at the time, computer applications have been generally
unfeasible. We attempted to limit clerical and data errors by screening the data with an application
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of a Beer Game model. Second, traditional incentive scheme in the board game version ($1 entry fee
and winner-take-all) is not consistent with current standards for experimental studies in economics,
in which people are paid in proportion to their performance. Lastly, previous Beer Game studies have
estimated an ordering decision rule to test the misperceptions of feedback hypothesis, which we have
omitted here but is planned for in the future.

5. Conclusions

System dynamics facilitates investigation of the dynamic consequences of choices made by
decision-makers in complex, feedback driven systems. Played by thousands over many decades,
the well-known Beer Game has become a fundamental learning tool which reveals critical learning
disabilities and illustrates how system structure creates behaviors over time (e.g., oscillatory
inventory/backlog and exuberant rising costs). Here, a Beer Game database generated by over
270 AGNR managers (87%) and students (13%) was analyzed. A distinct facet of our study is that
the majority of the participants in our database had deep AGNR management experience and least
a B.S. degree (many with M.S. or Ph.D. degrees). The performance of these managers was poorer
than managers in a seminal Beer Game study. More interestingly, we found evidence that younger
players (in this case undergraduate AGNR students) were willing to change their decision strategies
sooner and with greater magnitudes in response to pressures of the game compared with their older
counterparts. In light of the many 21st century AGNR problems (e.g., food and agriculture production,
natural resource capacity and environmental quality, pollution mitigation, etc.), being able to identify
and communicate the dynamic complexity of problems and overcome common learning disabilities
would greatly benefit AGNR managers. System dynamics provides such a framework and has been
integrated to two AGNR programs described here and we encourage other AGNR programs to likewise
adopt a system dynamics approach. Future work may explore emotional and psychological factors
underpinning dynamic decision-making.
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Appendix A

Table A1. Model equations for the Beer Game model to aid in team performance evaluation in this study.

Equation Units

1 Backlog D[Team] = INTEG (bFlow D[Team],0) cases
2 Backlog F[Team] = INTEG (bFlow F[Team],0) cases
3 Backlog R[Team] = INTEG (bFlow R[Team],0) cases
4 Backlog W[Team] = INTEG (bFlow W[Team],0) cases
5 bFlow D[Team] = ordered W[Team]-sold D[Team] cases/Week
6 bFlow F[Team] = ordered D[Team]-sold F[Team] cases/Week
7 bFlow R[Team] = ORDer-sold R[Team] cases/Week
8 bFlow W[Team] = ordered R[Team]-sold W[Team] cases/Week
9 coming[Team] = ordered F[Team] cases/Week
10 Cost[Team] = INTEG (cost increase[Team],0) $
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Table A1. Cont.

Equation Units

11

cost increase[Team] = cost of backlog[Team] ∗ (Backlog D[Team] + Backlog
F[Team] + Backlog R[Team] + Backlog W[Team]) + cost of inventory[Team]
∗ (inventoryD[Team] + inventoryF[Team] + inventoryW[Team] +
inventoryR[Team])

$/Week

12 cost of backlog[Team] = 1 $/cases/Week
13 cost of inventory[Team] = 0.5 $/cases/Week

14 d cost increase[Team] = (cost of inventory[Team] ∗ inventoryD[Team]) +
(cost of backlog[Team] ∗ Backlog D[Team]) $/Week

15 d costs[Team] = INTEG (d cost increase[Team],0) $
16 eff inv D[Team] = inventoryD[Team]-Backlog D[Team] cases
17 eff inv F[Team] = inventoryF[Team]-Backlog F[Team] cases
18 eff inv R[Team] = inventoryR[Team]-Backlog R[Team] cases
19 eff inv W[Team] = inventoryW[Team]-Backlog W[Team] cases

20 f cost increase[Team] = (cost of inventory[Team] ∗ inventoryF[Team]) +
(cost of backlog[Team] ∗ Backlog F[Team]) $/Week

21 f costs[Team] = INTEG (f cost increase[Team],0) $

22 import D placed orders[Team]: = GET XLS DATA(‘Book1.xlsx’, ‘orders
(D)’,’A’, ‘B2′) cases/Week

23 import F placed orders[Team]: = GET XLS DATA(‘Book1.xlsx’, ‘orders
(F)’,’A’, ‘B2′) cases/Week

24 import R placed orders[Team]: = GET XLS DATA(‘Book1.xlsx’, ‘orders
(R)’,’A’, ‘B2′) cases/Week

25 import W placed orders[Team]: = GET XLS DATA(‘Book1.xlsx’, ‘orders
(W)’,’A’, ‘B2′) cases/Week

26 in D[Team] = DELAY FIXED(sold F[Team], 2, 4) cases/Week
27 in F[Team] = DELAY FIXED(coming[Team], 2, 4) cases/Week
28 in R[Team] = DELAY FIXED(sold W[Team], 2, 4) cases/Week
29 in W[Team] = DELAY FIXED(sold D[Team], 2, 4) cases/Week
30 inventoryD[Team] = INTEG (in D[Team]-sold D[Team],12) cases
31 inventoryF[Team] = INTEG (in F[Team]-sold F[Team],12) cases
32 inventoryR[Team] = INTEG (in R[Team]-sold R[Team],12) cases
33 inventoryW[Team] = INTEG (in W[Team]-sold W[Team],12) cases
34 ORDer = 4 + STEP(4, 5) cases/Week
35 ordered D[Team] = DELAY FIXED (import D placed orders[Team], 1, 4) cases/Week
36 ordered F[Team] = DELAY FIXED (import F placed orders[Team], 1, 4) cases/Week
37 ordered R[Team] = DELAY FIXED (import R placed orders[Team], 1, 4) cases/Week
38 ordered W[Team] = DELAY FIXED (import W placed orders[Team], 1, 4) cases/Week

39 r cost increase[Team] = (cost of inventory[Team] * inventoryR[Team]) +
(cost of backlog[Team] * Backlog R[Team]) $/Week

40 r costs[Team] = INTEG (r cost increase[Team],0) $

41 sold D[Team] = MIN(inventoryD[Team] + in D[Team], ordered W[Team] +
Backlog D[Team]) cases/Week

42 sold F[Team] = MIN(inventoryF[Team] + in F[Team], ordered D[Team] +
Backlog F[Team]) cases/Week

43 sold R[Team] = MIN(inventoryR[Team] + in R[Team], ORDer + Backlog
R[Team]) cases/Week

44 sold W[Team] = MIN(inventoryW[Team] + in W[Team], ordered R[Team] +
Backlog W[Team]) cases/Week

45 TIME STEP = 1 week

46 w cost increase[Team] = (cost of inventory[Team] ∗ inventoryW[Team]) +
(cost of backlog[Team] ∗ Backlog W[Team]) $/Week

47 w costs[Team] = INTEG (w cost increase[Team],0) $
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