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Abstract: Macro-level trends and patterns are commonly used in business, science, finance, and
engineering to provide insights and estimates to assist decision-makers. In this research effort,
macro-level trends and patterns were explored on the diffusion rates of technological innovations,
a component of a sorely under-studied question in technology assessment: When should a techno-
logical innovation be abandoned? A quantitative exploratory data analysis (EDA)-based approach
was employed to examine diffusion market data of 42 U.S. consumer technological innovations from
the early 1900s to the 2010s to extract general macro-level knowledge on technological innovation
diffusion rates. A goal of this effort is to grow diffusion rate knowledge to enable the development of
general macro-based forecasting tools. Such tools would aid decision-makers in making informed
and proactive decisions on when to abandon a technological innovation. This research offers sev-
eral significant contributions to the macro-level understanding of the boundaries and likelihood
of achieving a range of technological innovation diffusion rates. These contributions include the
determination that the frequency of diffusion rates are positively skewed when ordered from slowest
to fastest, and the identification and ranking of probability density functions that best represent the
rates of technological innovation diffusion.

Keywords: diffusion rate; macro patterns; technological innovation

1. Introduction

This research explores the likelihoods and probability boundaries of U.S. technological
innovation diffusion rates and initiates a research thrust to build macro-based knowledge
towards developing technological innovation abandonment intelligence. The initiatives
drive is to support resource decision-makers in making informed and proactive decisions
on when to abandon a technological innovation at a macro level. Specifically, the over-
all research program strives to address: what is the optimal point of abandonment of
a technological innovation, and what is the economic impact of the speed at which the
abandonment decision is made? This effort begins this exploration by focusing on exam-
ining a common factor required to address each of these questions, the diffusion rates of
technological innovation, and is the primary focus of this endeavor.

This study employed diffusion market data from 42 U.S. technological innovations
(products and processes) spanning more than 100 years to gain insight into the macro-
perspective patterns on diffusion rates of technological innovation. These insights were
gained by exploring and enriching the knowledge on boundaries and likelihoods on the
diffusion rates of technological innovations via bulk trends and patterns. The resulting
observations provide a means for structuring probabilistic-based forecast models on the
diffusion rates of technological innovations via the best-fit probability density functions
determined herein.

We will first establish an operational definition of the term technological innovation(s),
since researchers of different disciplines use the term in various ways. For our purposes,
we use the noun-based definition rather than the process-based definition of technological
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innovation, because our focus is not the process of technological innovation, but rather
exploration of the product and process innovation life cycle. A technological innovation
may be a new or (minor or major) improved product, process, or device that results in the
societal distribution (commercialization) of new or improved goods (products or services)
or a new or improved (products or services) production process [1–3]. Commercialized
products and processes such as the microwave oven and chlorine-free paper production
are examples of technological innovations. Thus, the diffusion of technological innovation,
per the operational definition, is measurable and trackable via market diffusion sales
data, allowing the study of product and process innovation diffusion from a generalized
perspective. For this research, the term technological innovation may cover what some
researchers consider inventions, technologies, innovations, products, or processes. For this
reason, the terms technological innovation and innovation are used interchangeably in this
paper, based on the above-established definition.

How is it done today, and what are the limits of the current practice? Technological
innovation forecasting knowledge is often used to determine whether an innovation is
worthy of pursuing, but not often as a means to signal when it has reached maturity or when
it should be abandoned [4]. Such forecasting tools commonly require resource-intensive
micro-based investigations of factors affecting a technological innovation’s diffusion rate
and are often narrowly focused on a specific technological innovation. Accordingly, it is
comprehensible that these micro-based forecasting tools are complex and involved (e.g.,
factors can be time-consuming and challenging to develop, measure, and track accurately
or at all). The inherent complexity of micro-based forecasting tools is a disadvantage; it has
been shown that, as task complexity goes up, cognitive demand goes up, and as cognitive
demand goes up, a decision-maker is increasingly likely not to justify the use of a complex
decision-making strategy, especially when time is a factor [5,6]. As a simplified analogy, it
is easy to determine whether a cup of coffee is hot (macro level), but it requires more effort
to determine its exact temperature (micro level). In practice, it requires significant effort to
determine whether and to what extent potential adopters are satisfied with their existing
solution (a micro-based factor identified by Choffray and Lilien [7] to gauge the diffusion
rate of a technological innovation).

What is new in this approach? Decision-makers have a macro-level blind spot regard-
ing the general assessment of patterns and trends of technological innovation diffusion
rates. Macro-level bulk trends and patterns are commonly used in business, science, fi-
nance, and engineering to provide insights and estimates that enable decision-makers to
make informed decisions expeditiously. In this effort, leveraging macro-level bulk trends
and patterns, insights are gain on the boundaries and likelihoods on the diffusion rates of
technological innovations. Knowledge of the boundaries and likelihoods of the diffusion
rates of technological innovations via macro bulk trends and patterns has value in speeding
and simplifying decision-making when appropriate. The development of macro-based
forecasting knowledge could provide decision-makers with tools to assess and manage
the economic impact of technological innovation abandonment in relation to time, which
translates to a competitive advantage when it comes to growth and advancement [8–10].

What value would be created by this approach? A knowledge gap exists, in the
forecasting and management research literature, for modeling the speeds (via probability
density function) at which technological innovations spread at the macro level (bulk trends
and patterns). This research initiative aims to reduce this knowledge gap, to better posi-
tion decision-makers with intelligence on diffusion rates to make informed abandonment
choices. As a consequence, the endeavor to study the diffusion rates of technological
innovations has economic significance and adds value to any organization engaged in
technological innovation, technology, and resource management [11]. Any organization
that can be affected by technological change unavoidably engages in the forecasting and
management of technology and technological innovation [12]. Accordingly, organizations
are continuously striving to improve the management of limited resources (i.e., labor,
equipment, materials, time, and capital) to maximize gains and to minimize losses. A key
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component of effectively directing resources is the understanding and continuous improve-
ment of knowledge in forecasting and managing technological innovation. This knowledge
includes improving the insights on factors (e.g., diffusion rates) that can impact resource
and abandonment optimization, which is the objective of this research.

Insights and knowledge of the boundaries and likelihoods on the diffusion rates of
technological innovation provide meaningful value for decision-makers. Without informa-
tion, management, and decision-making of any kind is no more than guesswork [13]. As
an example, if a resource management decision-maker has general assessment knowledge
indicating that attaining a 12% per year innovation diffusion rate has a low likelihood of
occurrence, he or she now has useful information that will help direct how to utilize re-
source investments. New macro-level understanding of the diffusion rates of technological
innovations has prospective implications on improving a decision-maker’s ability to make
proactive, knowledge-based decisions in a timely manner.

How is this endeavor to be accomplished? To examine the relationships between the
diffusion rate of a technological innovation and its likelihood of occurrence, a quantitative
exploratory data analysis (EDA)-based approach was be used due to the limited scholarly
works in this area as well as for its ability to summarize and characterize data and patterns.
Specifically, this paper aims to address and expand the following research questions, reveal
data patterns in the process, and generate new exploratory hypotheses for future research,
thereby giving management practitioners and researchers macro-based insights and knowl-
edge on trends and patterns for assessing the diffusion rates of technological innovation.

• Principal question: What bulk trends and patterns regarding diffusion rates can be
extracted from the market sales diffusion data of U.S. technological innovations?

• Sub-question #1: What are the probabilistic characteristics of the rates of diffusion of
U.S. technological innovations?

• Sub-question #2: What distributions best fit the diffusion rates of U.S. technological
innovations?

2. Background

The amount of relevant work examining the diffusion rates of technological innova-
tions directly from bulk trends and patterns (a macro-based perspective) in the research
literature is underwhelming. There are many research articles examining factors affecting
diffusion rates of technological innovation from a micro-based perspective. In a significant
number of these articles, indirect macro-based inferences are present. Two such works
addressing or acknowledging the need for probabilistic boundaries and likelihoods of dif-
fusion rates of technological innovations are Van den Bulte [14] and Choffray and Lilien [7].
Van den Bulte’s [14] research focused on determining whether, how much, and why dif-
fusion speeds have changed for technological innovations from 1923 to 1996 within the
United States. In this work, Van den Bulte reported the need and importance of considering
the probability and time of technological innovation diffusion rates, but acknowledged that
such probabilistic data were lacking or nonexistent. Additionally, Choffray and Lilien [7]
examined the development of a decision system for new products as well as forecasting
methods (via external factors such as customer satisfaction and competition) to determine
the likelihood of attaining initial rates of penetration and speeds of diffusion of new prod-
ucts. Choffray and Lilien [7] utilized micro-based information that could only be gathered
reactively during a technological innovation’s life cycle.

Although useful, these and other micro-based bodies of research leave a gap in
understanding the boundaries and the probabilistic likelihoods of achieving a range of
technological innovation diffusion rates from a macro-based perspective. At present, there
is no direct body of work examining the boundaries and the probabilistic likelihoods
of achieving a range of diffusion rates directly from bulk trends and patterns through a
historical examination of the diffusion lifecycle of technological innovations. To establish a
framework to explore these areas, there must be some agreement or a minimum acknowl-
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edgment of elemental definitions, terms, and concepts. Five critical terms and relationships
are described in the following paragraphs to clarify concepts used by the authors.

2.1. Diffusion Versus Adoption

Diffusion and adoption, in relation to innovation, are closely linked concepts and
processes [15]. For this reason, they are often confused and warrant a review. The focus of
this research is on innovation diffusion and not adoption; thus, it is important to examine
and review the distinction. Diffusion is a macro process describing the cumulative spread of
an innovation from its origins to the group (i.e., public, community, country, organization),
whereas adoption is a micro process that focuses on individual discrete acceptance or
rejection of an innovation [16]. Put simply, adoption is a binary decision (accept or reject)
in time, and diffusion is the change of the cumulative adoption decisions over time.

2.2. Diffusion of Innovation and Innovation Diffusion

Along with context, word combinations can change the meaning of a phrase. Inno-
vation diffusion and diffusion of innovation, although using the same root words, can
each mean something entirely different. For example, in Roger’s pivotal and highly cited
book “The Diffusion of Innovation,” he examines the diffusion of innovation as the process
(how and why) of innovation spread [15]. In this research, innovation diffusion is defined
as the cumulative spread of an innovation (how much and how fast) from its origins
through a group (public, community, country, organization, etc.). Although how and why
an innovation spreads is an important area of study, it is not the focus of this effort. For
clarity, this research examines and addresses the diffusion rates of technological innovation
(i.e., the how fast).

2.3. Rate of Innovation and Innovation Diffusion Rate

A distinction between rate of innovation and innovation diffusion rate warrants an
examination to frame the context of this research endeavor and avoid misinterpretations
of its purpose, results, and conclusions. The use of the phrase rate of innovation in
the literature commonly means the number of innovations over time. As an example,
Huebner’s [17] macro-perspective examination of diffusion of innovation concluded that
there is a declining trend for worldwide innovations over the last century. Huebner does
not claim that innovation diffusion rates are increasing or decreasing, only that the total
number of innovations year by year has declined. In contrast, the phrase innovation
diffusion rate commonly means (in the research literature) and is defined for this research
as the speed at which an innovation spreads into a market or industry.

2.4. The Study of Innovation Diffusion

The study of innovation diffusion can be grouped into two perspectives: micro and
macro. The micro-perspective group focuses on understanding the factors affecting innova-
tion diffusion, whereas the macro-perspective group focuses on understanding bulk trends
and patterns. Contemporary analysis of innovation diffusion has principally focused on
determining and understanding the factors driving the process of diffusion and its effects
(a micro-perspective understanding of innovation diffusion). As a foundational example,
Mansfield [18] explored differences among innovations and their rate of imitation (diffu-
sion). His research examined why one innovation rate of diffusion is different from another
within an organization. Mansfield demonstrated that there appeared to be a link between
profitability and investment cost with an innovation’s or technology’s diffusion rate in an
organization, but he admitted that his dataset was limited and his results were tentative at
best, barring the addition of more diffusion (imitation) data. Other researchers contributing
to a micro-perspective understanding of innovation and technology diffusion include
Silverberg et al. [19], Grübler [20], Jovanovic and Lach [21], Caselli and Coleman [22],
Manuelli and Seshadri [23], Comin and Hobijn [24], and Comin and Mestieri [25].
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No direct macro-based contemporary research targeting the development of knowl-
edge on the likelihoods and probability boundaries of technological innovation diffusion
rates was discovered when this effort was conducted. The focus of existing macro-based
research has been on determining if diffusion rates of innovations have increased over
time; that is, technological innovations are diffusing faster now than in the past. For
example, Grübler’s [20] work on transportation diffusion growth cluster factors analyzed
two groups of innovation data over the past two centuries and concluded that there were
little conclusive data on diffusion rate acceleration. Conversely, Olshavshy’s [26] study
of diffusion factors of 25 consumer products indicated that diffusion rates are increasing.
Other researchers contributing to the macro-perspective study of innovation diffusion rate
acceleration include Mansfield [18], Fisher and Pry [27], Qualls et al. [28], Clark et al. [29],
Bayus [9], and Kohli et al. [30]. Although an investigation of the inconsistencies present in
these results is worthy of pursuit, it is out of the scope of this current effort.

2.5. Diffusion Models

The theory of the rate of innovation adoption suggests that the diffusion of innovation
grows slowly and gradually in the beginning, followed by a period of rapid growth that
slows and becomes stable to the point of saturation. This theory is best represented by an
S-curve [15]. It should be noted that a bell curve is commonly used to represent the rate
of growth of a system within a time span, and the cumulative number of “units” in a bell
curve at any given point in time follows an S-curve, representing cumulative growth [31].
The S-curve accordingly demonstrates that the rate of growth is proportional to both
the amount of growth already achieved and the amount of attainable growth remaining,
a reason forecasting tools use the S-curve [31]. The S-curve began as a mathematical
model and was later applied to various fields and applications—including but not limited
to physics, biology, and anthropology—for projecting the performance of technologies,
to foresee population changes, for market penetration analyses, for micro- and macro-
economic studies, for diffusion mechanisms of technological and social inventions, for
ecological modeling, and for innovation diffusion [31,32].

Observed and empirical research has shown and supported that innovation diffu-
sion characteristically follows an S-curve [33–39]. Frequently used S-curve models for
the innovation diffusion are the Logistic, Gompertz, and Bass models [39–42]. Numerous
researchers have compared these and other innovation diffusion models, samples of which
are presented in Table 1 [43]. Comparative studies suggest that there is no substantial
evidence that one diffusion model is consistently superior to the others [44–46]. Selection
of the best model to accurately forecast an innovation’s diffusion is dependent on multiple
conditions (specific triggers and factors related to the innovation as well as market condi-
tions). A comparison of the micro accuracy of these models, although informative, is not
the focus of this endeavor. For the selection of a model to use in this endeavor, one must
remember that, at their best, models are informative but not exact. Nevertheless, each of
the models discussed (Logistic, Gompertz, and Bass) can be a good approximate when
studying general (macro-based) diffusion trends and patterns [47,48].

Table 1. Research examining innovation diffusion models.

Author(s) Determined Best-Fit Model Area of Innovations Examined

Grubler [49] Logistic Model Transportation
Meade and Islam [50] Gompertz and Logistic Model Telecommunication Innovations

Kim et al. [51] Dynamic Model Telecommunication Innovations
Kim and Kim [52] Bass Model Telecommunication Innovations

Botelho and Pinto [53] Logistic Model Telecommunication Innovations
Adamuthe and Thampi [39] * Gompertz and Logistic Model Computer Innovation

* Uses patent, bibliometric, and survey data rather than direct measures such as sales data.



Systems 2021, 9, 16 6 of 22

For this research endeavor, the Logistic model will be used to extract diffusion rate
data from the dataset under study; as such, its selection justification is warranted and
provided herein. As mentioned, several diffusion models exist. However, the Logistic
model is widely used to analyze innovation diffusion and is the cornerstone of many
models in the research literature [18,48,54–58]. In addition, the Bass and Gompertz models
can be derived from or be reduced to special forms of the Logistic model [14,59–62].
While the advantages and disadvantages of each diffusion model are well studied, the
adaptability, simplicity (in estimating parameters and extracting patterns from observed
data), and informative nature of the Logistic model make it foundational to macro-based
diffusion examination [63,64]. Additionally, in the case of mature technological innovations,
such as ones with an extensive set of historical adoption market data throughout their
lifecycles, the diffusion parameter differences between models tend to be good fits and yield
similar results [65]. Thus, the Logistic model provides a firm foundation for evaluating
technological innovation diffusion.

The mathematical formulation of the Logistic model, used for innovation and technol-
ogy growth, is shown in Equation (1) [66].

Y(t) =
C

1 + ae−rt (1)

where C (Carrying Capacity) is the limit to growth or the maximum diffusion ceiling, a
(Initial Condition Constant) is a constant determined by an appropriate initial condition, r
(Diffusion Rate Constant) is the growth rate constant, and t (Time variable) represents time.

3. Research Methodology

To address the research questions posed by this endeavor, a quantitative EDA ap-
proach was selected and executed in three steps to determine the boundaries and likeli-
hoods of the diffusion rates of technological innovations via bulk trends and patterns. In
the first step, market technological innovation diffusion data were collected, sorted, fit,
and validated against the Logistic model. To bound this research scope, only U.S. market
data from commercialized technological innovations over the last 100 years were examined.
The defining bounds were additionally driven by the data available to the researchers; the
approach could be expanded in the future to include other regions and time spans. Next,
diffusion rate data were extracted from the collected dataset of technological innovations.
The last step was to reduce the data and analyze them to determine the dataset’s statistical
descriptions, trends over time, and best-fit probability density function for the range of
technological innovation diffusion rates extracted.

3.1. Data Collection

As a whole, technological innovation market diffusion data are laborious to attain
because they often reside within private organizations’ sales and marketing data, much of
which is not published or is considered proprietary. Several researchers have, however,
taken up the difficult task of collecting this type of data in an effort to study areas such as the
innovation lifecycle, three of which are cited in Table 2. As with many research endeavors,
the work reported here sought to leverage and extract new knowledge (macro patterns
and trends) from previously gathered and validated datasets in the areas of technological
innovation diffusion.

We applied the following criteria to data sources sought in order to center this re-
search effort: (1) technological innovation data with annual frequency, as the focus of this
endeavor was long-run (macro) diffusion rather than short-run fluctuations; (2) mature U.S.
technological innovations; (3) validated and frequently cited sources, to ensure that the
results gathered can be reproduced with confidence; (4) sources that focused on intensive
measures of technological innovation diffusion, such as market sales data, rather than
extensive measures that require identification of the potential adopters of a technological
innovation via time-consuming and challenging-to-acquire micro-based data [67]; and (5)
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no restrictions on the type or category of the innovation, for the purpose of this effort is
to generate, as a starting point for resource management practitioners, generalized macro
patterns and trends on technological innovation diffusion rates. The three principal data
sources identified based on these criteria are cited in Table 2. It must be acknowledged
that, although three validated data sources were used for this endeavor, their data were
collected from various published sources. These data sources are acknowledged and cited
within each of the principal sources shown in the table. Collectively, these sources have
been referenced over 650 times (according to Google Scholar, retrieved 18 August 2020).

Table 2. Principal dataset sources.

Sources

The Cross-country Historical Adoption of Technology (CHAT) Dataset. No. w15319. National Bureau of Economic Research, 2009. [67]
Discovered via Horace Dediu, Clayton Christensen Institute [68].

Note: Only U.S. data were extracted and used.

Comin, D.A., & Hobijn, B. (2004). Cross-country technology adoption: making the theories face the facts.
Journal of Monetary Economics 51.1 (2004): 39–83. [69]

Discovered via Ritchie, H., & Roser, M. (2017). Technology Diffusion & Adoption. [70]
Note: Only U.S. data were extracted and used.

Cox, W.M., & Alm, R. (1997). Time Well Spent: The Declining Real Cost of Living in America.
Annual Report Federal Reserve Bank of Dallas, pages 2–24 [71]

Derived and built from the American Association of Home Appliance Manufacturers; Cellular Telephone Industry Association; Electrical
Merchandising, various issues; Information Please Almanac; Public Roads Administration; Television Bureau of Advertising; U.S. Bureau of the

Census (Census of Housing; Current Population Reports; Historical Statistics of the United States, Colonial Times to 1970;
Statistical Abstract of the United States); U.S. Department of Energy; U.S. Department of Transportation.

3.2. Data Extraction

The data extracted from the sources referenced in Table 2 were reviewed for accuracy,
completeness, and root sources verified. Redundancies (same technological innovation
data from multiple sources) were eliminated, and inconsistencies (differing technological
innovation data from multiple sources) were resolved. Incomplete and inconsistent data
that were not resolvable were discarded from the analysis. In cases where a technological
innovation’s diffusion data were available from multiple sources, and when the data were
inconsistent between sources, the data were remediated by examining the root source.
All told, market sales diffusion data of 42 U.S. consumer technological innovations were
identified and collected. The data consisted of annual market diffusion percentages of each
technological innovation over its recorded life cycle. The dataset spanned technological
innovations released to the U.S. market from the early 1900s to the 2010s.

Raw datasets become, in practical terms, unmanageable and useless unless there
are efficient, consistent, and reliable methods to reduce and extract meaningful data for
practitioners and researchers. For this exploratory endeavor, we reduced and extracted
data by fitting the Logistic model to the raw diffusion data of the technological innovations
gathered. Using Microsoft Excel Solver, the Logistic model was fitted to the diffusion data
of each technological innovation in the collected dataset.

The Logistic model carrying capacity parameters for each technological innovation
were selected as the highest recorded diffusion percentages achieved, for carrying capacity
values become dynamic and decrease upon the obsolescence of a technological innova-
tion [72]. By choosing the highest recorded diffusion percentage to represent the carrying
capacity parameter, it is assured that the maximum diffusion rate could be no lower than
the rate extracted mathematically via the Logistic model. In addition, the model used a
time variable interval of one year, as the diffusion data were collected yearly. The growth
rate constant (noted as r) and initial condition constant (noted as a) were resolved by fitting
each innovation’s diffusion data to the Logistic model. The fit was accomplished by using
Microsoft Excel Solver’s Generalized Reduced Gradient (GRG) nonlinear solver algorithm
by minimizing the root mean square error (RMSE) of the collected data to the Logistic
model. The results of these fits are shown in Table 3.
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Table 3. Logistic model fit resultant parameters.

# Technological Innovations Initial Condition Constant (a) Growth Rate Constant (r) Carrying Capacity (C)

1 Air Conditioning 21.549 0.100 89

2 Automatic Transmission 11.880 0.181 100

3 Automobile 8.985 0.063 92

4 Automobile Air Conditioning 273.459 0.318 100

5 Automobile Disk Brakes 35.762 0.646 100

6 Automobile Electronic Ignition 1401.264 1.387 100

7 Automobile Fuel Injection 108.391 0.532 100

8 Blast Oxygen Furnace 22.935 0.456 100

9 Broadband Internet 13.007 0.459 73

10 Cellular Phone 6.655 0.268 92

11 Chlorine-Free Paper Production 14.018 0.432 99

12 Color Television 24.436 0.243 99

13 Diesel Locomotive 38.619 0.369 100

14 Digital Camera 35.141 0.492 85

15 Digital Computer 66.463 0.230 83.8

16 Digital Versatile Disc (DVD) 42.170 0.639 95

17 Digital Video Recorder (DVR) 356.398 0.586 94.8

18 Electric Clothes Dryer 10.251 0.109 81.3

19 Electric Clothes Washer 13.348 0.076 84.9

20 Electric Dishwasher 12.547 0.083 67.5

21 Front-Wheel Drive 17.866 0.392 88

22 Gas Range/Stove 21.002 0.083 100

23 High Definition Television (HDTV) 6.917 0.757 89

24 Internet 6.744 0.225 88

25 Lockup Automatic Transmission 3.665 0.248 89

26 Medical MRI Unit 13.182 0.164 78.9

27 Microwave Oven 37.505 0.256 98.4

28 Mobile Personal Computer (PC) 33.717 0.273 68

29 MPEG Audio Layer-3 (MP3) Player 3.735 1.068 46

30 Multi-Valve Engine (% of cars equipped) 4.879 0.169 97

31 Power Steering 11.525 0.220 100

32 Radial Tire 21.437 0.862 100

33 Refrigerator 43.651 0.179 100

34 Residential Electric power 7.105 0.111 99

35 Smart Meter 20.175 0.668 54

36 Smartphone 10.397 0.550 77

37 Tablet 8.305 0.908 51

38 Telephone (Landline) 6.561 0.055 95

39 Television (TV) 4.348 0.372 99

40 Vacuum Cleaner 15.752 0.097 98.9

41 Variable-Valve Timing Automobile 53.556 0.291 92

42 Video Cassette Recorder (VCR) 5.157 0.370 88
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3.2.1. Logistic Model Fit Check

To determine whether the fitted Logistic models were representative of the techno-
logical innovation diffusion rate dataset collected, we applied RMSE analysis. RMSE is
one of the most widely used criteria for model fit in data regression analysis [73,74]. It is
the square root of the variance of the residuals and indicates the absolute fit of the model
to the data. Although there is no absolute criterion for a good value of RMSE, in general,
the lower the RMSE value, the better the model fits the dataset [75]. For this research, if
the RMSE value was less than three (3) standard deviations (a common method for outlier
identification [76]) from the mean value of the fitted data, we accepted the Logistic model
fit and used the model data.

3.2.2. Extraction of Diffusion Rate and Trends

Using calculus principles, we extracted the Logistic model derivatives, as shown
in Table 4. The first derivative of the base function gives us the diffusion rate (slope
of resultant tangent line) at any instant in the Logistic curve. The second derivative
provides us with the rate of change of the diffusion rate at any instant on the Logistic curve.
The maximum diffusion rate was solved by determining the root of the models’ second
derivative (representing when an innovation’s diffusion rate has peaked), as illustrated
in Figure 1. It is interesting to note that the point of maximum diffusion rate is also an
inflection point of the Logistic model. To examine bulk trends, a simple linear regression
analysis using linear trend estimation was conducted on the dataset’s extracted diffusion
rates. Linear trend estimation is a well-established statistical technique to aid in the
interpretation and behavior identification (patterns and trends) of the observed data [77,78].

Table 4. Logistic equation derivatives.

Base Function (Logistic equation) Y(t) = C
1+Ae−rt

1st derivative d
dt (Y(t)) =

ACrert

(ert+A)2

2nd derivative d2

dt2 (Y(t)) = − ACr2ert(ert−A)

(ert+A)3

Figure 1. Logistic model with derivatives.

3.2.3. Determination of Distribution Fit and Dataset Trends

To determine which probability density function best fits the resultant diffusion data
(presented in Section 4.2), we performed a distribution fit analysis of the dataset. The
diffusion rate data were used for the distribution fit analysis against 13 continuous distribu-
tions. The distributions selected were Exponential, Exponential—Two Parameter, Gamma,
Gamma—Three Parameter, Largest Extreme Value, Logistic, LogLogistic, LogLogistic—
Three Parameter, LogNormal, LogNormal—Three Parameter, Normal, Smallest Extreme
Value, Weibull, and Weibull—Three Parameter. These distributions have been identified
as some of the most widely used continuous distributions for data analysis [79]. Only
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continuous distributions were examined, since the outcome probability density function of
a diffusion rate can assume an infinite number of different values.

We extracted the dataset’s descriptive statistics (including count, mean, and standard
deviation) and evaluated which probability density function best fit the resultant diffusion
data with Microsoft Excel with SPC™ (Statistical Analysis add-on). To make statistical
inferences and to identify and extract appropriate statistical parameters of each distribution
under examination, we employed the method of maximum likelihood estimation (MLE).
We also used the MLE method to ascertain the most plausible probability distributions
that would describe the collected set of observations. MLE is one of the most widely used
methods employed to gain statistical inferences of data [80,81].

Using the MLE method, each distribution’s location, shape, scale, threshold, Log-
Likelihood, Anderson–Darling, p-value, Likelihood Ratio Test (LRT), and Akaike Infor-
mation Criterion (AIC) values were extracted, if applicable. The resultant MLE analysis
helped us determine the rank order of the best-fit distribution model via goodness-of-fit
examination, with the AIC estimator as the ranking factor. The AIC score rewards models
that achieve a high goodness-of-fit score and penalizes them if they become overly com-
plex. By itself, the AIC score is not much use unless it is compared with the AIC score of
competing models, as was the case here.

To determine whether the general technological innovation population was likely to
be skewed based on the sample set of this endeavor, a critical value statistical test adopted
from Cramer [82], Equation (2), was applied. In general, the amount of sample skewness
indicates how skewed a sample dataset is, whereas the skewness critical value statistical test
(ZSkewness) shows whether the whole population is probably skewed, but not by how much
(e.g., the higher the ZSkewness, the higher the probability of skewness) [82–84]. Population
inferences for ZSkewness critical values adopted from Cramer [82] for a significance level of
0.05 are provided below and were used to make inferences about the general technological
innovation population.

• If ZSkewness < −2, the population is very likely skewed negatively.
• If ZSkewness is between −2 and +2, no conclusion about the population skewness could

be concluded.
• If ZSkewness > 2, the population is very likely skewed positively.

ZSkewness =
Sample Skewness

Standard Error o f Skewness
=

αz√
(6n(n−1))

(n−2)(n+1)(n+3)

(2)

where αz is the Sample Skewness and n is the sample size.

4. Results
4.1. Logistic Model Fit Results

To support the notion that the fitted Logistic models were representative of the in-
novation diffusion dataset, RMSE analysis was used to determine if the Logistic model
was an acceptable fit. The resultant dataset RMSE descriptive statistics for the diffusion
dataset under study are shown in Table 5. If the fitted technological innovation RMSE
value was less than 1.22 (three standard deviations from the mean value), the Logistic
model fit was accepted. As shown in Table 5, the maximum RSME value of the dataset was
1.086. Therefore, each Logistic Model fit was accepted, resulting in the utilization of 42
technological innovations for this research analysis.

Table 5. Dataset RMSE values descriptive statistics.

Count Mean RMSE Standard Deviation Median RMSE Min RMSE Max RMSE Skewness Kurtosis

42 0.786 0.145 0.802 0.450 1.086 −0.250 −0.574
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4.2. Extraction of Diffusion Rate and Trend Results

The resultant maximum diffusion rate for each technological innovation was resolved
by determining the model’s second derivatives root and then applying that point to
the model’s first derivative. Table 6 lists the resultant maximum diffusion rates of each
innovation under study. The outcome of the simple linear regression analysis conducted
on the extracted maximum diffusion rate dataset (ordered in ascending year) resulted in
a linear regressed slope of 0.09 with an intercept coefficient of −163.8 with a p-value of
0.005 and 0.003, respectively, Figure 2. The raw diffusion data, fitted Logistic model, and
derivative curves from the datasets of three technological innovations, pulled from the
42 collected, are illustrated in Figures 3–5 respectively, as a condensed reference of the
entire dataset. To test the likelihood of skewness of the general technological innovation
population set, a critical value statistical test was applied. The calculated ZSkewness for the
dataset was resolved to be 5.45.

Table 6. Resultant maximum diffusion rates of each technological innovation, ordered from slowest
to fastest.

# Technological Innovation Max Diffusion Rate

38 Telephone (Landline) 1.317

20 Electric Dishwasher 1.397

3 Automobile 1.439

19 Electric Clothes Washer 1.604

22 Gas Range/Stove 2.086

18 Electric Clothes Dryer 2.21

1 Air Conditioning 2.22

40 Vacuum Cleaner 2.395

34 Residential Electric power 2.742

26 Medical MRI Units 3.226

30 Multi-Valve Engine (% of cars equipped) 4.107

33 Refrigerator 4.487

2 Automatic Transmission 4.53

28 Mobile PC 4.636

15 Digital Computer 4.824

24 Internet 4.956

31 Power Steering 5.494

25 Lockup Automatic Transmission 5.52

12 Color Television 6.025

10 Cellular Phone 6.156

27 Microwave Oven 6.292

41 Variable-Valve Timing Automobile 6.686

4 Automobile Air Conditioning 7.943

42 VCR 8.144

9 Broadband Internet 8.372

21 Front Wheel Drive 8.622

35 Smart Meter 9.011

39 TV 9.204
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Table 6. Cont.

# Technological Innovation Max Diffusion Rate

13 Diesel Locomotive 9.216

14 Digital Camera 10.45

36 Smartphone 10.59

11 Chlorine-Free Paper Production 10.703

8 Blast Oxygen Furnace 11.39

37 Tablet 11.575

29 MP3 Player 12.287

7 Automobile Fuel Injection 13.312

17 DVR 13.89

16 DVD 15.166

5 Automobile Disk Brakes 16.144

23 HDTV 16.851

32 Radial Tire 21.55

6 Automobile Electronic Ignition 34.672

Figure 2. Maximum diffusion rate by year.

Figure 3. Technological innovation sample 1.
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Figure 4. Technological innovation sample 2.

Figure 5. Technological innovation sample 3.

4.3. Diffusion Rate Distribution Fit Results

The maximum diffusion rate dataset descriptive statistics (listed in Table 6) were
determined in Microsoft Excel with SPC™ and are shown in Table 7. The resultant MLE
analysis determined the rank order of the best-fit distribution model via goodness-of-fit
examination using the AIC estimator as the primary ranking factor. The ranked results
of the goodness-of-fit examination are shown in Table 8. Other descriptive (distribution
density function and Q-Q plot) and ranking tool values (log-likelihood, Anderson–Darling,
p-value) are provided as reference, in the spirit of this EDA approach, to aid the readers of
this article in the identification of patterns and trends.

Table 7. Maximum diffusion rate dataset descriptive statistics.

Count Mean
Diffusion Rate

Standard
Deviation

Median
Diffusion Rate

Min Diffusion
Rate

Max Diffusion
Rate Skewness Kurtosis

42 8.177 6.383 6.489 1.317 34.67 1.999 6.212
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Table 8. Maximum diffusion rate dataset MLE analysis results, ranked by ascending AIC.

Distribution Density
Function Fit Q-Q Plot MLE Analysis Fit
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1 Exponential—Two Parameter 1.317 - 0.146 - - 6.860 −122.9 0.555 0.378 249.8
2 Gamma—Three Parameter 1.317 0.874 7.077 - 0.849 8.086 −122.5 0.747 0.065 251.0
3 LogNormal 1.820 0.784 1.820 - 0.784 −125.8 0.466 0.240 255.6
4 Gamma - 1.641 4.982 - 1.927 4.244 −125.8 0.233 >0.25 255.7
5 Weibull - 1.513 8.478 - 1.404 9.028 −126.6 0.271 >0.25 257.2
6 LogLogistic - 2.115 5.917 1.859 - 0.456 −126.7 0.450 0.221 257.4

7 LogNormal—Three Parameter 1.877,
−0.271 - 0.740 1.877 - 0.740 −125.8 0.409 0.330 257.6

8 LogLogistic—Three Parameter 0.159 2.119 6.226 1.829 - 0.472 −126.7 0.477 0.191 259.4
9 Largest Extreme Value - - - 5.574 - 4.165 −128.2 0.367 >0.25 260.4
10 Exponential - - 0.122 - - 8.177 −130.3 1.673 0.019 262.5
11 Logistic 8.177 - 3.519 7.406 - 3.169 −133.3 0.702 0.039 270.6
12 Normal 8.177 - 6.383 8.177 - 6.306 −136.9 1.334 0.002 277.9
13 Smallest Extreme Value - - - 11.82 - 9.219 −151.9 4.092 <0.01 307.7

5. Discussion

The principal objective of this research was to enrich the knowledge on the boundaries
and likelihoods of the diffusion rates of technological innovations through an exploration
of bulk trends and patterns. Building and developing macro-based forecasting knowledge
will aid resource decision-makers as they consider proactive decisions on when to abandon
a technological innovation. Through our research, we have taken the first steps at outlining
a density function that models the probability distribution of achieving a given diffusion
rate, accomplished by analyzing the diffusion characteristics of 42 U.S. technological
innovations spanning 100+ years. Sections 5.1–5.4 examine the results for trends and
patterns and provide discussions of their implications framed against the driving questions
of this effort.

5.1. Characteristics of Technological Innovation Diffusion Rates

Forty-two U.S. technological innovations, dating from the early 1900s to the 2010s,
were identified and accepted, based on our acceptance criteria, into the dataset under
study (see Table 3). The Logistic model was determined to be a good representation of
each technological innovations’ diffusion. This warrants acknowledgment, for there is still
much discourse on what model best represents the diffusion of technological innovation.
To gauge the general shape of the maximum diffusion rate dataset distribution (Table 6),
ordered from slowest to fastest diffusion rate, the dataset distribution’s descriptive statistics
skewness value was examined. The resultant skewness value of 1.99 indicates that the
distribution is highly skewed [85]. By definition, skewness is a measure of the asymmetry
of a distribution; therefore, this result indicates that the distribution’s Mode < Median <
Mean for unimodal densities [86–88]. This interpretation is only valid for the technological
innovation dataset under study and cannot, with certainty, be applied to the whole popula-
tion [82]. However, by testing the normality of the dataset using a critical value statistical
test (ZSkewness), population skewness properties can be inferred and thus were examined
next [82,89]. The resultant ZSkewness for the sample technological innovation maximum
diffusion rate dataset distribution was determined to be 5.45. As a result, inferences can
be made that there is a high likelihood that the general population of technological inno-
vations is positively skewed from lowest to highest diffusion rate (population inferences
critical values adopted from Cramer [82]).

The skewness value of the diffusion rate frequency occurrence for the dataset under
study, ordered from past to present, is positive, indicating that the tail on the right side of
the distribution is longer than on the left side and the bulk of the values lies to the left of
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the mean. The implication for resource management practitioners is that there is a high
probability that the diffusion rate distribution of the general population of innovations is
skewed positively and is not Normal. Thus, the distribution representing the maximum
diffusion rates of technological innovation has a Mode < Median < Mean. If technological
innovation diffusion rates can be probabilistically characterized, even to a reasonable level
of confidence, macro-level likelihood knowledge on diffusion rates can be gained.

The simple linear regression analysis using linear trend estimation conducted on the
extracted diffusion rate dataset determined that the linear regressed slope is a positive
slope at 0.09 percent per year, indicating a trend that technological innovation diffusion
rates are increasing. This was an unexpected result, not that the slope was positive,
but that the magnitude was not higher, for it is commonly perceived that the rate of
technological innovation diffusion rates is increasing rapidly. We speculate that this
perception may be attributable to the fact that information regarding rapidly developing
technological innovation tends to appear in the commercial tech news. As a check, to
verify that older technological innovations were not overly biasing the results, we re-ran
the regression analysis for this sample’s dataset, excluding any pre-1980s technological
innovation data. This modified regression resulted in a slightly increased linear regressed
slope of 0.21 percent per year. Although no definite conclusion can be made on how much
technological innovation diffusion rates are increasing per year, inferences can be made.
From a macro-based perspective, the data generally support the idea that technological
innovation diffusion rates are increasing.

5.2. Diffusion Rate Distribution

As a means to reveal the boundaries and likelihoods of diffusion rates of technological
innovations via exploration of bulk trends and patterns, we conducted a distribution fit
analysis on the maximum diffusion rate dataset distribution (Table 6). The MLE was
used to ascertain the most plausible probability density function that would describe the
collected set of maximum diffusion rates [90,91]. MLE analysis results (Table 8), using
goodness-of-fit examination, showed that the best-fit model of the population sample
set was an Exponential—Two Parameter distribution, having the lowest AIC and largest
p-value. The smaller the AIC and the larger the p-value, the stronger fit to the plausible
distribution [92]. Conversely, the analysis can also determine if a distribution model is not
a good fit, as a Normal distribution is for the population sample data set, ranked 12th out
of the 13 distributions examined. In addition, the Normal distribution p-value was less
than 0.05, indicating strong evidence that technological innovation diffusion rates, since
the early 1900s to present, are not normally distributed.

It should be noted that an MLE analysis can determine that a distribution is a good
fit, but not if it is the best model to represent reality. For example, as an innovation’s
diffusion rate approaches zero, an Exponential—Two Parameter distribution would forecast
a higher likelihood of occurrence, but this may not model reality. A distribution that may
better model reality may be one in which the likelihood of occurrence peaks at a point
between zero and the distribution Mean, such as a Gamma-, LogNormal-, or Weibull-
based distribution. Thus, a study of the resultant top-ranked distributions warrants future
examination to determine the impact variances of their selection.

5.3. Population Inferences, Assumptions, and Limitations

In terms of sample size and population inference, as previously mentioned, tech-
nological innovation diffusion data are difficult to gather; large sample size collection
is problematic. A larger sample size would of course provide a more rigorous test of
the validity and reliability of the herein-identified relationships between the boundaries
and likelihoods of technological innovation diffusion rates. It is worth noting that much
of the research examining technological innovation diffusion relies on sample sizes as
small as 7 to as much as 37; this includes research by Mansfield [18], Fisher and Pry [27],
Bass [93], Olshavsky [26], Qualls, Olshavsky, and Michaels [28], Clark, Freeman, and
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Hanssens [29], Takada and Jain [94], Rao and Yamada [95], Bayus [9], Kohli, Lehmann, and
Pae [30], Agarwal and Bayus [96], Goldenberg et al. [97], Bass [98], Golder and Tellis [99],
and [100]. The modest sample size of this endeavor (N = 42) can at a minimum provide
macro-based associations on the likelihood trends and directional patterns of innovation
diffusion rates. As more diffusion rate data are collected and added to this body of work,
the confidence level and confidence interval of the model representing the population
relationships will increase.

Given the macro nature of this endeavor, some assumptions and limitations must
be acknowledged to provide context to the study boundaries. First, models (including
diffusion models as used herein) are simplified representations of the real world. Care must
always be taken when using any model, and sound judgment must be used in determining
if results provided from a model are valid. Raw diffusion data rarely perfectly fit a diffusion
model, for diffusion data are rarely homogenous and fully connected. The power of a
diffusion model, assuming the raw data fit within defined limits, lies in its proven ability
to aid and enable the quick and easy generation of representative information to allow
decision-makers and researchers to easily interpret data and identify patterns [33–39].
Second, the data collected and studied for this effort are accurate and valid. Details of
the sources used are provided in Table 2. for reference and to enable reproduction of this
effort. Third, the technological innovation diffusion data used are U.S. market-derived;
results may differ for other markets and regions. (It has been demonstrated that innovation
diffusion can be affected by region [101]). Fourth, our results are macro-based and thus are
not meant to be definitive, but rather associative and directional in nature.

5.4. Practitioner Implications and Significance

Knowledge that can change the way practitioners think, make decisions, or behave, as
a consequence of insights gained, has managerial implications and significance [102]. As
such, the insights and findings produced by this exploratory endeavor have significant and
practical managerial implications in the area of technological innovation abandonment.
Three potential areas are abandonment optimization of technological innovation, reducing
the complexity of abandonment decisions, and providing a means for enabling proactive
decisions through the use of the macro-based knowledge on diffusion rates gained herein.

5.4.1. Abandonment Optimization

A robust body of research exists on technological innovation and technology adoption
in engineering management, but the areas of technological innovation and abandon-
ment are significantly less well-developed and pose a common problem for practition-
ers [103,104]. As discussed previously, an observable skewness of the distribution model
implies an increased likelihood in the direction of the skew. For this reason, knowledge
of the skewness direction of the maximum diffusion rate distribution of technological
innovations gives practitioners a greater understanding of a diffusion rate’s potential oc-
currence relative to the observable range and the derived historic-based Mean (see Table 7).
Accordingly, knowledge of the skewness direction of the distribution of technological
innovation diffusion rates is relevant to, but not limited to, resource management in terms
of abandonment decisions and resource alignment.

Abandonment optimization of a technological innovation can be directly impacted
by knowing the best-fit distribution of U.S. innovation diffusion rates, or at a minimum,
knowing the skewness direction of the distribution. Leveraging this knowledge can help
decision-makers make informed abandonment decisions, as explored in the following
example. When should an incumbent technological innovation be abandoned and resources
transferred toward reinvesting in a new candidate technological innovation to maximize
gains and minimize losses? This challenge is difficult and resource-intensive when framed
against micro-based factors, such as quantifying if an innovation’s potential adopters are
not satisfied with their existing solution. However, information on making an informed
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decision can be obtained by leveraging the macro-based understanding of diffusion rate
distributions developed herein.

For example, if a decision-maker knows that the incumbent technological innovation
diffusion rate is 10%per year, meaningful information can be inferred without knowing
anything about the potential candidate innovation. Information such as the chance that
the candidate technological innovation will achieve a 10% per year diffusion rate is about
28%, as forecasted by the Exponential—Two Parameter distribution model identified in
this research as the best-fit maximum diffusion rate distribution. Accordingly, if a decision-
maker has insights into the boundaries and the likelihoods of innovation diffusion rates,
a decision to delay or hasten abandonment may be made on the likelihood of diffusion
rate attainment (or alternatively, risk tolerance). This includes assessing the impact of
delaying or hastening abandonment, directly related to the speed at which abandonment
decisions are made. Such information can be used to develop an abandonment optimization
framework for decision-makers and will be examined in future research endeavors.

5.4.2. Complexity Reduction

Without a doubt, deciding when to abandon a technological innovation to maximize
gains and minimize losses is a complex problem. An effective problem-solving tool for
decision-makers in all disciplines is the simplification of complex problems to manageable
forms. The complexity of forecasting a technological innovation’s diffusion rate is reduced
by the macro-based perspective knowledge gained herein. By proxy, this knowledge
also reduces the complexity of determining a technological innovation’s optimal point
of abandonment; for which its diffusion rate is a factor. This reduction in complexity is
accomplished by reducing the need for specific micro-based factors (often complex and
challenging to acquire) to determine a technological innovation’s diffusion rate. To re-
emphasize the analogy highlighted in the introduction, it is much easier to determine if a
cup of coffee is hot (macro level) than it is to determine its exact temperature (micro level).
Analysis via modeling and visualization of bulk trends and patterns of complex problems
is a powerful tool for decision-makers [105]. The macro-based perspective knowledge of
diffusion rates described herein lays a foundation for the development of general system-
level rules for technological innovation abandonment.

Simplified abandonment information is also gained based on the skewness direction of
the diffusion rate distribution, including the knowledge that diffusion rates are not normally
distributed. Probabilistically, a technological innovation will have a high likelihood of
achieving only a low rate of diffusion. Such knowledge can be used to curtail, or at a
minimum simplify, heuristics and cognitive biases on technological innovation investments.
If a practitioner has a macro understanding of the distribution model of technological
innovation diffusion rates, a decision to delay or hasten abandonment may be made on
the likelihood of diffusion rate attainment in order to maximize the potential for profit or
minimize losses.

5.4.3. Proactive Abandonment Decisions

In a proactive environment, an organization strives to, and has a higher potential
to, maximize gains and minimize losses, because proactive organizations have a higher
potential to outpace those of reactive organizations [11,106–108]. The results of this research
give practitioners impactful, proactive knowledge with which to make informed choices
on how to best maximize their resources. Decision-makers may decide about their own
technological innovation variant based on the general field of technological innovations: A
fast diffusion rate in the general field of incumbent technological innovations may stimulate
a decision-maker to adopt interventions and strategies that lengthen the life cycle for their
technological innovation variant, while a slow diffusion rate may inspire the decision-
maker to aim for another technological innovation or reconsider the marketing mix or the
design of their own innovation variant. As noted, innovation and technology obsolescence
is traditionally a reactive event, occurring when a new innovation or technology displaces
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an older one [109]. Conversely, optimization of innovation management (e.g., when a
technological innovation is purposefully abandoned (phased-out) to shift resources to new
investment areas) is a proactive occurrence, enabled through an understanding of diffusion
rate characteristics.

The inference that U.S. technological innovation diffusion rates have increased over
time suggests a contraction of the technological innovation life cycle. Consequently, this
denotes the potential shortening of the time an organization has to make decisions concern-
ing technological innovation investments. This alone is relevant to resource management
and abandonment optimization. As an example, if innovation diffusion rates are increas-
ing, an organization would be at a disadvantage if its decision speeds do not change [4].
Practitioners must strive to increase decision speeds or be at an increased disadvantage.
Proactive organizations have an advantage over reactive organizations because they are
positioned to make informed decisions quicker [106,107,110]. In addition, the advancement
of this directional inference could challenge, or at the very least, adjust the understanding
of innovation adoption models. If technological innovation diffusion rates are increasing,
the notion of traditional consumer adoption decision processes (innovator, early adopter,
early majority, late majority, and laggards, Rogers [15]) may warrant reexamination [26].

6. Conclusions

In an effort to aid decision-makers in making informed and proactive decisions on
when to abandon a technological innovation, this research endeavors to add macro-based
insights to the limited knowledge area of modeling the speeds at which technological
innovation diffuses. Forecasting does not imply certainty but implies understanding and
reducing uncertainties [111]. Accordingly, if uncertainties are reduced by understanding
the boundaries and the likelihood of achieving a range of technological innovation diffu-
sion rates, value has been created for practitioners and decision-makers. For this study,
diffusion rate data from 42 U.S. technological innovations spanning over 100 years were
used to determine directional and associative insights into diffusion rate likelihoods for the
technological innovation population as a whole. At present, no such macro-based distribu-
tion characterization insights exist in the management or diffusion research literature. As
the dataset expands, the model can be refined and improved. This research offers several
important contributions to understanding the boundaries and likelihood of achieving a
range of innovation diffusion rates: the determination that diffusion rates are positively
skewed when ordered from slowest to fastest, the identification and ranking of proba-
bility density functions that best represent the rates of diffusion, and the conclusion that
they have statistically increased over time. These contributions have prospective practical
managerial implications for practitioners for simplifying, optimizing, and enabling the
proactive assessment of abandonment decisions. As with all science-based disciplines, a
foundational problem-solving tool for practitioners is the simplification of complex and
involved problems, such as the problem of diffusion rate assessment, into manageable
forms. The macro-level knowledge gain in this endeavor on diffusion rates provides a
means of reducing the complexity of forecasting a technological innovation’s diffusion rate
for proactive abandonment optimization, as outlined in Section 5.4.

One of the primary outcomes of an EDA is the development and forwarding of
new exploratory hypothesis in a research area through the examination of patterns and
trends. As such, this endeavor forwards three exploratory hypotheses to be considered
in the future for this research area. First, the data analysis supported inferences that, as
technological innovation diffusion rates increase, their likelihood of occurrence is positively
skewed, forwarding the hypothesis (H1) that the frequency occurrence of U.S. technological
innovation diffusion rates over the past 100+ years is positively skewed when ordered
from slowest to fastest. Next, the data collected and analysis conducted in this EDA effort
advances hypothesis (H2), that U.S. technological innovation diffusion rates, since the early
1900s to present, have statistically increased over time. Lastly, based on the results of the
distribution fit analysis of this effort, a third new exploratory hypothesis was developed,
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(H3), that U.S. technological innovation diffusion rates, since the early 1900s to present,
have followed a right-skewed single modal distribution.

Although this exploratory analysis study makes significant contributions to forward-
ing the knowledge of this topic area, one direction for future research is to extend this
work to expand the dataset with additional technological innovations to further refine
and strengthen inferences to the general population. This goes hand in hand with testing
the exploratory hypotheses put forth in this effort. In addition, the expansion of the data
beyond the United States warrants examination, to investigate whether these results are
universal to other regions. Another future direction for research is the investigation of
the impact of delaying or hastening abandonment, given that technological innovation
diffusion rates can be grouped probabilistically (e.g., slow versus fast diffusion rates).
Investigations into such areas would further provide knowledge to aid practitioners as
to where to assign or remove resources in order to create value for an organization. A
categorization of technological innovations was out of the scope of this exploratory analysis
on the macro-perspective study of technological innovation diffusion rates, but it warrants
future examination since it appears that technological innovation categories are poten-
tially linked to different patterns of development [112,113]. Another future exploration
area is the identification and examination of factors that affect diffusion rate patterns at
the macro level. For example, how do major global events affect diffusion rate patterns,
and are they lasting or temporary? In closing, the macro-based study of diffusion rates
has prospective implications for building and developing forecasting knowledge to aid
resource decision-makers in making informed and proactive decisions on when to abandon
a technological innovation.
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