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Abstract: In this paper, we discuss the problem of channel identification by using eight algorithms.
The first three algorithms are based on higher-order cumulants, the next three algorithms are based
on binary output measurement, and the last two algorithms are based on reproducing kernels. The
principal objective of this paper is to study the performance of the presented algorithms in different
situations, such as with different sizes of the data input or different signal-to-noise ratios. The
presented algorithms are applied to the estimation of the channel parameters of the broadband radio
access network (BRAN). The simulation results confirm that the presented algorithms are able to
estimate the channel parameters with different accuracies, and each algorithm has its advantages
and disadvantages for a given situation, such as for a given SNR and data input. Finally, this study
provides an idea of which algorithms can be selected in a given situation. The study presented in this
paper demonstrates that the cumulant-based algorithms are more adequate if the data inputs are not
available (blind identification), but the kernel- and binary-measurement-based methods are more
adequate if the noise is not important (SNR ≥ 16 dB).

Keywords: channel identification; binary measurement; higher-order cumulants; reproducing kernel;
broadband radio access network (BRAN)

1. Introduction

The identification of single-input single-output (SISO) systems in the blind case (with-
out knowledge of the input system data) has been well studied by using higher-order
statistics [1–5], without employing any restrictive hypotheses about channel zeros, channel-
order overestimation errors, or additive noise color, as well as without increasing the data
stream transmission rate. The shared characteristic of this category of techniques [4] is that
they use a periodically time-varying precoder to provoke cyclo-stationary statistics at the
transmitter (i.e., a simple periodic modulator or a filter bank) and take advantage of the
received samples’ second-order cyclo-stationary statistics. Those algorithms have been
called transmitter-induced multi-stationary-based techniques. Iterative strategies are used
in some types of algorithms for blind channel identification. In these algorithms, an initial
channel estimation is employed by using a symbol predictor to obtain provisional soft esti-
mates of the symbol sequence as it is transmitted. A channel estimator uses these estimates
to optimize the channel parameters. The symbol estimator then uses the improved channel
estimates to optimize the symbol parameters, and so on. The second technique that will be
discussed here deals with the identification of the system based on quantized measurement
and is used in a wide range of applications, such as microfabricated devices [6–8].

The channels under investigation have a non-minimal phase and a selective frequency
(i.e., normalized channels for MC-CDMA: BRAN). In the majority of wireless areas, there
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are numerous hitches in the channels, such as mountains, buildings, and barriers between
the transmitter and the receiver. Many different propagation paths are created by reflections
from these obstacles. Multi-path propagation, or a multi-path channel, is the term for this.
Due to the reverberations and reflection between the transmitter and receiver, the frequency
impulse response of this channel is not leveled (ideal case), but contains some cavities
and bumps. The synchronization required between the transmitter and the receiver is
also a problem in the communication process. To handle this phase estimation problem,
some authors have employed higher-order cumulants (HOCs) in order to investigate the
reliability of these techniques if the channel is influenced by a colored noise [2,9–16]. HOCs
are a significant topic with multiple applications in the field of systems theory, such as
in digital signal recognition [17], automatic modulation classification of real signals [18],
and space-time block code identification [19].

HOCs are only used for non-linear and non-Gaussian processes because the cumu-
lants of a Gaussian process are identical to zero [2,3,20]. There are many real-world
applications that are really non-Gaussian [1–3,21]. In addition, the Fourier transforms
of HOCs, which are called higher-order spectra (or polyspectra), provide an excellent
technique for resolving the problem of equalization technology encountered in commu-
nication. The main attribute of HOCs in terms of equalization is that the channel phase
information is available [4,5,22,23]. As a result, HOCs can be used to estimate the channel
model parameters, even if the phase property (non-minimum phase (NMP) or minimum
phase (MP)) of the channel or of the transmitted data is unknown (under the assumption
of a non-Gaussian distribution) [1–3,24].

A technique founded on binary observation has been employed in a wide range of
applications in industries and telecommunication, such as in chemical process sensors
for a vacuum, the asynchronous transfer mode (ATM), pressure switches, liquid levels,
and industrial sensors for brushless DC motors, shifting using a wire in automotive
applications, and switching sensors for exhaust-gas oxygen ABS [7,25–27]. One of the most
important problems in this wide range of applications is parameter estimation for systems
with binary (or quantized) outputs [7,8,28–32]. Some examples of this field include sensor
networks, telecommunications, and networked control systems. The third type of technique
discussed here in terms of system identification is based on kernel adaptive filtering, which
represents an emerging technique for nonlinear signal processing [33], classification, and
machine learning (regularization networks [34], support vector machines (SVMs) [35]); the
most emblematic attribute is the use of kernel functions, thus permitting the inexpensive
operation of the algorithms in high-dimensional spaces.

The kernel methods are based on a central principle called the kernel trick, which
gives a non-linear characteristic to many traditionally linear methods, as well as on the
theory of reproducing kernel Hilbert spaces (RKHSs); such spaces provide an important
framework for elegantly developing adaptive nonlinear filters. So far, several algorithms,
including the kernel least mean square (KLMS) [36], kernel affine projection algorithm
(KAPA) [37], kernel principal component analysis (KPCA) [38], and kernel recursive least
square (KRLS) [39], have been proposed and effectively applied to nonlinear regression
problems and classification. In addition, to increase the efficiency of kernel adaptive
filtering techniques, some subtypes of these algorithms have also been introduced [40–43]
for channel identification [44] and nonlinear system equalization.

In this paper, we focused on a comparison of the results of channel identification using
some algorithms based on HOCs, binary measurement, or kernel-positive methods. We
selected three algorithms that use the first two techniques (cumulants and binary measure-
ment) and two algorithms that use the last technique (kernel methods). In order to study the
efficiency of these algorithms, we used a practical—i.e., measurable—frequency-selective
fading channel called the broadband radio access network (BRAN) (in particular, BRAN A,
which is for transmission in indoor scenarios). This model radio channel was normalized
by the European Telecommunications Standards Institute (ETSI) in [45,46]. Simulation
results were obtained for different values of SNR and different data inputs.
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This paper is arranged as follows. In Section 2, we discuss the identification problem.
In Section 3, we present three algorithms for channel identification based on higher-order
cumulants. In Section 4, we describe the presentation of the binary output measurement
algorithms. In Section 5, we illustrate the concept of kernel methods for channel iden-
tification and the description of the KRLS and KLMS algorithms. Some simulations for
evaluating the performance of the presented algorithms are shown in Section 6 and, finally,
Section 7 concludes the paper.

2. Problem Statement

Let us consider the finite impulse response (FIR) system described in Figure 1.

xk
H(z−1) +

bk

skyk

Figure 1. Block diagram of the system model.

Where, xk and sk are, respectively, the input and the output, yk is an internal signal
(unknown for algorithms based on binary output measurement), and bk is an additive noise
in this internal signal. We suppose that H has a finite impulse response of length n, where:

yk =
n

∑
i=1

hixk−i + bk (1)

yk can be rewritten as:
yk = θ>φk + bk (2)

or
yk = φ>k θ + bk (3)

where φk =


xk−1
xk−2

...
xk−n

 ∈ Rn and θ =


h1
h2
...

hn

 ∈ Rn

The binary-valued output, which has a fixed threshold C ∈ R, can be represented by:

sk = I(yk) =

{
1, if yk ≥ C
−1, otherwise.

(4)

3. Channel Identification Based on Cumulants

In this section, three algorithms based on higher-order cumulants (HOCs) are pre-
sented. These algorithms can blindly identify the BRAN channel.

3.1. First Algorithm: Alg1

Safi and Zeroual (2004) demonstrated that they could identify the FIR parameters
blindly based only on fourth-order cumulants.

In this paper, we briefly present this algorithm. The mth-order cumulants are [9]:

Cmy(t1, . . . , tm−1) = γmx

q

∑
i=0

h(i)h(i + t1) . . . h(i + tm−1) (5)
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where q is the FIR system order and γmx is the mth-order cumulant—at the origin—of the
input FIR system. Based on Equation (5), they demonstrated that the cumulants of order
m and n of the FIR output, {y(n)}, and the the impulse response coefficients, {h(i)},
with n > m, are linked by the following relationship:

q

∑
j=0

h(j)Cny(j + t1, . . . , j + tm−1, tm, . . . , tn−1) (6)

=
γnx

γmx

q

∑
i=0

h(i)

[
n−1

∏
k=m

h(i + tk)

]
Cmy(i + t1, . . . , i + tm−1)

Based on Equations (5) and (6), Safi and Zeroual (2004) developed an algorithm (Alg1)
based on fourth-order cumulants, which are given as follows:

h(0)h2(q)C4y(0, 0, i + α) =
q

∑
j=0

h3(j)C4y(q, q, j + α) (7)

Based on the hypothesis that the system is causal of order q, j + α is in the interval
[0, q]. For this, we have: 0 ≤ j + α ≤ q ⇒ −j ≤ α ≤ q− j, with 0 ≤ j ≤ q. From this, two
we obtain two inequalities:

− q ≤ α ≤ q (8)

From Equations (7) and (8), they obtained the following system of equations:

0 · · · 0 C4y(q, q, 0)
...

. . .
...

0
C4y(q, q, 0) · · · C4y(q, q, q)

...
. . . 0

...
C4y(q, q, q) 0 · · · 0


×



1
h2(q)

...
h3(i)
h2(q)

...
h3(q)
h2(q)


=



C4y(0, 0,−q)
...

C4y(0, 0, 0)
...

C4y(0, 0, q)

 (9)

In a compact form, the system of Equations (9) can be written as:

Mbq = d (10)

where M, bq, and d are defined in the system of Equations (9). The least squares (LS)
solution, which is found by using the least squares of the system in Equation (10), is
given by

b̂q = (M>M)−1M>d (11)

This solution gives us an estimation of the quotient of the parameters h3(i) and h3(q),

i.e., bq(i) =
(̂

h3(i)
h3(q)

)
, i = 1, . . . , q. So, in order to estimate the parameters ĥ(i), i = 1, . . . , q,

they proceeded as follows:

• The parameters h(i) for i = 1, . . . , q− 1 are estimated from the values of b̂q(i) using
the following solution:

ĥ(i) = sign
[
b̂q(i)(b̂q(q))2

]{
abs(b̂q(i))(b̂q(q))2

}1/3
(12)

with sign(x) =


1, if x > 0;
0, if x = 0;
−1, if x < 0;

and abs(x) = |x| indicates the absolute value of x.
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• The parameters ĥ(q) are estimated by:

ĥ(q) =
1
2

sign
[
b̂q(q)

]{
abs(b̂q(q)) + (

1
b̂q(1)

)1/2

}
(13)

3.2. Second Algorithm: Alg2

Based on Equation (5), the authors of [3] demonstrated the following equation:

q

∑
j=0

h(j)C4y(t1 − j, t2 − j, t3 − j)

=
γ4x
γ2x

ε
q

∑
i=0

h(i)h(i + t2 − t1)h(t3 − t1)C2y(t1 − i) (14)

where ε =

{
γ4x
γ2x

}
. If t3 = t1, the Equation (14) becomes (with h(0) = 1):

q

∑
j=0

h(j)C4y(t1 − j, t2 − j, t1 − j) = ε
q

∑
i=0

h(i)h(i + t2 − t1)C2y(t1 − i) (15)

By applying some algebra to Equations (13)–(15), they obtained the following equation: C4y(2q, 2q, q) . . . C4y(q, q, 0)
...

. . .
...

C4y(2q, 2q, 2q) . . . C4y(q, q, q)

×
 h(0)

...
h(q)

 = ε′

 h(0)
...

h(q)


where ε′ =

C4y(q, q, q)C4y(q, 0, 0)
C4y(q, q, 0)

. Taking into account the properties of cumulants in FIR

systems, i.e., Cmy(t1, . . . , tk, . . . , tm−1) = 0, then tk > q for all k = 1, . . . , m− 1. Thus, the
previous system of Equations (16) becomes:

C4y(2q− 1, 2q− 1, q− 1) . . . C4y(q, q, 0)
C4y(2q− 1, 2q− 1, q)− ε′ . . . C4y(q, q, 0)

0
. . .

...
...

...
0 . . . 0 C4y(q, q, q)− ε′


×

 h(1)
...

h(q)

 =


ε′ − C4y(2q, 2q, q)

0
...
0



In more compact form, this can be written as:

Mhq = d (16)

The parameters {h(i)}, i = 1, . . . , q, can be estimated using the least squares (LS) as follows:

hq = (M>M)−1 M>d (17)

3.3. Third Algorithm: Alg3
In this algorithm, the relationships between the third- and fourth-order cumulants and, even-

tually, the system parameters are established. Safi and Zeroual (2008) demonstrated the following
relationship:

q

∑
i=0

εh(i)C4y(t1, t2 − i, t3 − i) =
q

∑
i=0

h(i)h(i + t3 − t2)C3y(t1, t2 − i) (18)

where ε =
γ3x
γ4x

for different values of t1, t2, and t3 ∈ Z. Based on this equation, they developed

some algorithms.
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In order to identify the channel parameters, {h(i)}, i = 1, . . . , q, they resolved the system of
Equation (18) using the least squares (LS) method based on the following procedure.

In order to simplify the estimation of the channel parameters, they supposed that λ = t1 and
t = t2 = t3. Thus, for each λ, based on the LS method, they could estimate the channel parameters
from the relationship:

q

∑
i=0

εh(i)C4y(λ, t− i, t− i) =
q

∑
i=0

h2(i)C3y(λ, t− i) (19)

For each λ, they could estimate the parameters h(i) using the following equation:

ĥ(λ)(i) =
1
2

{
ε̂h(i)

ε̂
+ sign(

ε̂h(i)
ε̂

)(ĥ2(i))1/2

}
(20)

where λ ∈ [−q, q].

4. Binary Output Measurement Algorithms
4.1. LIMBO Method

The LMS-based identification Method using Binary Observations (LIMBO) [30] is a recursive pa-
rameter estimation method that uses binary observations based on the LMS algorithm. The algorithm
is based on the following assumption:

• A.1: θ>1 θ > 0.
• A.2: φk is a random process such that:

– The probability density function (pdf) of φk
‖φk‖

is non-zero on the unit sphere.

– φk verifies the α-mixing condition [47].

• A.3: bk represents the noise, which is uncorrelated with the input sequence.

The binary output defined in Equation (4) is used in the LIMBO algorithm with threshold C = 0,
and the unknown internal signal yk is defined in Equation (3).

The estimated output is:
ŝk = I(φ>k θ̂k) (21)

where θ̂k represents the estimation of θ at the time k. The LIMBO algorithm is based on the concept
of minimizing the instantaneous error:

Ek =
1
2
|sk − ŝk|ŷk (22)

θ̂k+1 is given by:

θ̂k+1 =
θ̂k − µαk|sk − ŝk|ŷkφk

ωk
(23)

where

• 0 < µ < 1

• ωk =
√

1− 2µ(1− µ)αk|sk − ŝk|ŷ2
k

• αk = 1
φ>k φk

4.2. Recursive Least Squares (RLS) Method
The recursive identification algorithm presented in [28] is based on recursive least squares with

a forgetting factor (RLS-FF), and it uses the binary output defined in Equation (4) and the threshold
C = 0. The algorithm is based on the following assumptions:

• B.1: ‖θ‖ = 1, where ‖.‖ is the l2 norm.
• B.2: At any time k, φ>k θ 6= 0.
• B.3: The noise sequence bk is an i.i.d. sequence of random variables with a mean of zero and

finite covariance, and it is uncorrelated with the input sequence.

The identification is realized such that:

|sk − φ>k θ| < δ. (24)
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with δ < 1.
The estimation of θ is given by:

θ̂k = θ̂k−1 + Γkεk/k−1 (25)

with 

Γk =
Pk−1φkσk

λ+φ>k Pk−1φkσk

Pk = 1
λ (In+1 − Γkφ>k )Pk−1

εk/k−1 = sk − φ>k θ̂k−1.

(26)

where

σk =

{
λ

φ>k Pk−1φk
(| εk/k−1

δ | − 1), if (|εk/k−1| > δ) and (φ>k Pk−1φk > 0)

0, otherwise.
(27)

Finally, 0 < λ < 1 is the forgetting factor.

4.3. Method Based on SVM
The method presented in [29] is based on the use of a supervised learning algorithm—a support vec-

tor machine (SVM)—through the formulation of the identification problem as a classification problem.
We assume that:

• C.1: The static gain of the system is known.
• C.2: yk is such that at any time k, yk 6= C.

The algorithm has two steps:
Step 1: Find C and the solution θ of

minθ,C,e
1
2‖θ‖2 + γ ∑N

k=1 ek,
s.t sk(θ

>φ− C) � 1− ek,
and ek � 0; k ∈ [1, N].

(28)

Step 2: Normalization of the static gain according to assumption C.1, where γ ∈ R+
0 is referred

to as the regularization constant or penalty parameter.

5. Kernel-Based Channel Identification
The identification of nonlinear systems using functional estimates based on the notion of Hilbert

spaces has led to very interesting results in the last decade. Note that linear problems with a finite
order can be taken into consideration to address nonlinear adaptive filtering problems in which the
measured input X has been mapped to a nonlinear Hilbert space H of infinite dimensions with a
Mercer kernel [48]:

κ(xi, xj) = 〈Ψ(xi), Ψ(xj)〉H, ∀(xi, xj) ∈ X 2 (29)

where Ψ maps X into a higher-dimensional spaceH with an inner product 〈., .〉H.
The sequence of samples is transformed by means of a feature map Ψ:

Ψ : X −→ H
x −→ κ(x, .) (30)

To construct the reproducing kernel Hilbert space model, we will use the Gaussian kernel,
which is typically a default selection due to its universal approximation property:

κ(xi, xj) = exp

(
−
‖xi − xj‖2

2σ2

)
, ∀xi, xj ∈ X . (31)

where σ > 0 denotes the kernel bandwidth.
In order to represent the elements of H by using their coordinates, we should give a Hilbert

spaceH an orthonormal base. The associated kernel must be a continuous, symmetric, normalized,
and positive definite function κ : X ×X → R, where the subset X ⊂ RN is compact.
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5.1. Kernel Recursive Least Squares Algorithm
In this subsection, we present the kernel RLS algorithm [39,49–51]. It is an algorithm that

belongs to the category of recursive least squares algorithms. The basic idea is to run the linear RLS
algorithm in the kernel feature space, which is associated with a positive definite kernel κ, via the
feature map Ψ(.), which is defined in Equation (30), to generate the input data:

{(Ψ(x1), s1), (Ψ(x2), s2), ...(Ψ(xn), sn), ...}. (32)

The optimization problem of the kernel RLS algorithm can be expressed as:

min
Ψ∈H

n−1

∑
k=0

λn−k|sk −Ψ(xk)|2 + λk‖Ψ‖2
H (33)

where λ is a positive regularization parameter, sk is the desired response of the system, and Ψ(xk)
designates the corresponding output of the system for xk.

According to the representation theorem [52], the solution to the optimization problem (33) can
be written as:

Ψ(.)n =
m

∑
i=1

θn,kκ(., xk) (34)

where θn = (θn,1, θn,2, ..., θn,n)> is the model coefficient vector. By introducing Equation (34) into
Equation (33), the optimal solution to the problem yields the following:

min
θ

Λ‖sk −Hkθ‖2 + λnθ>Kkθ (35)

where (Hk)k,i = κ(xk, xi), for k, i = 1, 2, ..., n, Kk = (κ(x1, xn), κ(x2, xn), ..., κ(xm, xn))>, and Λ is
a diagonal matrix of size (n, n), of which the (k, k)th element is λn−k. If we consider that Hk is
invertible, the solution of the problem (35) becomes:

θn = PnHk
>Λnsn (36)

with Pn = (Hk
>ΛnHk + λnKk)

−1. At the instant n + 1, a new xn+1 observation is detected at the
input of the system, and we update Hn+1 and sn+1 with Equations (37) and (38), respectively:

Hn+1 =

[
Hn

h>n+1

]
(37)

sn+1 = (s0, s2, ..., sn) (38)

where hn+1 = (κ(xn+1, x1), κ(xn+1, x2), ..., κ(xn+1, xm))>. Then, the equations of the kernel RLS
algorithm are updated according to:

Gn+1 =
λ−1Pn+1hn+1

1 + λ−1h>n+1Pn+1hn+1
(39)

θn+1 = θn + Gn+1(sn+1 − h>n+1θn) (40)

Pn+1 = λ−1Pn

[
1−Gn+1h>n+1

]
(41)

where the term sn+1 − h>n+1θn represents the estimation error.

5.2. Kernel Least Mean Square Algorithm
In this paragraph, we describe the kernel LMS algorithm [36,53]. This algorithm belongs to

the category of stochastic gradient algorithms. The fundamental concept is the execution of the
linear least mean square algorithm in the kernel feature map, which is associated with the positively
defined kernel κ via the feature map Ψ(.) to generate the input data. The update equations of the
LMS algorithm are given by [54]:

en = sn − θ>n−1xn (42)

θn = θn−1 + µenxn (43)
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where en denotes the estimation error, θn represents the weight vector estimate, and µ stands for the
step parameter.

Let us now suppose that the Ψ function map is used to transform the sample sequence; then, we
perform the least mean square procedure for the processed data sequence defined in Equation (32),
so we obtain the kernel LMS:

en = sn − θ>n−1Ψ(xn) (44)

θn = θn−1 + µenΨ(xn) (45)

The biggest distinction of LMS is when it is used in a space with potentially infinite-dimensional
characteristics in Equation (45), which makes direct updating virtually impossible. Rather, we will
use every θn to relate to the initialization θ0:

θn = θ0 + µ
n

∑
i=1

eiΨ(xi). (46)

θn = µ
n

∑
i=1

eiΨ(xi). (if we suppose that θ0 = θ(0) = 0) (47)

The prediction solution is computed by using the kernel trick:

〈θn, Ψ(xn)〉H = µ
n

∑
i=1

ei〈Ψ(xi), Ψ(xn)〉 (48)

= µ
n

∑
i=1

eiκ(xi, xn),

where κ(xi, xn) is a Mercer kernel and n is the number of training samples.

6. Simulation Results
In this section, we will evaluate the efficiency of the presented algorithms for various SNR

values and for a fixed data input N.

6.1. Impulse Response Parameter Estimation
In Figure 2, it can be seen that Alg1, Alg2, and Alg3 gave good results for SNR = 0 dB and a data

input of N = 2000. These estimations of the channel parameters were closer to the measured values if
the number of units of data was important and for SNR > 16 dB; this is due to an important property
of the cumulant: The cumulant of a Gaussian process is zero. In the following (Figures 3 and 4), we
present the estimated parameters in the cases of SNR = 16 dB and 32 dB, respectively, with a fixed
data input of N = 2000.

Figure 2. Parameters of BRAN A estimated using algorithms based on cumulants for SNR = 0 dB
and N = 2000.
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Figure 3. Parameters of BRAN A estimated using algorithms based on cumulants for SNR = 16 dB
and N = 2000.

Figure 4. Parameters of BRAN A estimated using algorithms based on cumulants for SNR = 32 dB
and N = 2000.

Next, we tested the performance of the algorithms based on binary measurement for different
values of SNR and for a fixed data input of N = 2000 in order to make a comparison with the
algorithms based on cumulants.

In Figure 5, we present the results obtained for SNR = 0 dB and N = 2000 when using the
methods based on binary measurement. We can observe in Figure 5 that the channel parameters
estimated based on the SVM method were closer to the measured values than those obtained by
using the RLS and LIMBO methods, which gave values that were very far from those measured.

In Figure 6, we show the estimations of the BRAN A parameters by using the RLS, LIMBO, and
SVM methods in the case of SNR = 16 dB and with a data input of N = 2000. In this case where the
noise is not very important, we remark that the results obtained using the RLS and LIMBO methods
were closer to those obtained in the case in which noise was important (SNR = 0 dB); this result can
be explained by the fact that the rounding errors due to the noise were minimal, which implies an
improvement in the results obtained.
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Figure 5. Parameters of BRAN A estimated using RLS (λ = 0.999, δ = 0.9999), LIMBO (µ = 0.2) and
SVM (γ = 0.1) method for SNR = 0 dB and N = 2000.

Figure 6. Parameters of BRAN A estimated using the RLS (λ = 0.999, δ = 0.9999), LIMBO (µ = 0.2),
and SVM (γ = 0.1) methods for SNR = 16 dB and N = 2000.

If the noise was lower (i.e., the SNR was high), such as with SNR = 32 dB, we observed that
the estimated channel parameters were closer to the measured values (Figure 7), but if the noise was
more important, the estimated channel parameters were significantly different from the measured
values. Note that if the noise was equal to the power of the information signal (i.e., SNR = 0 dB),
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we could see that the estimated channel parameters were very different from the measured values;
this is because of the lack of a filtering operation for the noise, which implies some rounding errors.
However, the SVM method presented good results for different values of SNR; this was due to the
improved classification performance, as well as the ability to manipulate a large volume of data with
a reasonable computational load. Furthermore, this strategy was one that was perfect for minimizing
prediction error. However, due to its simpler and more efficient structure and learning procedure,
the SVM has a second characteristic: It can learn efficiently with small amounts of data.

Figure 7. Parameters of BRAN A estimated using the RLS (λ = 0.999, δ = 0.9999), LIMBO (µ = 0.2),
and SVM (γ = 0.1) methods for SNR = 32 dB and N = 2000.

Figures 8–10 show the estimation of the impulse response parameters of the BRAN A channel
as a function of the path delays by using the kernel-based algorithms for different values of SNR and
N = 2000.

Figure 8. Parameters of BRAN A estimated using KRLS (λ = 0.99) and KLMS (µ = 0.05) for
SNR = 0 dB and N = 2000 with the Gaussian kernel (σ = 0.5).
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Figure 9. Parameters of BRAN A estimated using KRLS (λ = 0.99) and KLMS (µ = 0.05) for
SNR = 16 dB and N = 2000 with the Gaussian kernel (σ = 0.5).

Figure 10. Parameters of BRAN A estimated using KRLS (λ = 0.99) and KLMS (µ = 0.05) for
SNR = 32 dB and N = 2000 with the Gaussian kernel (σ = 0.5).

From Figures 8–10, we can conclude that the estimated amplitude of the BRAN A channel was
very close to the true value, especially for SNR > 16 dB (see Figures 9 and 10). Regarding the impulse
response of the channel in a very noisy environment (Figure 8), the Gaussian noise influenced the
estimated model parameters when using KLMS, and the noise slightly influenced the estimation of
the impulse response parameters, especially when KRLS was used.

6.2. Magnitude and Phase Estimation
Next, we identified the amplitude and phase of the ETSI BRAN A channel for different values

of SNR by setting the data input to N = 2000.
Figures 11–13 represent the results of the estimation of the amplitude and phase by comparing

the measured parameters of the BRAN A channel and the parameters estimated using the algorithms
based on cumulants (Alg1, Alg2, and Alg3). It should be noted that the algorithms based on
cumulants provided remarkable performance. Indeed, if SNR < 16 dB, we obtained good results
with the algorithms based on cumulants, but if SNR > 16 dB, we observed that the algorithms
based on binary measurement gave us better results than the algorithms based on cumulants. It
must be emphasized that the algorithms based on cumulants are simple and have the advantage of



Systems 2021, 9, 46 14 of 19

identifying the parameters with a low calculation cost and without knowledge of the input (blind
identification) in comparison with the methods based on binary measurement, which require the use
of the input and output of the channel.

Figure 11. Estimations of the BRAN A magnitude and phase using algorithms based on cumulants
for SNR = 0 dB and N = 2000.

Figure 12. Estimations of the BRAN A magnitude and phase using algorithms based on cumulants
for SNR = 16 dB and N = 2000.

Figure 13. Estimations of the BRAN A magnitude and phase using algorithms based on cumulants
for SNR = 32 dB and N = 2000.
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The estimations of the amplitude and phase of the BRAN A channel using the methods based
on binary measurement with different SNR values are presented in Figures 14–16. From these figures,
we observe that the shapes of the amplitude and phase estimated with the SVM algorithm are the
same as those of the measured data (Figure 16). We noticed a minor difference between the estimated
and measured values for SNR < 16 dB (Figures 14 and 15). These results are very important because
we are using a very quickly fading channel.

Figure 14. Estimations of the BRAN A magnitude and phase using the RLS (λ = 0.999, δ = 0.9999),
LIMBO (µ = 0.2), and SVM (γ = 0.1) methods for SNR = 0 dB and N = 2000.

Figure 15. Estimations of the BRAN A magnitude and phase using the RLS (λ = 0.999, δ = 0.9999),
LIMBO (µ = 0.2), and SVM (γ = 0.1) methods for SNR = 16 dB and N = 2000.



Systems 2021, 9, 46 16 of 19

Figure 16. Estimations of the BRAN A magnitude and phase using the RLS (λ = 0.999, δ = 0.9999),
LIMBO (µ = 0.2), and SVM (γ = 0.1) methods for SNR = 32 dB and N = 2000.

The curves in Figures 17–19 show the estimations of the amplitude and phase of the BRAN A
channel by using kernel methods (KRLS and KLMS) for a data length of N = 2000 and for different
values of SNR. In Figures 17–19, we present the performance of the KRLS and KLMS algorithms.
We observed that the KRLS algorithm performed better than the KLMS algorithm, which produced
quite large errors. We can conclude from Figure 17 that the phase of the BRAN A channel’s impulse
response estimated by the KRLS algorithm was closer to the true values. However, when using the
KLMS algorithm, the difference between the measured and estimated phase was significantly larger.

The estimated parameters shown in Figures 12, 13, 15, 16, 18, and 19 evidently show that both
KLMS and KRLS achieved higher prediction accuracy than the binary-measurement-based algorithms
and cumulant-based algorithms for all values of SNR. Meanwhile, the performance of KRLS was
also marginally better than that of KLMS, although it had a greater computational complexity.

Figure 17. Estimations of the BRAN A magnitude and phase using KRLS (λ = 0.99) and KLMS
(µ = 0.05) for SNR = 0 dB and N = 2000 with the Gaussian kernel (σ = 0.5).
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Figure 18. Estimations of the BRAN A magnitude and phase using KRLS (λ = 0.99) and KLMS
(µ = 0.05) for SNR = 16 dB and N = 2000 with the Gaussian kernel (σ = 0.5).

Figure 19. Estimations of the BRAN A magnitude and phase using KRLS (λ = 0.99) and KLMS
(µ = 0.05) for SNR = 32 dB and N = 2000 with the Gaussian kernel (σ = 0.5).

7. Conclusions
In this paper, we presented comparisons among three algorithms based on binary measurements,

three algorithms based on higher-order cumulants, and two algorithms based on reproducing kernel
Hilbert spaces. These algorithms were used to estimate the parameters of a broadband radio access
network channel (BRAN A). Results were obtained for different SNR values and for different data
inputs. From this study, we can conclude that both of the kernel algorithms are efficient and effective
in identifying the amplitude and phase of the BRAN A channel compared to the other algorithms
(those based on higher-order cumulants and binary measurements). In general, the algorithms
based on binary measurement gave better results in the estimation of parameters if the SNR is
higher than 16 dB (i.e., SNR ≥ 16 dB), but if the noise was more present (i.e., SNR < 16 dB), the
algorithms based on cumulants gave better results than those obtained by algorithms based on
binary measurement; this was because the cumulants of the Gaussian process (here, we supposed
that the noise had a Gaussian distribution) were null. We can add that if the size of the data input
is important, the estimation of the cumulants will be approximately without bias, which implies a
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good estimation of the channel parameters. Future work will focus on developing techniques for
identifying communication channels by using kernel methods.
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