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Abstract: A constructive approach is provided for the reconstruction of stationary and non-stationary
patterns in the one-dimensional Gray-Scott model, utilizing measurements of the system state at
a finite number of locations. Relations between the parameters of the model and the density of
the sensor locations are derived that ensure the exponential convergence of the estimated state to
the original one. The designed observer is capable of tracking a variety of complex spatiotemporal
behaviors and self-replicating patterns. The theoretical findings are illustrated in particular numerical
case studies. The results of the paper can be used for the synchronization analysis of the master–slave
configuration of two identical Gray–Scott models coupled via a finite number of spatial points and
can also be exploited for the purposes of feedback control applications in which the complete state
information is required.
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1. Introduction

The Gray–Scott model [1,2], which is a simple prototype for models of complex isother-
mal autocatalytic reactions, is governed by a pair of coupled reaction–diffusion equations

∂ta = Da∂2
z a− ab2 + α(1− a), (1a)

∂tb = Db∂2
zb + ab2 − (α + β)b, (1b)

with homogeneous Neumann (non-flux) boundary conditions

∂za(t, 0) = ∂za(t, L) = 0, t ≥ 0, (1c)

∂zb(t, 0) = ∂zb(t, L) = 0, t ≥ 0, (1d)

and initial conditions given by

a(0, z) = a0(z), z ∈ Ω, (1e)

b(0, z) = b0(z), z ∈ Ω, (1f)

where a(t, z) ∈ R≥0 and b(t, z) ∈ R≥0 denote the concentrations of two chemical species
at time t ∈ [0, ∞) and at position z ∈ Ω := (0, L), L > 0, parameters Da, Db, α, and
β are positive scalars, initial conditions a0, b0 ∈ L2(Ω). The space of square integrable
functions f : Ω → Rn, n ∈ N is denoted by L2(Ω) and it is equipped with the norm
‖ f ‖ = (

∫
Ω | f (z)|

2dz)
1
2 , where | · | denotes the absolute value and will also indicate the l2

norm, i.e., the Rn distance, depending on whether its argument is a vector or scalar.
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System (1) has a trivial steady state (a, b) = (1, 0) (which is locally stable even with
respect to spatially inhomogeneous perturbations) and may exhibit a variety of irregu-
lar spatiotemporal patterns in response to finite-amplitude perturbations [2,3] (see also
Figure 1). These also include a diversity of complex dynamical regimes ranging from steady
states and stationary periodic solutions to traveling waves, pulse splittings, spatiotempo-
ral chaotic behavior, and mixed modes having time-dependent spatial structures [4]. In
particular, the dynamics of self-replicating patterns of the Gray–Scott model have been
investigated in [2,5,6], the existence of Bogdanov–Takens and Bautin bifurcations of spa-
tially homogeneous states have been studied in [7], the existence of a global attractor has
been proven in [8]. Pattern formation capabilities and the underlying mechanisms of the
Gray–Scott model in 1D and 2D domains have been reported and analyzed by mathemati-
cal analysis methods [9–11], by computer simulations [12–15], and by experiments [16,17].
Interestingly, the complex dynamical behavior of the Gray–Scott model attracts scientists
from diverse research domains ranging from material science and geology to theoretical
biology. Thus, the Gray–Scott pattern generation mechanisms have been applied to the
design of adaptive bio-inspired composite microstructures with optimized stiffness and
toughness characteristics [18] and to the magmatic ore deposit modeling [19] that accounts
for instabilities in giant hydrothermal ore systems. Similar pattern generation mecha-
nisms have been examined in [20] for the mussel beds self-organization phenomenon in
Wadden Sea.
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(a) Initial profile (a0, b0) = (1, 0) is per-
turbed to (a0(z), b0(z)) = (0.5, 0.25) at loca-
tions z ∈ (0.925, 1.05) and z ∈ (1.925, 2.05).
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(b) Stationary pattern for α = 0.02951 and
β = 0.058.
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(c) Non-stationary pattern of the concentra-
tion b for α = 0.02, β = 0.047.

Figure 1. Typical patterns generated by the Equation (1) in the interval (0, 2.5) with diffusion coefficients Da = 2 · 10−4 and
Db = 10−4. Both patterns (b,c) emerge from the same initial conditions (a) but for different sets of parameters α, β.

Due to the broad application area and practical relevance of the Gray–Scott model, the
control of processes modeled by these equations is of a primary interest. In particular, effects
of a time-delayed feedback control on the emergence and development of spatiotemporal
patterns have been studied in [21,22]. It has been shown how different control regimes
can stabilize uniform steady states or generate bistability between the uniform state and
a traveling wave [21] and lead to the bifurcations of Turing patterns [22]. The impulsive
control and synchronization problem of spatiotemporal chaos in the Gray–Scott model
have been addressed in [23,24]. In particular, a class of pinning impulsive controller has
been designed to stabilize and synchronize the spatiotemporal chaotic behavior. The
discussed feedback control methods require the knowledge of the complete system state
at every point of the spatial domain Ω. This requirement is hardly compatible with real
applications in which the sensors can deliver only the point-wise measurements. Thus, the
state reconstruction is required for the Gray–Scott model, whose behavior is very sensitive
to the perturbations of the initial data.

For the Gray–Scott model, the observer design techniques, together with the unknown
parameters identification and the observer-based synchronization, have been proposed
in [25–27] using the extensions of the high-gain extended Kalman filter. It is worth noting
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that these works are based on the early-lumping approach and hence make use of finite-
dimensional ODE approximations of the Gray-Scott model, which can be derived from (1)
via space discretization. In contrast, the present paper attempts at closing this gap and
follows the late-lumping approach that will rely directly on the original PDE description (1).

This paper aims at reconstructing stationary patterns and track spatiotemporal behav-
ior of the one-dimensional Gray–Scott model utilizing measurements at a finite number of
spatial locations. This task will be carried out by designing an observer, i.e., an auxiliary
PDE system whose state asymptotically converges to the state of the original system in
an appropriate norm as time goes to infinity. To this end, the pointwise innovation (PWI)
estimator approach presented in [28] for a class of exothermic tubular reactors with multi-
ple measurements will be extended to a class of autocatalytic chemical processes (1). The
idea of the PWI scheme for distributed parameter systems has been developed in [28–31],
where the sensor location is determined by a suitable detectability analysis in terms of
the Lipschitz constant of the nonlinearity and the dominant eigenvalue of the linear dif-
fusion–convection operator. Following this approach, the current paper proposes an
exponentially convergent observer by direct injection of measurements into the observer
dynamics at the measurement points. This introduces an algebraic constraint, which is
implemented as an additional Dirichlet boundary condition at the sensor locations.

The initial conditions for the model (1) are assumed to be restricted to arbitrary func-
tions a0, b0 ∈ L2(Ω), whose graphs are contained in the rectangle (0, L)× [0, 1]. Despite the
complexity of the spatiotemporal behavior in (1), the quasi-positiveness and ’mass-control
structure’ of the reaction terms [32] allow for deriving a priori bounds and certain regu-
larity results regarding solutions to this class of reaction-diffusion systems. In particular,
following the reasoning of [33] (Theorem 2), for any initial condition a0, b0 ∈ L2(Ω) with
0 ≤ a0(z) ≤ 1 and 0 ≤ b0(z) ≤ 1 for all z ∈ Ω there exists a unique classical solution to (1)
uniformly bounded [0, ∞)×Ω, i.e., there exists positive constants ha = ha(Da, Db, α, β)
and hb = hb(Da, Db, α, β) such that

sup
t∈[0,∞),z∈Ω

|a(t, z)| ≤ ha and sup
t∈[0,∞),z∈Ω

|b(t, z)| ≤ hb. (2)

The paper is organized as follows. Main results of the paper are stated in Section 2. In
particular, the observer setup and the estimation of the observation errors are presented
in Sections 2.2 and 2.3, respectively. Numerical examples are discussed in Section 3.
Conclusions and a short outlook in Section 4 complete the paper.

2. Observer Design
2.1. Available Measurements and Main Results

Let m + 1 be the measurements be available for the concentrations a and b at positions
z = ζi ∈ Ω̄ := [0, L], i = 0, . . . , m, m ∈ N so that ζ0 = 0, ζm = L, and zi − zi−1 =: di > 0 for
all i = 1, . . . , m. System (1) is then equipped with the outputs

ya
i (t) = a(t, ζi), yb

i (t) = b(t, ζi), t ≥ 0, i = 0, . . . , m. (3)

A particular case of m = 1 with d1 = L corresponds to the availability of boundary
measurements only, i.e., no in-domain measurement points. The main result of the paper is
given in the following theorem.

Theorem 1. Let the initial conditions a0, b0 ∈ L2(Ω) for system (1) satisfy 0 ≤ a0(z) ≤ 1 and
0 ≤ b0(z) ≤ 1 for all z ∈ Ω. Then, there exist constants σi > 0, i = 1, . . . , m such that the state of
the Gray–Scott model (1) can be asymptotically reconstructed from the measurements (3) provided
that di ≤ σi, i = 1, . . . , m.

Remark 1. In this paper, the asymptotic reconstruction of the state refers to the construction of
auxiliary PDEs with pointwise measurement injections (called observer) whose state asymptotically
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converges to the original state of (1) in the L2 sense. The initial conditions for the original system
are assumed to be unknown. In Section 2.3, it will be shown that the mentioned convergence is
exponential.

A constructive proof of Theorem 1 consists of the observer design and the analysis
of its convergence to the original state of the system. The proof is provided in the two
following Sections 2.2 and 2.3.

2.2. Observer Setup

Following the observer design approach proposed in [28] for a class of tubular reac-
tor models consisting of semi-linear coupled diffusion-convection-reaction systems, the
observer is set as a copy of system (1a) and (1b) with the in-domain injection of available
measurements ya

i , yb
i at respective locations ζi, i = 1, . . . , m:

∂t â = Da∂2
z â− âb̂2 + α(1− â) (4a)

∂t b̂ = Db∂2
z b̂ + âb̂2 − (α + β)b̂ (4b)

â(t, ζi) = ya
i (t), t ≥ 0, i = 0, . . . , m (4c)

b̂(t, ζi) = yb
i (t), t ≥ 0, i = 0, . . . , m (4d)

â(0, z) = â0(z), z ∈ Ω (4e)

b̂(0, z) = b̂0(z), z ∈ Ω. (4f)

The measurement locations ζi, i = 0, . . . , m split Ω into m intervals Ii = (ζi−1, ζi),
i = 1, . . . , m with ζ0 = 0 and ζm = L. At each measurement location an inhomogeneous
Dirichlet-type boundary condition is imposed on the observer, so that the dynamics of the
estimated concentrations a and b can be partitioned into m uncoupled estimates âi(t, z) and
b̂i(t, z), z ∈ Ii, i = 1, . . . , m, respectively. Therefore, the observer dynamics can be written
as a set of PDEs defined on the domain z ∈ Ii, i = 1, . . . , m

∂t âi = Da∂2
z âi − âi b̂2

i + α(1− âi), (5a)

∂t b̂i = Db∂2
z b̂i + âi b̂2

i − (α + β)b̂i, (5b)

with boundary conditions

âi(t, ζi−1) = ya
i−1(t), t ≥ 0, (5c)

âi(t, ζi) = ya
i (t), t ≥ 0, (5d)

b̂i(t, ζi−1) = yb
i−1(t), t ≥ 0, (5e)

b̂i(t, ζi) = yb
i (t), t ≥ 0, (5f)

and initial conditions

âi(0, z) = â0(z), z ∈ Ii, (5g)

b̂i(0, z) = b̂0(z), z ∈ Ii. (5h)

The actual concentration estimate for â and b̂ at a given location z ∈ Ω can be deter-
mined as

â(t, z) =
m

∑
i=1

âi(t, x)χi(z), b̂(t, z) =
m

∑
i=1

b̂i(t, x)χi(z). (6)

by means of the characteristic functions χi, i = 1, . . . , m defined by

χ1(z) =

{
1, z ∈ I1 ∪ {ζ0, ζ1}
0, otherwise

,
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and

χi(z) =

{
1, z ∈ Ii ∪ {ζi}
0, otherwise

, i = 2, . . . , m.

2.3. Proof of Theorem 1

In Section 2.3, the observer error dynamics will be derived and its convergence analysis
will be performed based on the conditions of Theorem 1. For any i = 1, . . . , m let ai and
bi denote the restriction of the functions a and b to the domain (of definition) [0, ∞)× Ii.
Introducing the estimation errors ãi(t, z) = âi(t, z)− ai(t, z) and b̃i(t, z) = b̂i(t, z)− bi(t, z),
i = 1, . . . , m the error dynamics is given by

∂t ãi =Da∂2
z ãi − αãi − (ai + ãi)(bi + b̃i)

2 + aib2
i , (7a)

∂t b̃i =Db∂2
z b̃i − (α + β)b̃i + (ai + ãi)(bi + b̃i)

2−aib2
i . (7b)

Dirichlet boundary conditions

ãi(t, ζi−1) = ãi(t, ζi) = 0, t ≥ 0, (7c)

b̃i(t, ζi−1) = b̃i(t, ζi) = 0, t ≥ 0, (7d)

and initial conditions

ãi(0, z) = â0(z)− a0(z), z ∈ Ii, (7e)

b̃i(0, z) = b̂0(z)− b0(z), z ∈ Ii, (7f)

for i = 1, . . . , m. For any a, b ∈ L2(Ω) let ϕ(a, b) := ab2. Denoting ∆ϕi(ai, bi, ãi, b̃i) =
ϕ(ai + ãi, bi + b̃i)− ϕ(ai, bi), i = 1, . . . , m, problem (7) can be rewritten in the form of the
initial-value problems for the corresponding evolutionary equations

d
dt

ãi(t) = Aa
i ãi(t)−∆ϕi(ai(t), bi(t), ãi(t), b̃i(t)), t > 0, (8a)

ãi(0) = â0 − a0 ∈ L2(Ii), (8b)

and

d
dt

b̃i(t) = Ab
i b̃i(t)+∆ϕi(ai(t), bi(t), ãi(t), b̃i(t)), t > 0, (8c)

b̃i(0) = b̂0 − b0 ∈ L2(Ii), (8d)

for ãi(t) = ãi(t, ·) ∈ L2(Ii), b̃i(t) = b̃i(t, ·) ∈ L2(Ii), ai(t) = ai(t, ·) ∈ L2(Ii), bi(t) =
bi(t, ·) ∈ L2(Ii), i = 1, . . . , m with operators

Aa
i = Da∂2

z − α, Ab
i = Db∂2

z − (α + β). (9)

defined on the domains

Di = { f ∈ H2(Ii) : f (ζi−1) = f (ζi) = 0}, (10)

i = 1, . . . , m, where H2(Ii) denotes the Sobolev space of twice differentiable functions
whose second derivative is in L2(Ii).

Following monotonicity arguments [34] and the global existence and boundedness con-
ditions for reaction-diffusion systems [33], there exist positive constants ĥa = ĥa(Da, Db, α,
β, ha, bb) and ĥb = ĥb(Da, Db, α, β, ha, hb) such that

sup
t∈[0,∞),z∈Ω

|â(t, z)| ≤ ĥa and sup
t∈[0,∞),z∈Ω

|b̂(t, z)| ≤ ĥb. (11)
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Denoting h̄a = max{ha, ĥa}, h̄b = max{hb, ĥb} and taking (2) and (11) and continuous
differentiability of ϕ with respect to its arguments into account, the reaction term ∆ϕ admits
the following L2-estimate∥∥∆ϕi(ai, bi, ãi, b̃i)

∥∥ =
∥∥ϕ(ai + ãi, bi + b̃i)− ϕ(ai, bi)

∥∥
=

√∫
z∈Ii

|ϕ(ai(z) + ãi(z), bi(z) + b̃i(z))− ϕ(ai(z), bi(z))|2dz

≤
( ∫

z∈Ii

(
max

|ai(z)|≤h̄a ,|bi(z)|≤h̄b

∣∣∂ai ϕ(ai(z), bi(z))
∣∣ · |ãi(z)|

)2

+
(

max
|ai(z)|≤h̄a ,|bi(z)|≤h̄b

∣∣∂bi
ϕ(ai(z), bi(z))

∣∣ · |b̃i(z)|
)2dz

) 1
2

≤ La‖ãi‖+ Lb∥∥b̃i
∥∥

. (12)

with La = h̄2
b, Lb = 2h̄a h̄b.

Lemma 1. The operators Aa
i and Ab

i , i = 1, . . . , m are infinitesimal generators of C0-semigroups
of contractions Sa

i and Sb
i with decay bounds

νa
i = −

(
α + Da

π2

d2
i

)
, νb

i = −
(

α + β + Db
π2

d2
i

)
, (13)

i.e., ∥∥Sa
i (t)

∥∥
0 ≤ eνa

i t, t ≥ 0, i = 1, . . . , m, (14a)∥∥Sb
i (t)

∥∥
0 ≤ eνb

i t, t ≥ 0, i = 1, . . . , m, (14b)

where the operator norm ‖·‖0 is defined as ‖A‖0 = sup
‖x‖6=0

‖Ax‖
‖x‖ .

Proof. The proof is based on the property that the solutions to the associated Sturm–Liouville
problem, i.e., the eigenfunctions of operators Aa

i , form a Riesz basis of L2(Ii) [35]. By
the spectrum determined growth assumption [36], the decay bound νa

i coincides with
the largest eigenvalue Aa

i , i.e., νa
i = −

(
α + Daπ2/d2

i
)
. Similarly, the respective decay

rate νb
i = −

(
α + β + Dbπ2/d2

i
)

can be derived for the operator Ab
i . This completes the

proof.

Since operators Aa
i and Ab

i , i = 1, . . . , m are infinitesimal generators of C0-semigroups
and the reaction term ∆ϕi in the error-system (7) is Lipschitz continuous in ãi and b̃i,
uniformly in t on bounded intervals, the error-system (7) has a unique local mild solution
for any ãi(0, ·), b̃i(0, ·) ∈ L2(Ii) [37] (Theorem 1.4, Chapter 6). Following Lemma 1 the
implicit solution to (7) can be then written as

ãi(t)=Sa
i (t)ãi0−

∫ t

0
Sa

i (t− τ)∆ϕi(ai(τ), bi(τ), ãi(τ), b̃i(τ))dτ,

b̃i(t)=Sb
i (t)b̃i0+

∫ t

0
Sb

i (t− τ)∆ϕi(ai(τ), bi(τ), ãi(τ), b̃i(τ))dτ,

i = 1, . . . , m. Taking the norms of both sides of the above inequalities and accounting
for (12) and (14) it follows that

∥∥ãi(t)
∥∥ ≤ eνa

i t∥∥ãi0

∥∥+∫ t

0
eνa

i (t−τ)(La∥∥ãi(τ)
∥∥+ Lb∥∥b̃i(τ)

∥∥)dτ,∥∥b̃i(t)
∥∥ ≤ eνb

i t∥∥b̃i0

∥∥+∫ t

0
eνb

i (t−τ)(La∥∥ãi(τ)
∥∥+ Lb∥∥b̃i(τ)

∥∥)dτ,



Systems 2021, 9, 71 7 of 12

i = 1, . . . , m. Denoting the right-hand sides of the latter inequalities by ξa
i and ξb

i , respec-
tively, and differentiating ξa

i , ξb
i w.r.t. t we obtain

d
dt

ξa
i (t) = νa

i eνa
i t∥∥ãi0

∥∥+ La∥∥ãi(t)
∥∥+ Lb∥∥b̃i(t)

∥∥
+ νa

i

∫ t

0
eνa

i (t−τ)(La∥∥ãi(τ)
∥∥+ Lb∥∥b̃i(τ)

∥∥)dτ

= νa
i ξa

i (t) + La∥∥ãi(t)
∥∥+ Lb∥∥b̃i(t)

∥∥
≤ (νa

i + La)ξa
i (t) + Lbξb

i (t)
d
dt

ξb
i (t) = νb

i eνb
i t∥∥b̃i0

∥∥+ La∥∥ãi(t)
∥∥+ Lb∥∥b̃i(t)

∥∥
+ νb

i

∫ t

0
eνb

i (t−τ)(La∥∥ãi(τ)
∥∥+ Lb∥∥b̃i(τ)

∥∥)dτ

= νb
i ξb

i (t) + La∥∥ãi(t)
∥∥+ Lb∥∥b̃i(t)

∥∥
≤ Laξa

i (t) + (νb
i + Lb)ξb

i (t),

i = 1, . . . , m. Introducing the vector notation ξi = (ξa
i , ξb

i )
> the last inequalities can be

written as

ξ̇i ≤

:=Λi︷ ︸︸ ︷(
νa

i + La Lb

La νb
i + Lb

)
ξi, i = 1, . . . , m. (15)

If the matrix Λi from (15) is Hurwitz for every i = 1, . . . , m then the corresponding ξi
converges exponentially to zero and, therefore, the L2-norms of the observation errors ãi, b̃i
vanish when time t→ ∞. Conditions

α + Da
π2

d2
i
+ α + β + Db

π2

d2
i
> La + Lb, (16a)

(
La −

(
α + Da

π2

d2
i

))(
Lb −

(
α + β + Db

π2

d2
i

))
> LaLb (16b)

imply that the trace trΛi < 0 and the determinant detΛi > 0 and, therefore Λi is Hurwitz
for any i = 1, . . . , m. Inequalities (16a) and (16b) can always be satisfied by choosing
sufficiently small di, i.e., if sensor locations are sufficiently dense in Ω. Let us denote this
value of di by σi. Then, it is clear that (16a) and (16b) are also satisfied for any di ≤ σi,
i = 1, . . . , m. This completes the proof of Theorem 1. The observer is given by the family of
PDEs (5) and the estimates for the concentrations a and b are obtained using (6).

3. Numerical Case Studies and Discussion
3.1. Example 1 (Stationary Pattern)

Model (1) is considered on the domain Ω = (0, 2.5) with parameters Da = 2 · 10−4,
Db = 1 · 10−4, α = 0.02951, β = 0.058 and the initial conditions (a0, b0) = (1, 0) which are
perturbed to (a0(z), b0(z)) = (0.5, 0.25) at locations z ∈ (0.925, 1.05) and z ∈ (1.925, 2.05)
(see Figure 1a). The corresponding stationary pattern is depicted in Figure 1b. Thirteen
measurement points are distributed uniformly over Ω. The initial values for the observer
are selected at the steady state (â0, b̂0) = (1, 0). The evolution of the system and the
observer states are depicted in Figure 2. The corresponding observation errors are given
in Figure 3 showing the convergence of their norms to zero as t→ ∞. All simulations in
Example 1 (and Example 2) are performed in MATLAB using pdepe-function and approxi-
mate solutions are plotted on 103 × 103 space-time discretization mesh.
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Figure 2. A comparison of the evolution of the system and the observer states for Example 1.
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(a) Evolution of ã. Red lines denote measurement locations.
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(b) Evolution of the L2-norms of ã and b̃.

Figure 3. Observation errors for Example 1.

3.2. Example 2 (Non-Stationary Pattern)

Model (1) is considered in the domain Ω = (0, 2.5) with parameters Da = 2 ·
10−4, Db = 1 · 10−4, α = 0.02, β = 0.047 and the initial conditions (a0, b0) = (1, 0) which are
perturbed to (a0(z), b0(z)) = (0.5, 0.25) at locations z ∈ (0.925, 1.05) and z ∈ (1.925, 2.05)
and to (a0(z), b0(z)) = (0.25, 0.75) at locations z ∈ (0.25, 0.375). A comparison of the origi-
nal behavior and the observer with six uniformly distributed sensors is given in Figure 4
and the corresponding observation errors are provided in Figure 5. The norms of these
errors converge to zero as t → ∞. Additionally, the observation errors for the observers
with 3, 6, 11, 51, and 126 equidistant measurement locations are depicted in Figure 6.
These numerical simulations demonstrate that the smaller gaps di between sensors lead to
smaller observation errors and their faster convergence to 0. This convergence is exponen-
tial provided a sufficiently large number of sensors is used, i.e., the distances di between
sensors satisfy (16). The initial conditions for all observers are selected at the steady state
(â0, b̂0) = (1, 0).
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z
(a) Original pattern.

t â

z
(b) Observer with 6 sensors.

Figure 4. A comparison of the original evolution of a and â for the observers with 6 measurement locations for Example 2.

t

z

ã

(a) Evolution of ã with 6 sensor locations (red lines).

t

‖ã0‖

‖b̃0‖

(b) Evolution of the L2-norms of the observation errors ã and b̃.

Figure 5. Observation errors for the observer with 6 sensors for Example 2.

For the system parameters Da, Db, α, β, and initial conditions used in Examples 1 and 2,
the uniform bounds of the concentrations can be taken as h̄a = h̄b = 1. Then, (16) suggests
that 125 sensors are required to guarantee the convergence of the observer’s state to the
real states of both systems from Examples 1 and 2. The simulations, however, show that
13 and 6 sensors are sufficient for Example 1 and Example 2, respectively. There are two
reasons for this conservatism: (i) Lipschitz-type estimates of the reaction nonlinearities and
rough estimates of their gradients; (ii) Theoretical results guarantee the convergence of the
error for any initial conditions, while the simulations use particular ones.

Taking this into account, the theoretical result of the current paper provides a funda-
mental statement on the possibility of pattern reconstruction by choosing a sufficiently
large number of measurement points. For the simulations and real experiments this num-
ber can be considered as a tuning parameter. Interestingly, if the number of sensors is
less than the value required to satisfy (16), the non-stationary patterns and spatiotemporal
chaotic behavior are more likely to be properly tracked with the observer (5) compared to
the asymptotically stable stationary patterns. The reason for this is that the perturbation
terms ∆ϕi in (8) oscillate in a relatively wide range of values for the case of non-stationary
behavior whilst these terms can be permanently large in particular spatial intervals Ii
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when the state profile is close to the stationary pattern. In these intervals, the observer state
may diverge from the real state if the corresponding di, i = 1, . . . , m are larger than the
required theoretical value defined in (16).
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Figure 6. Evolution of ‖ã(t)‖+
∥∥b̃(t)

∥∥ (i.e., the sum of L2-norms of the observation errors) for Example 2 depending on
the number of equidistantly located sensors for t ∈ [0, 5000] (top figure) and t ∈ [0, 50] (bottom figure). The observer with
3 sensors does not converge to the original system, whereas all other observers converge to the original system with the
convergence rate increasing with the number of sensors.

4. Conclusions and Outlook

The paper proposes a constructive state estimation technique for the one-dimensional
Gray–Scott model utilizing the state measurements at a finite number of spatial locations.
Sufficient conditions are derived which ensure the exponential convergence of the estimated
state to the original one. The proposed state reconstruction technique can be utilized for
the feedback control schemes which require the knowledge of the complete state of the
system. Complete state feedback of reaction-diffusion systems are often used for the
control of semiconductor nanostructures [38] and particular examples of the control of
patterns in the Gray–Scott model via delayed state feedback can be found in [21]. In
addition, inequalities (16a) and (16b) can be reformulated as sufficient conditions for the
synchronization of the master-slave configuration of two identical 1D Gray–Scott models
coupled via a finite number of spatial locations.

It is of interest to obtain more precise estimates of the invariant subspaces for the
concentrations a, b, and a + b depending on the system parameters, initial conditions,
and spatial interval. Numerical simulations of [3,5] suggest that neither a nor b are O(1)
throughout the whole pattern. For instance, during a peak in b, it has been observed that b
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is ‘large’, while a becomes ‘small’. This additional information might lead to more precise
estimates of the constants La, Lb used in the proof of Theorem 1. Also, it is of interest to
study possible improvements of the observer’s performance by adding an output injection
term (i.e., the difference between the measured and estimated output weighted with some
observer gain) directly into the observer PDEs and by optimizing the non-uniform spacing
between measurement locations. Another challenging direction is the observer design with
a finite number of measurement locations for the Gray–Scott model defined in 2D and
higher-dimensional spatial domains.

The observer design approach proposed in this paper assumes the knowledge of
the model and all its parameters. This assumption may not always be compatible with
real applications and experimental setups. Therefore, a fusion of the proposed state
estimation technique with the simultaneous parameter identification could be of interest
for future research.
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