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Abstract: Recently, the Logic-in-Memory (LiM) concept has been widely studied in the literature.
This paradigm represents one of the most efficient ways to solve the limitations of a Von Neumann’s
architecture: by placing simple logic circuits inside or near a memory element, it is possible to obtain
a local computation without the need to fetch data from the main memory. Although this concept
introduces a lot of advantages from a theoretical point of view, its implementation could introduce
an increasing complexity overhead of the memory itself, leading to a more sophisticated design
flow. As a case study, Binary Neural Networks (BNNs) have been chosen. BNNs binarize both
weights and inputs, transforming multiply-and-accumulate into a simpler bitwise logical operation
while maintaining high accuracy, making them well-suited for a LiM implementation. In this paper,
we present two circuits implementing a BNN model in CMOS technology. The first one, called
Out-Of-Memory (OOM) architecture, is implemented following a standard Von Neumann structure.
The same architecture was redesigned to adapt the critical part of the algorithm for a modified
memory, which is also capable of executing logic calculations. By comparing both OOM and LiM
architectures we aim to evaluate if Logic-in-Memory paradigm is worth it. The results highlight that
LiM architectures have a clear advantage over Von Neumann architectures, allowing a reduction in
energy consumption while increasing the overall speed of the circuit.

Keywords: Logic-in-Memory (LiM); Von Neumann’s bottleneck; memory-wall

1. Introduction

Nowadays Logic-in-Memory (LiM) architectures are widely studied in order to solve the
memory-wall problem, which is a bottleneck due to the communication between processing units and
memories. A LiM implementation consists of very small computational units placed near a memory
element. This enables a distributed computation instead of a classical Von-Neumann one. The big
advantage of this design procedure is the reduction of the Von Neumann bottlenecks (such as fetching
latency and the wasted power due to the communication between CPU-Memory), which enables also
a very fast and energy-efficient structure. From a theoretical perspective, they bring many advantages,
but are they worth it?

To answer to this important question, we have to consider implementing a LiM architecture by
modifying the original structure of the memory, creating a structure that merges computation and
memory Figure 1. As a natural consequence, the overall complexity of the customized design flow
increases. To explore the features of a LiM implementation more in depth, two architectures have been
designed, an Out-Of-Memory (OOM) that follows a classical Von Neumann approach and the derived
LiM novel alternative. The performance obtained in both cases is subsequently compared.
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Figure 1. Von Neumann’s classical architecture (a) composed of CPU and memory. Logic-in-Memory
(LiM) novel architecture (b) that merges computation and memory.

As a case study, a memory-intensive application, a Neural Network (NN), was chosen, since it is
a good candidate to demonstrate the benefits of a LiM architecture. NNs are used to perform very
complex tasks such as speech and image recognition in a very efficient and accurate way. Convolutional
Neural Network (CNN) and Multi-Layer Perceptron (MLP) models are employed and both can achieve
very high accuracy. In literature, many CNNs have been proposed: they can be distinguished by
their task, complexity and achieved accuracy. Considering image classification applications, the most
common CNNs are LeNet-5[1] and AlexNet [2]. LeNet-5 is a very small network which is able to
achieve a TOP-1 error rate of 0.35% on the Modified National Institute of Standards and Technology
dataset (MNIST dataset). AlexNet is a more complex structure largely used for recognizing RGB
images, which achieves a TOP-5 error rate of 16.4% on the ImageNet dataset. Also GoogLeNet [3],
VGG-Net [4] and ResNet-152 [5] can be used on the same dataset and achieve 6.67%, 7.3% and 3.6%
TOP-5 error rates respectively. In general, these models require a lot of computational resources
implying very high energy consumption, thus making them inoperable in low energy contexts like
embedded applications.

In this work, a binarized NN is chosen. Binary Neural Network (BNN) approximations have
been proposed in several works like BinaryConnect (BC) [6], Binary-Weight Network (BWN) and
XNOR-Net [7], in order to reduce the computational complexity by changing the weight-inputs
precision, by means of a binarization process. Weights, and eventually inputs, are approximated with
only two values (−1,+1), that can be represented on a single bit, ’0’ indicates −1 and ’1’ indicates +1.
The chosen approximation for this work is the XNOR-Net [7]. The XNOR-Net reaches high accuracy
rates compared to the original floating-point model and is particularly well suited for a LiM solution,
since the binary multiplication can be performed by a simple XNOR gate. While a specific Neural
Network model was chosen, the architectures were developed with reconfigurability in mind, meaning
that most NNs can be implemented by the hardware. Our goal is to demonstrate the effectiveness of a
LiM design, so our contributions in this work can be summarized as:

1. Realization of a reconfigurable OOM architecture implementing the XNOR-Net model and
proposal of a possible design approach for a LiM alternative.

2. Identification of strong and weak points of a LiM solution with many NN models of different
sizes and complexities.

3. Detailed performance evaluations with 45 nm @ 1.1 V CMOS technology. The estimations are
performed with a synthesis and .vcd-based post place and route simulations for two models: a
CNN and an MLP network respectively. The tools involved in this step are Synopsys Design
Compiler for the synthesis, Mentor Modelsim for the simulation and Cadence Innovus for the
place and route phase.

4. Generalized performance estimations for both architectures by means of parametric sweeps
obtained from several synthesis processes with 45 nm @ 1.1 V technology. The aim is to compare
the implementations with several different parameters and to identify the main differences.
Discussion of the obtained results are provided and a qualitative comparison between the
implementations are reported in Section 6.3.1.
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5. A state-of-the-art comparison between our LiM and the Content addressable memory based
implementation proposed in [8]. In our designs, memories are implemented as register files
and each memory cell is a flip flop, since we didn’t have the possibility to implement a custom
memory. Consequently, the performance values obtained represent an overestimation of a real
case. To determine how a real memory model impacts the results obtained, parameters from [8]
are taken into account. Reference [8] implements a XNOR-Net LiM design with 65 nm CMOS
technology, so in our synthesis procedure we used CMOS 65 nm technology @ 1.0 V to have a
fair comparison.

6. Conclusions and discussions for future work.

The rest of the paper is organized as follows: Section 2 gives a brief explanation on what a LiM
architecture is and recalls a useful classification from [9]. Section 3 discusses briefly NN background,
giving an overview on what its main components are; binary approximations are compared and
explained in more details. Section 4 reports the detailed design flow adopted for both OOM and
LiM architectures and Section 5 makes an initial qualitative comparison between them. In Section 6,
performance evaluations are reported, firstly taking two NN models as a case study and then by
performing parametric sweeps. Lastly, Section 7 presents conclusions and future work.

2. LiM Background

A Quick Overview

LiM concept is widely discussed in the literature and a lot of different approaches have been
adopted. In [9] an interesting classification of the various types of LiM paradigms is presented.
Four possible typologies can be found.

1. Computation near Memory [9] where part of the computing blocks are moved in the memory
proximity proposing solutions such as WIDE-IO2, which is a 3D stacked DRAM memory [10]
with a logical layer placed at the bottom of the stack. Data are moved from the DRAM layers to
the logical one employing Through-Silicon Vias (TSVs) and the result is then written back to one
of the available DRAM layers. 3D stacked DRAM combined with TSVs allow to shorten the paths’
lengths that data have to travel to reach the computational core, reducing the Von Neumann
bottlenecks and improving efficiency.

2. Computation in Memory [9] paradigm is used in solutions with resistive arrays, based on
technologies such as Magnetic Tunnel Junction (MTJ) devices [11]. MTJ is a component that
can have two discrete resistance values, according to the direction of the magnetizations of its
ferromagnets: if they are parallel, the MTJ is in low resistance state (RP) meaning more current
flowing through it, otherwise, they are in antiparallel configuration (RAP) with highest resistance.
These resistance states can be mapped in a logic fashion as logic ’0’ if they are antiparallel, logic
’1’ otherwise. By arranging multiple MTJs in a matrix configuration, both memory and logic
operations can be performed analogically. Several works use MTJ devices. In [12], Generative
Adversarial Network (GAN) implementation has been proposed. This Neural Network consists
of a discriminator (D), that works as a detective in the training process, and a generator (G) as a
deceiver in a semi-supervised fashion. In these networks, training is a critical issue so hardware
accelerators are demanded. Reference [12] improves the so-called adversarial training process by
using an array made of MTJs which simplifies the calculation of multiply-accumulate operations
with ternary weights (W ∈ {−1, 0, 1}), transforming them into bulk In-Memory additions and
subtractions. This work achieves remarkable results in term of efficiency and processing speed
with respect to GPUs and ASICs. In [13], authors have developed a MTJ-based convolution
accelerator in which the memory array is capable of performing bulk AND operations. They have
included a small external logic which is in charge of computing the accumulations. Based on a
similar working principle, Resistive Random-Access-Memory (RRAM) [14] are devices in which
the logic data is encoded in two or multiple resistive states. Differently from MTJs, resistance is
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determined by the conductivity of a conduction path that can be broken (high resistance state) or
reformed (low resistance state). Sometimes it is used in a 1 transistor 1 RRAM (1T1R) configuration,
to avoid unwanted or sneak current paths. In [15], authors have presented a memristor-based
implementation of a BNN able to achieve both high accuracy on MNIST and IRIS dataset and
low power consumption. In some others, improvements in memristor architectures have been
proposed that enable multiple bits per cell. Reference [16] has exploited the frequency dependence
of GeSeSn-W memristor devices to obtain multiple conductance values representing different
weights. In [17], the memory array has been modified, including up to 4 memristors arranged
in parallel in the same cell, in order to have multiple resistance values and so higher precision
weights. Based on a similar approach to [12], a GAN training accelerator has been discussed in
[18] which is able to efficiently perform approximated add/sub operations in a memristor array,
achieving both speed-up and high energy efficiency.

3. Computation with Memory [9] concept consists of memory arrays that intrinsically perform
calculations. Possible examples can be Content Addressable Memories (CAM) and Look-up tables.

4. Logic-in-Memory [9] is the concept that we are analyzing in this work, in which small
computational units are placed inside or near a memory cell, to perform distributed computation.

As can be deducted, LiM is a widely studied and heterogeneous topic, and it is becoming
increasingly important over the years. A lot of works presented in literature implement an
application-specific LiM solution. The discussed emerging technologies are very promising, especially
in Neural Networks applications, because of their high efficiency to compute multiply-accumulate
operations [16]. In our work, we concentrated on CMOS technology because, while it is not the best
available, RRAM and MTJ devices are still under development. As future task, we will focus our
attention on them once these circuits are optimized.

3. Neural Networks: An Introduction

3.1. Neuron’s Model

A NN is a computational model that is able to perform very complex tasks. It is composed of
“neurons”, which are the basic building blocks. By organizing them in an interconnected network, the
NN can take decisions and learn when these decisions are wrong [19].

In Figure 2 a neuron structure example is depicted. As it is possible to see, it is made of two
main parts which are net, which is in charge of weighted sum computation, and f (net), which is an
activation function applied to the neuron’s output. In general, net expression can be written as:

net =
N

∑
i=0

Xi ×Wi + Bias (1)

where Xi is the input value, Wi is the corresponding weight and Bias is an additive term.
Neurons’ weights and biases can be adjusted to achieve the desired output with a procedure called
training.
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net f(net)
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W2X2
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out = f(net)

f(net): activation function

net =
∑N=2

i=0 Xi ×Wi +Bias

Figure 2. Schematic of a neuron, representing its structure. Three inputs example [19].

In Figure 2, it is indicated another part which is the activation function f (net). Usually, this
is a nonlinear function. The most important activation functions are Rectified Linear Unit (ReLU),
hyperbolic tangent (tanh) and sigmoid function, which are discussed in great details in [20].

3.2. Neural Network’s Structure

Usually, NNs are made up by layers, which are composed of a set of arranged neurons. The most
common structures are Convolutional Neural Network and Multi-Layer Perceptron.

In Figure 3 it is reported the LeNet5 CNN as example. The network is composed of 2 convolutional,
2 pooling and 3 fully connected (FC) layers. Each of them is discussed in detail:

• Convolutional layers perform the convolution operation of the input feature map (IFMAP) with a
set of weights called kernel. An example of a convolution computation is depicted in Figure 4.
The parameter taken into account are the kernel’s weights, the input feature map and the stride.
After the first convolution is finished, the kernel window is moved by a step equal to stride, and
a new convolution can start. In this example, the convolution computation match perfectly the
neuron’s equation reported in Equation (1), in fact after a convolutional layer is usually used an
activation function to normalize the results. In the LeNet 5 CNN [1] example in Figure 3, all the
convolutional layers have the same 5× 5 kernel sizes. The first one produces six output feature
maps (OFMAPs), meaning that the same IFMAP has been convolved with six different kernels.
The second convolutional layer instead produces 16 OFMAPs, starting from 6 IFMAPs: for each
input, there are 16 kernels that produce 16 outputs, so 16 from the first IFMAP, 16 for the second
IFMAP and so on. This implies a total number of OFMAPs equals to

#OFMAPs = 6× 16 (2)

To obtain 16 OFMAPs indicated by LeNet 5 scheme, the obtained OFMAPs of each layer are
added together.

These considerations bring to the following formula for a convolutional layer, derived from [21]:

yo(j, i) = Biaso +
#Cin−1

∑
cin=0

Wy−1

∑
k=0

Wx−1

∑
p=0

ko,cin(k, p)× Xo,cin(j× stride + k, i× stride + p) (3)

where i, j are the indexes for the OFMAP corresponding pixel, cin is the input channel index,
#Cin the total number of input channels, Wx, Wy are the kernel’s matrix size indicating number
of rows and columns respectively, o subscript refers to the OFMAP considered and p, k are the
kernel’s indexes.

• Pooling layers have a similar behavior to convolutional layers. In the literature, different kind
of poolings are used such as average or max pooling [22]. They perform the maximum (or
the average) of the selected input pixels and returns only one value, performing the so-called
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subsampling operation. Pooling, and more specifically max pooling, is widely used to reduce the
size and the complexity of the CNN. In Figure 3, the kernel size is 2× 2 for all the cases.

• FC layers are MLP subnetworks included in the CNN to perform the classification operation. They
are made of layers of fully interconnected neurons, as shown in Figure 3.

14× 14× 6

10× 10× 16

LeNet5 CNN example

Fully Connected

32× 32

Input image

Convolutional layer

28× 28× 6

Pooling layer

5× 5× 16

1
2
0

8
4

1
0

Figure 3. Structure of LeNet 5 Convolutional Neural Network (CNN) [1], composed of 2 convolutional,
2 pooling and 3 fully connected layers and their sizes are indicated in the model.
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Figure 4. Convolution computation example with a 2×2 kernel.

There are also normalization layers (not reported in Figure 4). One of the most used is the Batch
Normalization (BatchNorm) [23] that is very useful in BNNs to recover a portion of the accuracy lost
from the binarization [24]. BatchNorm equation is reported from [23]:

X̃ =
X− µ√
σ2 + ε

× γ + β (4)
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where µ, σ are the batch mean and variance, while γ, β are correction values. These four variables are
trainable, meaning that during training procedure they are modified in order to increase the accuracy.
ε is usually added to the variance to avoid 0 division if the variance is 0. ε is a very small number, so
the following approximation for non-zero variance can be made:

X̃ ≈ X− µ

σ
× γ + β = X× γ

σ
+

(
−µ× γ

σ
+ β

)
= X× A + B (5)

3.3. Binary Approximation

Since NN are very complex models, they can be very power hungry and implementing them on
low energy budget systems, like in embedded application, can be challenging [25]. For this reason,
a BNN approximation is chosen, trying to reach a good trade-off between complexity and accuracy.
In [7] is presented an interesting comparison between some BNN approximations, introducing also
XNOR-Net. The values are recalled in Figure 5. In the plot, TOP5 is intended as the accuracy
classification rate to hit one out of five most probable classes. In the plot, TOP5 is intended as the
accuracy rate to hit 1 out of 5 most probable classes. The BNNs accuracy are compared with the
original floating-point implementation (FP) of AlexNet neural network [2].
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Accuracy comparison of different approximations

AlexNet model

Figure 5. TOP5 accuracy comparison between different binary approximations [7].

In the considered approximation, all the weights are in binary format, meaning that w ≈ wb ∈
{−1, 1} where wb is the binary weight value. The binarization techniques are now briefly summarized
from [7].

• BWN [7] binarizes only weights of the NN, keeping at full precision the activations and the inputs.
By binarizing only weights, the convolution operation can be performed only with adds and
subtractions, avoiding multiplication as reported in Equation (6) [7].

Convout,BWN = X ∗ w + Bias ≈ α(X ∗ wb) + Bias (6)

An extra factor α is multiplied to the convolution result, in order to compensate precision losses [7]:

α =
∑N

i=0 ‖wi‖
N

(7)
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where wi is the considered full precision weight and N is the number of weights. BWN is a very
good alternative useful to reduce CNN’s complexity. However it requires full precision inputs
and activations.

• XNOR-Net [7] binarizes both weights and inputs. The convolution result is obtained by performing
the binary convolution and multiplying by a correction factor α (the same in Equation (7)) and a
matrix K. K is defined in Equation (8).

K =

First term︷ ︸︸ ︷
∑#Cin−1

cin=0 |X(:, :, cin)|
#Cin

∗

Second term︷ ︸︸ ︷


1
Wx ×Wy

1
Wx ×Wy

...

1
Wx ×Wy

1
Wx ×Wy

...

...
...

. . .




(8)

In Equation (8), the first term indicates the absolute punctual sum of the multiple IFMAPs divided
by the number of input channels, thus the number of IFMAPs. The second term is a regular matrix
of Wx ×Wy size, which contains 1

WxWy
in all positions. Finally, the XNOR-Net convolution can be

rewritten as [7]:
Convout,XNOR−Net ≈ (Xb ~ wb) ·K× α (9)

where Xb is the binarized input, ~ is the binary convolution, · is punctual multiplication and × is
a simple product. In [7] the binary convolution is performed considering the XNOR pop-counting
of binary inputs/weights. XNOR truth table matches to the multiplication if -1 is mapped to logic
’0’ and +1 is logic ’1’. Pop-counting computes the difference between the number of 1s and the
number of 0s of the input sample.

• BC [6] binarizes both inputs and weights, without applying any correction factor to the final
convolutional equation. This implies less recognition accuracy as shown in Figure 5. Taking into
account all the considerations on the binarization techniques, we chose XNOR-Net [7] as reference
model since it represents a very good trade-off between accuracy and complexity.

3.4. NN Implementations Based on LiM Concept

The LiM approach is often applied in NNs’ implementations. Some of them are considering
the binary approximations, choosing an implementation based on emerging technologies.
Some works [12,13,26,27] are based on MTJ technology while [15–18,28,29] have used RRAM. In each of
these works the resistive element is used to perform simple logical operations based on current sensing
technique. In [26,27,30,31] several Binary Convolutional Neural Networks (BCNNs) implementations
are discussed: they achieve very good results in terms of energy and power, thanks to the intrinsic
low power nature of the MTJ and RRAM devices. Reference [28] proposes a BNN design based on
SRAM array. The logic parts perform the computations and are disposed below the memory array.
The memory parts enable to store the required parameters for the NN computation (like weights and
biases) and the logic parts compute the results for the next layer, forming an alternation between
memory-logic. This architecture achieves very good performance in terms of energy and speed, thanks
to its pipelined-like structure. In [29], the NN has been mapped in a Wide-IO2 DRAM, using TSVs as
high speed communication link obtaining remarkable results in terms of execution time.

4. OOM and LiM Architectures

Here we discuss the adopted processing flow more in detail. The goal of a LiM architecture is
to move part of the computation inside a memory array, which already contains the needed logical
elements to complete the calculations. Using as a case study the XNOR-Net, we can derive that the
main part of the algorithm is the calculation of the XNOR products combined with pop-counting to
determine the result of the binary convolution. The adopted design flow is the following:
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• Design of a classical architecture, called OOM, capable of implementing the XNOR-Net model;
• Derive a LiM alternative, defining what are the building blocks inside a memory cell;
• Qualitative comparison of the architectures, describing the advantages and disadvantages of both

of them;
• Performance estimation and comparison by means of synthesis and place and route procedures of

two NN models;
• Performance estimation of different NN models.

4.1. OOM Architecture Design

4.1.1. Single Input/Multiple Output Channels Design

By looking at Equation (9) and Figure 6, the core part of the OOM architecture is composed of a set
of XNOR gates and a pop-counter. In Figure 6, a tiny example of a 2× 2 convolution is reported: since
the dimension of the kernel is 4, the total number of XNOR gates required are 4, because each of them
performs a multiplication. In general, their number must be at least equal to Wx ×Wy. NNs’ kernel
sizes depend on the model chosen, for example in AlexNet the maximum kernel size is 11× 11 [2] or
in LeNet5 is 5× 5 [1]. The flexibility of the hardware circuit depends strictly on how big the kernel
size is considered, so a worst-case analysis must be taken into account. To best of our knowledge,
kernel sizes higher than 11× 11 are very seldom, since accuracy usually decreases with bigger filter
sizes. Binarized inputs/weights are fed directly to XNOR inputs from a memory implemented as
a register file (RF) in the design, named Binary Input RF in Figure 7. In Binary Input RF, each row
contains all the input elements required for a convolutional window computation, implying a bitwidth
size equals to Wx ×Wy bits. Regarding the number of rows, they have to be at least equal to the total
number of convolutional windows D2

out required, which is also the dimension of the OFMAP. Dout can
be computed considering kernel, IFMAP sizes (Din) and the stride.

Dout =
Din −Wx

stride
+ 1 (10)

Also in this case, the number of memory rows D2
out has to consider the maximum OFMAP size of

the NN model considered. When a different OFMAP has to be computed, the weight set is simply
switched by using a multiplexer. The total number of multiplexer is equal to the maximum number of
OFMAPs, called number of output channels (#Cout) of the NN. In Equation (10), it is indicated only
Wx, since usually the kernels are regular matrices with Wx = Wy.

Regarding the pop-counting computation, handling many parallel inputs requires too many
hardware resources. For this reason, the outputs of the XNOR gates are multiplexed and only one
of them is processed per clock cycle. A pop-counter can be simply implemented with an adder, a
NOT gate and a register as shown in Figure 8. Together with the pop-counting circuit, the main
computational part has been called XNOR-Pop Unit, as shown in Figure 7.
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Figure 6. Example of Binary convolution based on XNOR-Pop procedure.
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Figure 7. Out-Of-Memory (OOM) main computational part. Each Binary Input RF’s row holds the
binary inputs required for a convolutional window computation, while weights are provided by an
external memory. The outputs of the XNOR gates have been multiplexed to reduce the computational
overhead of the pop-counting part.
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+

Incoming bit

4

Figure 8. Four bits example of a pop-counter circuit.

4.1.2. Multiple Input Channels Design

Many CNNs have multiple IFMAPs in input. Each convolutional window must be computed
separately and, in the end, summed together to get the resulting OFMAP. This can be obtained by
increasing the level of parallelism of the architecture, having multiple XNOR-Pop Units working at
the same time. As can be seen in Figure 9, a Cin number of XNOR-Pop Units are required and a final
accumulation circuit computes the sum of the single channels. XNOR-Pop Units are multiplexed to
reduce the hardware complexity for bigger networks.

Counter

D
ec
o
d
er

W
L

XNOR-Pop Unit

Cin

A
cc
u
m
u
la
ti
o
n

Figure 9. Multiple input channels OOM design.

4.1.3. FC Layer Integration

Until this point, the convolution algorithm has been mapped on the hardware architecture
described so far. To implement the fully connected layer the same circuit can be reused by simply
inverting weights and inputs sources. To better understand this concept, the example reported in
Figure 10 is considere. The weights values for each input neuron are w0

0, w0
1, w0

2 for X0, w1
0, w1

1, w1
2 for

X1 and w2
0, w2

1, w2
2 for X2. The output O0 can be computed considering Equation (11).

O0 = pop-count(X0 ⊕ w0
0, X1 ⊕ w1

0, X2 ⊕ w2
0) (11)



J. Low Power Electron. Appl. 2020, 10, 7 12 of 34

X1X2

X0

X1

X2

O0

O1

O2

w0
0 w1

0

Binary Input RF

w2
0

X0

X0 ⊕ w0
i

w2
1

X1 ⊕ w1
i

w1
1w0

1

w0
2 w1

2 w2
2

X2 ⊕ w2
i

X0

X1

X2

O0

w0
0

w1
0

w2
0

Figure 10. Example of a 3-3 FC network mapping.

As depicted in Figure 10, the Binary Input Register File (RF) contain the binary weights instead of
the inputs, in fact by addressing each line the multiplication of the weights with inputs is performed,
and then pop-counted.

The size of the Binary Input RF is also bounded to the FC network’s characteristics, so the relations
of width-height of the Binary Input RF are the following:

{
Memory sizex = max(Wx ×Wy, #input neuronsFC)

Memory sizey = max(Dout, #output neuronsFC)
(12)

Although this is the straight forward way to map an FC algorithm on the architecture, this can be
very complex with a high number of input neurons. Considering LeNet5 [1] depicted in Figure 3, the
first FC layer has 120 output neurons, that can be acceptable, but for more sophisticated algorithms like
AlexNet [2], which has 4096 input neurons, makes this kind of scheduling very inefficient. A generic
output neuron’s equation Oi is given by

Oi =
4095

∑
j=0

Xj × wj
i + Bias = X0 × w0

i + X1 × w1
i + ... + X4095 × w4095

i + Bias (13)

this sum can be computed by performing fewer number of adds per each clock cycle. The partial result
is stored and added in each clock cycle. The algorithm steps become:

Store temp(0) = 0

Store temp(1) =
n

∑
j=0

Xj × wj
i + Store temp(0)

Store temp(2) =
2n

∑
j=n+1

Xj × wj
i + Store temp(1)

...

(14)

where n is the total number of considered terms for each summation and Store temp holds temporary
additions partial results.

Figure 11 shows an example of serialization of 2 input neurons per cycle, meaning that only a
subset of weights (highlighted by the dashed lines in the figure) are stored inside the Binary Input RF.
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The partial result is computed and then temporarily stored in each algorithmic step. In Equation (14),
n is 2 and consequently the Memory size values can be rewritten as

{
Memory sizex = max(Wx ×Wy, n)

Memory sizey = max(Dout, #output neuronsFC)
(15)
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Figure 11. Example of serialization of the FC computation.

4.1.4. OOM Convolution-FC Unit

A scheme of the complete OOM architecture is now provided in Figure 12 and each element’s
functionality is reported in details.
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Figure 12. Complete OOM architecture. The thicker red dashed line frames the units which are the
main components of the SurroundingLogic unit. Inputs are provided to the SurroundingLogic unit
from the external world. Outputs are processed and saved outside in the testbench.
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• XNOR-Pop Unit is the block described before, which takes Binarized weights/inputs and
computes the resulting binary convolution;

• Store temp is a register file that holds the partial FC values, resulting from the scheduling described
in Section 4.1.3. As the XNOR-Pop Unit’s Binary Input RF, which is depicted in Figure 7, it is
addressed by the same counter, since only one neuron is processed per time. Only the output
coming from the first XNOR-Pop Unit is taken, because FC requires only one input channel to
be executed;

• K and α units are in charge of computing K and α values, as required by XNOR-Net convolution
approximation expressed in Equation (9). Since K are matricial values, a register file has been
inserted in the design to hold them;

• Convolution Computation Unit (CCU) performs the final calculation to provide the convolutional
result, which is the formula reported in Equation (9). Moreover, it applies BatchNorm, if required
by the algorithm: its coefficients are computed offline and provided by the external testbench.

4.2. LiM Architecture

4.2.1. XNOR-Pop LiM Unit

The design driving concept of a LiM architecture is to increase as much as possible the level
of parallelism. Starting from the OOM standard implementation, we designed two LiM arrays that
perform XNOR bitwise and pop-counting operations. Since we didn’t have the possibility to implement
a custom memory, we used as memory element a flip flop and a static CMOS based logical part.

These choices imply a higher power and area estimation in the synthesis phase, that will be
discussed more in details in Section 6. Regarding the XNOR part, the idea is to put a XNOR gate inside
each memory cell and to perform the binary product between the content of the cell and an external
binary input. An example is depicted in Figure 13, in which is shown how a simple 2× 2 convolution
is mapped inside a LiM array. In order to perform the bitwise multiplication between the binary input
and the corresponding weight, as we can see from the example in Figure 13 the highlighted portion of
IFMAP has to be convolved with the kernel in the following way:

Incoming bit0 = pop-count(X0 ⊕ w0, X1 ⊕ w1, X4 ⊕ w3, X5 ⊕ w3) (16)

Since one of the XNOR inputs is hardwired to an external connection, it is sufficient to store
inside the memory array the input required to perform the convolution. The same for the following
row line: the convolution is performed with the same kernel, so each memory row corresponds to a
convolutional window.

Regarding pop-counting procedure, in order to reduce the complexity of the memory cell, we can
simplify the pop-count equation in the following way:

pop-count = #1s− #0s = 2× #1s− length(word) (17)

where length(word) is intended as the size of the array entering in the pop-counter, which is 4 in
Figure 13. A ones counter is simply made of half adders (HA) connected as depicted in Figure 14, so in
the pop-counting part there will be a HA for each memory cell. Figure 15 provides an overview of the
entire LiM implementation. It is possible to distinguish between LiM XNOR part and the LiM ones
counter whose detailed architectures are depicted in Figures 13 and 14 respectively. Together, with the
multiplexer depicted in Figure 15, they form the LiM XNOR-Pop unit.
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Figure 13. XNOR part of the XNOR-Pop Unit LiM implementation: example of 2× 2 kernel and 4× 4
IFMAP sizes with stride 1.
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Figure 14. Example of a 4 bits ones counter LiM implementation.

4.2.2. LiM convolution-FC Unit

From the previous considerations, the entire LiM architecture can be designed as shown in
Figure 15.
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Figure 15. LiM entire architecture. The main blocks of the LiM implementation are the LiM XNOR part,
interface decoder, LiM one-counter, and shifters-subtractors for the pop-counting computation, that are
replicated for Cin number of times. The surrounding logic is the same as the OOM case reported in
Figure 12.

The Surrounding logic unit remains the same, since the interface has been kept between OOM-LiM
XNOR-Pop units. The other units are replicated #Cin times, depending on the total number of input
channels required by the algorithm. The LiM alternative can achieve a higher level of parallelism,
because XNOR-ones counter parts can perform the operations in parallel. In Figure 15, there are also
“<< 1” blocks: they perform the shift by 1 position, corresponding to multiplication by 2.

4.3. Top-Level Entity

The top-level entity contains both the Convolution-FC, Pooling circuits. Pooling is simply made
of a multiplexed comparator that takes the maximum out of Wx ×Wy number of inputs. The top-level
entity contains also an Interface, which is in charge of dispatching the inputs coming from the testbench
and to provide the results of Pooling/Convolution-FC to the outside. The top-level entity can be
schematized in Figure 16.

Pooling Convolution-FC

Control unit

Interface

Inputs Outputs

top-level entity

Figure 16. Top-level entity of both LiM and OOM architectures.
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5. Qualitative Comparison OOM-LiM Architectures

In order to make a qualitative comparison, algorithm execution time was considered as a
benchmark parameter. We can distinguish between convolution, fully connected and max pooling
execution times, since they are completely different. The computation is based on a CNN, since it
generally contains all of those layers. The CNN’s parameters are not specified, since we are doing a
parametric estimation.

5.1. OOM Execution Time

5.1.1. Pooling Layer

In our analysis we start from Pooling layer. As said in Section 4.3, Pooling is made of a simple
multiplexed comparator. The input scanning ends when all them have been considered, so after an
entire pooling window content is evaluated. This value is multiplied by the total number of pixels of
the resulting OFMAP obtaining

Pooltime ≈ D2
out(pool) × (Wx(pool) ×Wy(pool))× tck = D2

out(pool) × (W2
x(pool))× tck (18)

where D2
out(pool) is the pooled OFMAP size. The worst-case filter dimension is set to W2

x for both
convolutional and pooling.

5.1.2. Convolutional Layer

At the beginning of the convolution algorithm, the binary inputs are precharged inside the Binary
Input RF and K matrix is computed in the meanwhile, meaning that for each input set are required
W2

x clock cycles. Since an entire OFMAP has a number of pixels equals to D2
out(conv), the total number

of cycles required in this step are D2
out(conv) ×W2

x clock cycles. After that, convolution is performed:
considering Figure 7, an entire convolutional window is computed when all the XNOR outputs have
been scanned. The number of XNOR gates is equal to the Binary Input RF’s word length, which is
W2

x . By multiplying the time required by a convolutional window computation with the total number
of convolutional windows D2

out(conv), we get the total convolution time which is Convolutiontime,OOM.
The last contribution set is the BatchNorm, that can applied after each convolutional window and α

computation together with results’ storing. Each of them takes only 1 clock cycle. We can derive the
equation for the convolutional layer execution time with 1 input/output feature map as follows.

Convolutiontime,OOM ≈




Store inputs & K computation︷ ︸︸ ︷
D2

out(conv) ×W2
x +

Convolution & BatchNorm︷ ︸︸ ︷
D2

out(conv) × (W2
x + 1) +

α - Store results︷ ︸︸ ︷
(1 + 1)


× tck (19)

When multiple output channels are considered, the convolution windows computation has to be
repeated for each of the OFMAP:

Convolutiontime,OOM ≈
Store inputs & K computation︷ ︸︸ ︷

D2
out(conv) ×W2

x ×tck+

+ Cout ×




Convolution & BatchNorm︷ ︸︸ ︷
D2

out(conv) × (W2
x + 1) +

α - Store results︷ ︸︸ ︷
(1 + 1)


× tck

(20)

the last situation is the multiple input/output channels case. Since the convolution operation is
parallelized, the convolutional windows coming from each XNOR-Pop Unit is added in a serial fashion.
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This means that to achieve the final convolution value, each contribution has to be added together
before executing the BatchNorm. The final Convolutiontime expression is the following.

Convolutiontime,OOM ≈
Store inputs & K computation︷ ︸︸ ︷

D2
out(conv) ×W2

x ×tck+

+ Cout ×




Convolution & BatchNorm multiple Cin︷ ︸︸ ︷
D2

out(conv) × (W2
x + 1 + Cin) +

α - Store results︷ ︸︸ ︷
(1 + 1)


× tck

(21)

5.1.3. FC Layer

For the FC computation, we have to consider the scheduling explained in Section 4.1.3. As the
convolution case, the algorithm starts precharging the inputs inside the array, taking Dout(FC) clock
cycles, where Dout(FC) is the total number of output neurons. Since the dimension of the Binary Input
RF is Memory sizex, only Memory sizex input neurons are considered per time, so as performed for
the convolutional layer, the time required for a FC output is equal to Dout(FC) ×Memory sizex that
has to be added to the previous contribution. FC results have to be stored, and this can be made by
scanning the content of Store temp register (depicted in Figure 12), taking Dout(FC) clock cycles. The
execution time for a single step of the FC scheduling is given by:

FCtime,OOM ≈




Store inputs︷ ︸︸ ︷
Dout(FC) +

FC output computation︷ ︸︸ ︷
Dout(FC) ×Memory sizex +

Store temp scanning︷ ︸︸ ︷
Dout(FC)


× tck (22)

this partial result has to be repeated by the total number of iterations (niter) required to calculate the
FC layer. The final FC execution time expression is:

FCtime,OOM ≈


niter ×




Store inputs︷ ︸︸ ︷
Dout(FC) +

FC output computation︷ ︸︸ ︷
Dout(FC) ×Memory sizex


+

Store temp scanning︷ ︸︸ ︷
Dout(FC)


× tck (23)

5.2. LiM Execution Time

Similarly to the OOM case, Pooling, Convolution and FC execution times are provided and
explained. Since Pooling layer is the same in both cases, it is not analyzed in this part.

5.2.1. Convolutional Layer

As already done in OOM, the array has to be precharged taking D2
out(conv) clock cycles. After that,

all the XNOR gates inside the XNOR part work together at the same time, and the Interface Decoder,
which is depicted in Figure 13, takes one by one each XNOR result and provide it to the ones counter.
When all XNORs’ output have been scanned after W2

x clock cycles, the ones counter results are stored
inside the LiM ones counter reported in Figure 15. At this point, all the LiM ones counter values must
be fetched for each input channel, requiring Cin × D2

out clock cycles to perform the residual part of the
algorithm. The final formula for the LiM convolution execution time is

Convolutiontime,LiM ≈
Store inputs & K computation︷ ︸︸ ︷

D2
out(conv) ×W2

x ×tck+

+ Cout ×




Convolution & BatchNorm multiple Cin︷ ︸︸ ︷
W2

x + D2
out(conv) × (1 + #Cin) +

α - Store results︷ ︸︸ ︷
(1 + 1)


× tck

(24)
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5.2.2. FC Layer

Similarly to the OOM case, we have scheduled the algorithm to reduce the complexity.
After Dout(FC) clock cycles required to store the values inside the LiM array, an entire FC step is
computed in Memory sizex clock cycles and the final results are scanned from the LiM ones counter in
Dout(FC) cycles. In LiM architecture, the Store temp register file is not required since the pop-count
values are already stored in the LiM part. By iterating the entire algorithm niter times, we get the final
FC execution time:

FCtime,LiM ≈


niter ×




Store inputs︷ ︸︸ ︷
Dout(FC) +

FC output computation︷ ︸︸ ︷
Memory sizex


+

Store temp scanning︷ ︸︸ ︷
Dout(FC)


× tck (25)

5.3. Comparison Results

The results obtained by performing the ratio between OOM/LiM execution times are now
provided. The previous part, and in particular Sections 5.1 and 5.2 take into account an approximate
computation of the execution time, since the overheads of idle/dummy states were not considered
for sake of simplicity. In this part, we show the real estimations that consider all the contributions.
Considering Figure 17, it is possible to see how delay ratio (obtained as execution time OOM/execution
time LiM) changes in different cases. A series of sweeps were made, considering the most important
variables, in particular #Cin, #Cout, Wx, Din, Dout( f c), niter. On the vertical axes, there is Delay ratio in
all plots. Some of the estimations were performed considering the convolution timing equations
reported in Equations (21) and (24). These plots are are labelled with “Convolution computation” flag
in Figure 17. The remaining one consider FC delay expressions reported in Equations (23) and (25).
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Figure 17. Delay ratio obtained as OOM/LiM for different parameters, in order to see how the two
architectures behave for different cases.

• Delay ratio vs #Cin & Wx: the Delay ratio with respect to #Cin has a decreasing trend because, as
shown in Figure 15, the Interface Decoder, the multiplexers placed after the LiM ones counter and
the serial accumulation of the values of each channel represent a bottleneck for LiM architecture.
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As a result a higher execution time for higher values of #Cin is observed. In general, for high
values of Wx, the Delay ratio increases, because of the parallelization in LiM architecture.

• Delay ratio vs #Cin & #Cout: the trend for #Cin is the same as the previous case. For high values of
#Cout, we can expect a very good Delay ratio efficiency, because LiM already has the values stored
inside the array and it is sufficient to change the weights set by simply selecting it, following the
same principle of the OOM case depicted in Figure 7.

• Delay ratio vs Wx & #Cout: in general, by increasing both #Cout and Wx we have a higher Delay
ratio. By looking to X-Z plane, it is possible to see that for higher #Cout the curve becomes steeper.
It is a very good trend for very deep NNs, because usually output channels and filter sizes are high.

• Delay ratio vs Din & #Cin: Din is the IFMAP size, which indirectly determines the OFMAP size
as reported in Equation (10). High values of Din imply much more complex NN but the Delay
ratio remains almost constant, showing that LiM architecture latency is not degraded by the
IFMAP’s complexity.

• Delay ratio vs Dout(FC) & niter: this last plot set reports an FC layer estimation. In this case the
formula for the FC execution time of OOM and LiM is considered. As it can be seen, a higher
Dout(FC) could be beneficial for a LiM architecture, which has a small increasing trend, because the
LiM array performs all the computations in parallel, so there is no need to fetch each data from
the memory, compute the result and store inside the Store temp register file as in the OOM case.
The predominant variable is niter, because by looking at Figure 7, the OOM architecture has the
important drawback that everytime an FC step terminates, the entire Binary Input RF has to be
scanned to perform the FC computation, requiring niter × Dout(FC) ×Memory sizex clock cycles.
If the number of output neurons is huge (Dout(FC)),niter × Dout(FC) ×Memory sizex becomes very
large compared to the LiM case.

From these considerations, it is evident that LiM architecture introduces a gain in terms of
execution time, because by increasing the level of parallelism in the architecture, multiple operations
can be performed at the same time. The LiM bottlenecks are the Interface Decoder and the multiplexers
depicted in Figure 15, that introduce both higher delay and power consumption, but they are required
to interface the design blocks.

6. Perfomance Evaluation

In this part, the evaluation steps will be explained. In this work the memories were implemented
as register files and each memory cell is a flip flop, so the results obtained are an overestimation
(especially for the LiM case). The real performance values can be obtained with a more precise memory
model. The performance evaluation is made of three parts:

1. For both OOM and LiM implementations, two NN models were chosen and used as cases of
study. These models were implemented, trained and validated by Keras framework [32] and
a Matlab script respectively. Then, the architectures were synthesized with Synopsys Design
Compiler with 45 nm CMOS technology @ 1.1 V, providing the values of power, area, Critical
Path Delay (CPD), execution time and energy consumption. Regarding the power consumption,
two kind of estimations are provided: the first is very straight forward and consists of a report
power from Synopsys with worst case scenario of switching activity equals to 1 in all the nodes.
The second, a post place&route power estimation with Cadence Innovus, using backannotation
with .vcd file provided by Modelsim, in order to evaluate the effect of both switching activity
and interconnections.

2. Parametric sweeps are performed in order to evaluate the trend of the performance parameters
in different cases. Power, Area, CPD and Energy ratios are computed between the OOM and
LiM values, that are particularly useful to determine the main contributions of both architectures.
To perform such procedure, a series of scripts are used to perform several synthesis processes
with Synopsys Design Compiler and, everytime a synthesis ends, the performance values are
stored in external files. Also in this case, the technology used is 45 nm CMOS @ 1.1 V.
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3. An analysis of the differences between our LiM, where memory elements are flip flops, and a LiM
circuit with a custom memory is performed. In [8], a very similar XNOR-Net implementation
has been implemented with a CAM memory-based XNOR-Pop procedure. Some useful results
are provided, since authors have implemented a modified memory array with 65 nm CMOS
technology. For this reason, a synthesis with 65 nm CMOS technology @ 1.0 V is performed,
trying to use the same metrics as [8] to evaluate how a more real memory model can influence the
results obtained.

6.1. Two NN Models Examined

6.1.1. Fashion-MNIST CNN Results

The first NN model is able to classify with an accuracy of 81% a Fashion-MNIST image [33], which
is a greyscale picture of 28× 28 pixels that can belong to one of 10 different categories such as T-shits,
trousers, pullovers, dresses, coats, sandals, shirts, sneakers, bags and ankle boots. The NN model
is reported in Table 1. The parameters listed in Table 1 give an indication on the dimensions of the
hardware implementations, such as the dimensions Memory sizex and Memory sizey of the Binary
Input RF/LiM arrays in order to perform an ad-hoc synthesis optimized for that NN model. Binary
Input RF, LiM XNOR part and LiM ones counter have Memory sizey = 24× 24 = 576 rows with a
bitwidth of Memory sizex = 32 bits to host both convolution and FC algorithms. Since there are a
maximum number of input channels equals to 6 as reported in Table 1, the XNOR-Pop Unit for both
OOM and LiM has been replicated 6 times.

Table 1. Fashion-MNIST CNN under test parameters.

Layer Number Type IFMAP Size Kernel Size Cin Cout Stride

1 Convolutional 28× 28× 1 5× 5 1 6 1
2 Max Pooling 24× 24× 6 2× 2 6 6 1
3 Convolutional 12× 12× 6 5× 5 6 6 1
4 Max Pooling 8× 8× 6 2× 2 6 6 1
5 FC 96 - - - -
6 BatchNorm - - - - -
7 FC 120 - - - -
8 BatchNorm - - - - -
9 FC 84 - - - -
10 BatchNorm - - - - -
11 FC 10 - - - -
12 BatchNorm - - - - -
13 ReLU - - - - -

The number of bits used to perform the extra calculations required (such as multiplications,
BatchNorm etc) are 18 expressed in fixed point format. After performing the synthesis with Synopsys
Design Compiler, the results obtained for area, CPD and power are reported in Table 2.

Table 2. Synthesis results for the Fashion-MNIST CNN model.

Type Area (mm2) Power (mW) CPD (ns)

LiM 1.68 254.50 4.11
OOM 1.10 193.30 4.14

A preliminary analysis of the results listed in Table 2, highlights a higher area and power
consumption in LiM with respect to the OOM alternative, since the LiM implementation is highly
parallellized and, consequently, a higher number of logic elements are required. The CPD is slightly
higher in the OOM case because of a more complicated FC scheduling handling circuit (depicted
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in Figure 12), which requires the Store temp register file. From these results, a simple comparison
between power, area and CPD is not enough to determine which is the best architecture between the
two proposed ones. For this reason we estimate also the execution time and the energy estimation
obtained as Power× Execution time, as shown in Table 3.

Table 3. Power-Execution time-Energy results for Fashion-MNIST CNN model.

Type Power (mW) Execution Time (ms) Energy (µJ)

LiM 254.50 0.21 53.44
OOM 193.30 0.92 178.41

From Table 3, we can derive two very important values which are the Energy ratio and Delay
ratio as follows

Delay ratio =
Execution timeOOM
Execution timeLiM

=
0.92 ms
0.21 ms

' 4.38 (26)

Energy ratio =
EnergyOOM
EnergyLiM

=
178.41 µJ
53.44 µJ

' 3.34 (27)

Energy and delay ratio give very important indications on LiM strong points: it consumes less
energy and it’s faster, although has a higher power value. From an energetic point of view, LiM
architecture is more efficient for that particular NN model. In Figure 18 and Table 4 are reported the
results obtained from a post place&route estimation with .vcd backannotation. Considering both
switching activity and interconnections, the resulting power of the LiM architecture is increased by
∼ 22%, bringing a lower energy ratio, but still promoting LiM as an energy efficient architecture.

Energy ratiopost place and route =
130.91 µJ

68.9 µJ
' 1.9 (28)

LiM implementation OOM implementation

Figure 18. Snapshot of the chips obtained after a post place and route procedure for
Fashion-MNIST CNN.

Table 4. Post place and route estimation of Fashion-MNIST CNN implementation.

Type Area (mm2) Power (mW) CPD (ns) Execution Time (ms) Energy (µJ)

LiM 1.70 328.3 4.11 0.21 68.9
OOM 1.07 142.3 4.14 0.92 130.91
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6.2. MNIST-MLP Network

Another NN model is evaluated, in order to verify the behavior of both LiM and OOM
architectures with different computational models. The realized MLP network is made of a set
of FC layers organized as 784-196-196-10 neurons and it is able to achieve up to ∼90% of accuracy on
MNIST dataset. Further details on MLP structure are presented in Table 5. Dropout layers indicated in
Table 5 are useful in training procedure, since they prevent the network from overfitting by simply
“turning off” neurons with a given probability [34]. As already done in Section 6.1.1, the results that
will be presented are the ones obtained by the synthesis and the estimated value of energy, based on
the execution time. The chosen dimensions of the implementation are Memory sizex = 14, #Cin = 1
while the memory arrays have 196 rows because the maximum number of output neurons (Dout(FC))
is 196.

Table 5. MNIST MLP under test parameters.

Layer Number Type IFMAP Size Kernel Size Cin Cout Stride

1 Dropout 28× 28× 1 - - - -
2 FC 784 - - - -
3 BatchNorm 196 - - - -
4 ReLU 196 - - - -
5 Dropout 196 - - - -
6 FC 196 - - - -
7 BatchNorm 196 - - - -
8 ReLU 196 - - - -
9 Dropout 196 - - - -
10 FC 196 - - - -
11 BatchNorm 10 - - - -

In Table 6, the architectures have a similar power consumption, because in OOM it is required
a Store temp register file that has 196 rows. The hardware complexity of the LiM implementation is
not so different from the OOM’s one, because the memory arrays have a very small size of 196× 14.
Since it is an MLP network, niter parameter becomes very important, because it gives an indication on
how many times the FC scheduling has to be executed for each layer: niter changes for each FC layer
and can be obtained as niter = Din(FC)/Memory sizex. From the energy and execution time results in
Table 6, it is evident that OOM is not competitive with respect to the LiM version. This is due to the
much more inefficient FC handling, since the whole Binary Input RF has to be scanned, while the LiM
version performs all the calculations directly inside the array.

Delay ratio =
1.62 ms
0.132 ms

' 12.27 (29)

Energy ratio =
23.20 µJ
1.99 µJ

' 11.7 (30)

After performing post place and route estimation, the results obtained are reported in Figure 19
and in Table 7.

Table 6. Perfomance parameters of MLP implementation.

Type Area (mm2) Power (mW) CPD (ns) Execution Time (ms) Energy (µJ)

LiM 0.11 15.10 4.22 0.132 1.99
OOM 0.09 14.32 4.32 1.62 23.20
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LiM implementation OOM implementation

Figure 19. Snapshot of the chips obtained after a post place and route procedure for MLP NN.

Table 7. Post place and route estimation of MLP implementation.

Type Area (mm2) Power (mW) CPD (ns) Execution Time (ms) Energy (µJ)

LiM 0.1033 13.06 4.22 0.132 1.72
OOM 0.086 10.68 4.32 1.62 17.30

In Table 7, the power results are slightly lower than the synthesis ones, since the .vcd file and the
switching activity information have relevant roles, giving a more precise power estimation, instead
of the worst case reported in Table 6. The energy ratio results to be equal to ∼10× compared to the
previous one equal to ∼11.7× provided by the synthesis.

6.3. Parametric Sweeps

The meaningful parameters of the designs such as #Cin and memory arrays dimensions (Memory
sizex,Memory sizey) were varied to determine the differences between the two architectures in terms
of performance. Two parameters are chosen per time and a sweep is executed on them, while the
remaining are kept constant. For sake of clarity, from now on the following substitution is considered:

{
H = Memory size2

y

Wa = Memory sizex

(31)

In Figures 20 and 21 are depicted the Power, Area and CPD for different values of #Cin, Wa and√
H. By increasing the Wa, power and area increase almost quadratically since Wa directly influences

the bitwidth of the memories. Also, the trends depending by
√

H behave quadratically, meaning
that a the memory complexities influence a lot the performance of both architectures. In general,
the power and area for LiM case are slightly higher than the OOM ones, since the total number of
logic elements required by the LiM implementation is greater than OOM. CPD remains almost the
same, even for more complex implementations. To better understand the differences of the obtained
parameters for both architectures, a ratio was computed for all the cases: the results obtained are
reported in Figure 22, where in general for an increasing size of #Cin, Wa and

√
H the power and area

ratios decreases, confirming the bigger grade of complexity of the LiM. Another useful estimation can
be performed on the energy ratios for the various cases.
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Figure 20. Power, Area and CPD results for different values of #Cin, Wa and
√

H considering
LiM implementation.
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Figure 21. Power, Area and CPD results for different values of #Cin, Wa and
√

H considering
OOM implementation.
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Figure 22. Power, Area and CPD ratios with respect to #Cin, Wa and
√

H.

Those values are obtained as EnergyOOM/EnergyLiM, as shown in Figure 23, decrease for higher
memory dimensions, since power of the LiM architecture starts to assume a predominant contribution
in the energy equation. It is important to keep in mind that these are very pessimistic estimations,
and they can be improved by employing more realistic memory cells. The pessimistic case, which is



J. Low Power Electron. Appl. 2020, 10, 7 28 of 34

reported in Figure 23 in #Cin &
√

H size plot, is to have a very long (
√

H big) and narrow (Wa very
small) memory structure, which is replicated a lot of times (#Cin big): these set of conditions describes
an improbable situation, because the driving force for a memory design is to have a regular squared
shape array. The last energy estimation reported in Figure 23 flagged by FC #Cin &

√
H size, takes into

account an FC algorithm mapped on the implementations considering the worst case of big
√

H and
#Cin. By varying

√
H, the trend for the energy ratio is increasing, meaning that the more complex is

the FC algorithm the lower is the energy for the LiM implementation compared to OOM one.

Energy ratios
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Figure 23. Energy ratio values obtained by varying #Cin, Wa and
√

H.

6.3.1. Qualitative Estimation

To give a definitive answer on which architecture performs better, a qualitative estimation is
performed, considering the mean values of all the cases explained before.

A ratio obtained as OOM/LiM between each parameter is proposed, which clarify the main points
of both implementations. As shown in Figure 24, the values of area and power ratios are below 1,
meaning that in general the LiM architecture behaves worse than OOM for the motivations explained
before. On the other hand, execution time and energy ratios are equal to ∼6× and ∼4× respectively,
implying that a very good improvement can be achieved by the LiM implementation on these two
quantities. These trends confirm our expectations on LiM and further improvements can be achieved
by having a more precise LiM array model.
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Figure 24. Mean performance ratios obtained as an average of all the cases analyzed from the previously
discussed results.

6.3.2. LiM Array Estimation: Impact on Perfomance

In order to estimate the performance of the LiM array, several synthesis estimations were
performed with different arrays dimensions. Taking into account the system’s structure depicted in
Figure 15, the LiM values of power and area are compared with the ones obtained from the same process
applied only to the SurroundingLogic unit, in order to understand what are the main performance
contributions. In Figure 25 are shown the performance values obtained by sweeping both

√
H, Wa,

while #Cin is kept equal to 1, in order to estimate how the array sizes impact the overall performance.
As it is possible to see, area and power increases almost quadratically, because of a more complex
LiM structure. In Figure 26 it is reported an estimation of the SurroundingLogic unit by varying the
same parameters as in Figure 25. The CPD bottleneck is located in the SurroundingLogic unit rather
than LiM parts, because of the multipliers/adders employed to perform the final convolution result.
Higher values of Wa implies a constant power/area, since there is no correlation between the LiM
Memory sizex and the complexity of the SurroundingLogic unit. By increasing

√
H, power and area

increase because of the higher complexity required, for example a bigger dimension of the K register
file (Figure 12). By comparing the performance in terms of power obtained in Figures 25 and 26, it is
possible to see that the highest contribution comes from LiM parts, as shown in the breakdown plot
depicted in Figure 27. The percentage values are obtained following a rough approach, starting with
computing the total power/area, given by the sum of the results obtained in Figures 25 and 26 and by
dividing the LiM power/area by the total ones. As it is possible to see, for bigger arrays, LiM parts
will assume a predominant contribution on the power/area performance. This behavior recalls the
need of employing a more accurate LiM model, instead of the discussed one based on flip flops and
static logic gates.
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Figure 25. LiM performance estimations by varying Wa and
√

H sizes. #Cin is kept equal to 1.
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Figure 26. SurroundingLogic unit performance estimations by varying Wa and
√

H sizes. #Cin is kept
equal to 1.
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Figure 27. Power and area breakdown of LiM parts.

6.4. A More Detailed LiM Model

Reference [8] proposes a very similar approach, but it performs a Content Addressable Memory
(CAM)-based XNOR-Pop procedure, implementing the second convolutional layer of LeNet5 NN
model [1], which is depicted in Figure 3. Five arrays are realized and their dimensions are 30× 10.
They have been implemented with 65nm CMOS technology: the performance results are reported in
Table 8. To have a fair comparison with [8], the same conditions have been applied to our LiM design:
only the XNOR-Pop part, reported in Figure 15, is synthesized with 65nm technology with a dimension
of 30× 10 for LiM XNOR part array. To obtain the energy estimation, we started from the power result
given by Synopsys and we have mapped the second convolutional layer of LeNet5 CNN, obtaining
the corresponding execution time called Convolutiontime,II-LeNet5 using the more precise version of
Equation (24).

Convolutiontime,II-LeNet5 = 15852× tck (32)

The power obtained by Synopsys is for only 1 LiM array, so the this value has to be multiplied
by five:

Power5-arrays = 0.2473 mW× 5 ≈ 1.24 mW (33)

From the synthesis, CPD for the LiM array is equal to 1.91 ns, so the total energy is:

EnergyI I−LeNet5 = Power5-arrays ×Convolutiontime,II-LeNet5 ≈ 38 nJ (34)

We can perform a comparison between our less LiM model based on flip flops with the case
described in Table 8: the energy ratio between our work and the reference one is about 4.22 while the
Bank Area ratio is almost equal to 4.92. This means that, if we design a custom memory, instead of
relying on flip flops the performance of our architetcure can be greatly improved. But even considering
this fact, the results here presented highlight that LiM architetcures have a huge advantage over
traditional Von Neumann circuit, in terms of energy and overall execution speed.
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Table 8. CAM-based XNOR-Pop [8] and our LiM architectures performance parameters comparison.

Design Technology Bank Size # of Banks Bank Area (µm2) Energy (nJ)

[8] 65 nm 30× 10 5 2456.6 ∼ 9
This work (LiM) 65 nm 30× 10 5 12090.6 ∼ 38

7. Conclusions and Future Works

In this work LiM and OOM architectures have been designed to demonstrate if a logic-in-memory
approach is effectively better than a Von Neumann one in designing architectures for memory-intensive
applications. From the results here highlighted, LiM design obtains remarkable results in terms of
energy dissipation, because of a higher degree of parallel execution of the algorithm. Since the memory
part of our designs was synthesized with Synopsys, the results that we obtained are overestimated,
meaning that the energy can be significantly smaller with a proper memory design. We can conclude
therefore that Logic-In-Memory architectures are worth it. Even considering the increased complexity
of the memory design, they provide significant advantages over Von-Neumann architectures.

As a future work we are designing custom memories, based both and CMOS and eventually on
emerging technologies, to further improve our analysis.
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