
Journal of

Low Power Electronics
and Applications

Article

InSight: An FPGA-Based Neuromorphic Computing
System for Deep Neural Networks †

Taeyang Hong , Yongshin Kang and Jaeyong Chung *

Department of Electronic Engineering, Incheon National University, Incheon 22012, Korea;
hty9494@inu.ac.kr (T.H.); kyscall5180@gmail.com (Y.K.)
* Correspondence: jychung@inu.ac.kr
† Our system, InSight, is named as a concatenation of “In” from “In”cheon National University and “Sight”

representing its ability to see.

Received: 28 September 2020; Accepted: 27 October 2020; Published: 30 October 2020
����������
�������

Abstract: Deep neural networks have demonstrated impressive results in various cognitive
tasks such as object detection and image classification. This paper describes a neuromorphic
computing system that is designed from the ground up for energy-efficient evaluation of deep
neural networks. The computing system consists of a non-conventional compiler, a neuromorphic
hardware architecture, and a space-efficient microarchitecture that leverages existing integrated
circuit design methodologies. The compiler takes a trained, feedforward network as input,
compresses the weights linearly, and generates a time delay neural network reducing the number of
connections significantly. The connections and units in the simplified network are mapped to silicon
synapses and neurons. We demonstrate an implementation of the neuromorphic computing system
based on a field-programmable gate array that performs image classification on the hand-wirtten
0 to 9 digits MNIST dataset with 99.37% accuracy consuming only 93uJ per image. For image
classification on the colour images in 10 classes CIFAR-10 dataset, it achieves 83.43% accuracy
at more than 11× higher energy-efficiency compared to a recent field-programmable gate array
(FPGA)-based accelerator.

Keywords: deep learning; deep neural networks; efficient deep learning; neuromorphic
computing system

1. Introduction

Deep convolutional neural networks (CNNs) have shown state-of-the-art results on various
tasks in computer vision, and their performance has become comparable to humans in some specific
applications [1]. However, they contain a huge number of weight parameters (e.g., 108, [2]), and the
inference by the models is computationally expensive. This makes it problematic to deploy these
models to embedded platforms, where computing power, memory, storage, and energy are limited.
It is also problematic to evaluate the large models at the server side. For example, processing images
and videos uploaded by millions of users require massive amounts of computation, and running a
data center that supports such computation carries enormous costs including cooling expenses and
electricity bills.

To cope with these issues, there has been an enormous amount of research efforts put into CNN
acceleration hardware such as GPUs [3], field-programmable gate arrays (FPGAs) [4,5] and ASICs [6,7]
very recently. Traditionally, the processing elements (PEs) of hardware accelerators are complex and
large in area, and the design of the accelerators has focused on maximizing the utilization of a small
number of the PEs considering the limited external memory bandwidth. Most development of CNN
accelerators has also been in that way. At some performance point, most accelerators based on the Von

J. Low Power Electron. Appl. 2020, 10, 36; doi:10.3390/jlpea10040036 www.mdpi.com/journal/jlpea

http://www.mdpi.com/journal/jlpea
http://www.mdpi.com
https://orcid.org/0000-0002-6637-2080
http://dx.doi.org/10.3390/jlpea10040036
http://www.mdpi.com/journal/jlpea
https://www.mdpi.com/2079-9268/10/4/36?type=check_update&version=3

J. Low Power Electron. Appl. 2020, 10, 36 2 of 18

Neumann architecture become memory bound irrespective of the type and the number of available
compute units. To execute CNNs, it is required to fetch a number of weight parameters. In addition, it is
required to write a large amount of intermediate data to dynamic random-access memory (DRAM)s
and read it back so the performance of CNNs accelerators are also often limited by the off-chip
bandwidth. Thus, there have been attempts to reduce the memory access [6]. This traditional approach
is practical and can be applicable today.

However, if we have numerous PEs as our brains do, we may need a radically different architecture
from the traditional one. Processing elements over several thousands are not considered practical
today, but it is becoming so. It is now well-known that 8-bit fixed point arithmetic instead of 32-bit
floating point is sufficient to run CNNs without some loss in accuracy [8]. The multipliers on CNN
accelerators can be replaced by barrel shifters [9]. In addition, the device community actively performs
research on neuromorphic devices such as memristors [10]. Thus, a new computer architecture to
exercise millions of PEs needs to be developed for the near future. In such a system, operations can be
simply mapped into PEs rather than being scheduled, and the dataflow architecture can be a baseline.
Recent neuromorphic architectures are aligned with this direction, although some of them such as
BrainScaleS [11] and Neurogrid [12] are designed for brain simulation. TrueNorth [13] aims at both
real-world applications and brain simulation [14] and equips with 256 million synapses, which not
only store the synaptic weights but also serve 1-bit compute units. Recent neuromorphic systems
employ detailed neural models such as the leaky integrated-and-fire model [15], in part because they
should be used for brain simulation. However, the recent success of deep learning tells us that the
detailed model may not be necessary for a high predictive performance for today’s applications.

This paper presents a novel neuromorphic computing system that is designed solely for the
execution (i.e., inference or prediction) of deep neural networks. Since our neuromorphic system is
not made for brain simulation, we employ the perceptron as the neural model. Even if we do not
employ a detailed neural model at the neuron (circuit) level, and we adopt FPGAs as the backend,
we are inspired by our brain at the architectural level and our system is fundamentally closer to
the neuromorphic systems than the traditional accelerators in the sense that it is designed for many,
small processing elements. Thus, we will call our system the neuromorphic computing system.

The contributions of our neuromorphic computing system are summarized as follows:

• We implement a complete, fully-functional, non-Von Neumann system that can execute modern
deep CNNs and compare it with various existing computing systems including existing
neuromorphic systems, FPGAs, GPUs, and CPUs. This reveals that the neuromorphic approach is
worth to explore despite the progress of the conventional specialized systems.

• The dataflow architecture enabled by the one-to-one mapping between operations and compute
units has the fundamental scalability issue, although it does not require any array-type memory
access. However, this work increases the capacity by adopting model compression and word-serial
structures for 2D convolution.

• We demonstrate that neural networks can be implemented in the neuromorphic fashion efficiently
without the crossbars for synapses. This is possible because we can convert dense neural networks
into sparse neural networks.

The rest of the paper is organized as follows. Section 2 introduces neural networks and
neuromorphic systems. Section 3 explains the software part of the system and Section 4 discusses the
hardware part. Section 5 shows experimental results, and Section 6 concludes the paper.

2. Background

2.1. A Neuron Model

The neuron model commonly used in the machine learning community is called the perceptron.
In this basic model, a neuron (a.k.a., unit) performs the computation

J. Low Power Electron. Appl. 2020, 10, 36 3 of 18

y = f (
N

∑
i

wixi + b) (1)

where y is the activation of the neuron, N is the number of inputs, xi is the input activation, wi is
the weight, b is the bias, and f is the activation function. This model is loosely connected to biological
neurons and synapses. The weight represents a synaptic strength. The activation represents the
firing rate of a neuron. The product and the sum are associate with the post-synaptic current and the
membrane potential, respectively. The bias is associated with a threshold value, above which a neuron
starts firing. Although this model is coarse and highly abstracted, it provides the best predictive
performance in practical machine learning applications.

2.2. Neural Networks

A neural network is a composition of perceptrons. Feedforward neural networks are the
commonest type of neural networks in real-world applications, and neurons are organized into
distinct layers using the topological order. The first layer is the input layer, the last layer is the
output layer, and the other layers are the hidden layers. If a feedforward network has more than one
hidden layer, we call it the deep neural network. The most common layer type is the fully-connected
layer where neurons between two adjacent layers are fully pairwise connected.

A layer of M neurons fully connected to N neurons performs a non-linear transformation.
Let x ∈ RN and y ∈ RM be the input and the output of the layer, respectively. Then, the non-linear
transformation can be represented by

y = f (xW + b) (2)

where W ∈ RN×M is the weight matrix, b ∈ RM is the bias, and f is the activation function.
Figure 1 depicts a directed acyclic graph that represents a feedforward neural network of 3 layers.
The circles (lines) represent neurons (connections). The hidden and output layers are fully-connected.

Input Layer Output LayerHidden Layer

Figure 1. A feedforward network of 3 layers.

2.3. Convolutional Neural Networks

Convolutional neural networks (CNNs) are multi-layer neural networks. They are commonly
used for visual recognition tasks and take an image as input. CNNs have made breakthroughs in
various image recognition tasks, and have fired recent enthusiasm for deep learning. A CNN is
made up of two main types of layers: convolutional layers and fully-connected layers. Neurons in
a convolutional layer are arranged in a three-dimensional space. The dimensions are height and
width (the spatial dimensions), and depth. For example, input neurons activated by the pixels of each
channel of an input image can be laid out according to vertical and horizontal positions of the pixels
and the channels. Each convolutional layer of a CNN transforms the input activations, represented
by a 3D volume, into a 3D output volume. The activations at the same depth form an activation
map (or, a channel). Consider a convolutional layer that takes N activation maps and produces M
activation maps. The height and the width of the input (output) maps are denoted by H (H′) and

J. Low Power Electron. Appl. 2020, 10, 36 4 of 18

W (W ′). This may result in (HWN)× (H′W ′M) weights, but neurons in convolutional layers have
spatially local connectivity and neurons at the same depth share the weights for the local connections.
The spatial extent of this local connectivity is called the receptive field of the neuron. Let Kh and
Kw denote the height and the width of the receptive field, respectively. Thus, the weights in the
convolutional layer can be described as a 4-th order tensor W ∈ RKh×Kw×N×M. Note that the sizes of
the first and the second dimensions are Kh and Kw instead of H and W, respectively, due to the local
connectivity. The convolutional layer is depicted in Figure 2.

Let xk ∈ RH×W be the k-th input activation map and yl ∈ RH′×W ′ be the l-th output activation map.
Then, the l-th output activation map equals the elementwise sum of xl ∗Wk,l for k = 1, . . . , N where ∗
denotes the 2D convolution and Wk,l(i, j) = W(i, j, k, l) for i = 1, . . . , H, j = 1, . . . , W. Thus, it requires
N ×M 2D convolutions to compute the whole output activation volume.

W

Kw

KhH

W'

H'

N M

Figure 2. Neurons in convolutional layers are arranged in a 3D space and have spatially
local connections.

2.4. Neuromorphic Architectures

In recent times, the term neuromorphic is used broadly to describe hardware and software systems
that implement models of neural systems. However, in this paper, we use the term to describe a specific
type of hardware architectures. The neuromorphic hardware is capable of evaluating a neural network
and consists of neurons and synapses, which are the processing elements of the hardware. A synapse
stores a weight parameter and performs synaptic operations. Each unit and each connection in the
model are mapped onto a neuron and a synapse, respectively. Figure 3 illustrates the neuromorphic
architecture and Von Neumann architecture (More precisely, stored-program computers).

Input

Output

Match

PEsMemory

BUS

• • •

• • •

• • •

Neural Network

Model

Figure 3. In Von Neumann architecture, the input/output(I/O) operations between the memory and
the processor lead to processing bottlenecks and significant energy consumption. In neuromorphic
architectures, neural network models are considered the software and mapped onto hardware neurons
and synapses.

J. Low Power Electron. Appl. 2020, 10, 36 5 of 18

In Von Neumann architecture, the weight parameters are stored in the off-chip memory
and the intermediate results of computation are written to the memory and read it back. In the
neuromorphic architecture, data flow from input to output continuously. In the traditional computers,
a small number of processing elements are time-multiplexed, whereas in the neuromorphic architecture,
synaptic operations associated with a connection are dedicated to the corresponding synapse.
Thus, it requires at least as many synapses as the number of connections. TrueNorth [16] belongs to
this neuromorphic architecture.

3. Neural Network Compiler

3.1. Model Compression (Simplification)

Practical deep neural networks have a huge number of weight parameters. For example,
VGG-16 [17] has 130 million parameters and if each parameter is represented in the single-precision
floating-point format, we need a memory of 520 MBytes to execute the network. Considering a
high-end microprocessor for servers equips with a large cache memory of at most several
tens of megabytes, this amount of data cannot be stored on-chip with today’s complementary
metal–oxide–semiconducto(CMOS) technology. Thus, we have taken it for granted to store those
parameters in DRAMs. However, model compression techniques, which reduce the number of
parameters [18] or bits per parameter [19], have changed the situation. Based on these techniques,
a previous work tries to store them in on-chip static random-access memory (SRAM)s [6]. We take
one step further and will store them in registers since the word-serial access of array-type memories,
including on-chip SRAMs, is a potential limiting factor to both performance and energy-efficiency.
This might be a wild and crazy idea. However, it might not be much so. In addition to the model
compression techniques, there are several other reasons why we believe the idea may not be that bad.
First, most of the large number of parameters are in the first fully connected layer, but it does not seem
to be important. For example, GoogleNet [20] uses average pooling instead of fully-connected layers
at the top of convolutional layers, eliminating a large number of parameters and it only has 4 million
parameters. Second, while we will demonstrate that a network is executed end-to-end by the proposed
approach, we can apply the proposed approach to a few early convolution layers, which are usually
most computation-intensive but have the fewest parameters among layers. Third, neuromorphic
memory devices such as memristors are being developed actively in the device community. Therefore,
we will assume that weight parameters can be stored in registers and for now, we will increase the
capacity of our system by employing model compression.

We preprocess a neural network to be executed in our neuromorphic hardware by a program called
the neural network compiler (NNC). It takes a feedforward neural network and generates a neural
net with a reduced number of parameters. To reduce the number of parameters, we combine matrix
(tensor) factorization and pruning using the method of [21] for fully connected layers (convolutional
layers). An example for a fully-connected layer is shown in Figure 4. The matrix (tensor) factorization
allows us to remove the redundancy in weight parameters. Pruning zeros out parameters of small
magnitude and convert a densely connected neural net into a sparsely connected one. Pruning is
performed not only to reduce the number of parameters, but also the sparsity of weights is essential
in our approach, which will be shown later. Most existing neuromorphic computing systems are
designed for densely connected nets, while we consider the weight sparsity in the first place when
designing our system.

J. Low Power Electron. Appl. 2020, 10, 36 6 of 18

Linear layer

Figure 4. Fully-connected layers are simplified by matrix factorization and pruning.

3.2. Time Delay Neural Net Conversion

Convolutional neural networks require a number of two-dimensional (2D) convolution operations.
In neuromorphic architectures, the 2D convolution with a K × K kernel for an image of
W × H pixels is commonly reduced to a matrix–vector multiplication by unrolling the kernel.
The matrix is roughly of the size WH ×WH and approximately has WHK2 non-zero elements.
This matrix–vector multiplication is assumed to be performed in the fully parallel manner in most
neuromorphic architectures, and requires a huge number of synapses even if the neuromorphic
architectures exploit the weight sparsity well. The huge number of synapses still becomes a burden even
if very low-cost processing elements are available. In addition, the input activations should come from
outside the chip or come from a processing core dedicated to a previous layer. However, the bandwidth
of both off-chip I/O and on-chip buses may not be sufficient to feed the whole activation map in a
time step. Thus, in spite of the high theoretical throughput of the fully-parallel structure, the actual
throughput can be degraded.

To implement convolutional layers efficiently in the neuromorphic fashion, the NNC converts
each convolutional layer into a time delay neural net (TDNN). This TDNN conversion is inspired by
the conventional 2D convolution hardware [22]. We serialize a two-dimensional activation map
(e.g., an image) into a data stream, and the activations (e.g., pixels) of the map are fed line by
line, from top to bottom. From the data stream, the input activations that are needed to produce
an output activation (i.e., the activations in the convolution window) are collected by a series of
delay units. After the first Kh − 1 lines and the first Kw activations of the Khth line are fed to the TDNN,
the first output is available. From that moment on, each new activation fed into the chain of delay
units displaces the convolution window to the next adjacent position until the whole input has
been processed. The approach based on matrix–vector multiplication requires HW neurons and
WH ×WH synapses in the worst case, while the TDNN has 1 neuron, W(Kh − 1) + Kh(Kw − 1) delay
units, and KhKw synapses. Figure 5 shows an example of the TDNN conversion when Kh = Kw = 3.

c

b
a

f

e

d
i

h

g

…

…

W

…

Kh-1Kh

Kw

a

b

…

c

f

i

a

b

c

d

e

g

h

=

W

Delay line

Kw-1

Figure 5. Convolutional layers are converted into time delay neural nets (TDNNs).

Despite the activation-serial processing of the TDNN, our neuromorphic system will have a
much higher performance if it is compared to the conventional accelerators. In the neuromorphic

J. Low Power Electron. Appl. 2020, 10, 36 7 of 18

architectures, each TDNN corresponding to a convolutional layer is mapped to a set of independent
hardware resources and they are run concurrently. Then, the processing of each layer is pipelined and
the throughput for the whole network is determined only by the size of the largest activation map,
usually the input image, in the network. In addition, unlike the conventional accelerators, the output
activations of a layer are not collected in an on-chip buffer or off-chip memory, and each produced
output activation goes to the TDNN for the next layer and is consumed immediately. This eliminates
array-type memory access completely together with the use of registers for weights. Figure 6 shows
how the convolutional layers of a net are converted into a multi-layer TDNN. The convolutional layers
of an original net are typically fully-connected channel-wise, but due to the pruning, they can have
sparse channel-wise connections. In addition, the figure is depicted assuming that each neuron has a
processing delay of 1 time step and the tensor factorization is not performed.

Frame 1Layer 1

Layer 2

Layer N

X Y

Time Step t

Frame 2

Delay filling time
(Kh – 1)W + Kw – 1

Delay filling time

Delay filling time Delay filling timeN - 1

1 1 1

Delay line

Delay line

Delay line
Layer 1

HⅹW

Delay line

Delay line

Delay line
Layer 2

Delay line

Delay line

Delay line
Layer N

Delay line Delay line Delay line

Figure 6. The TDNN conversion allows us to have simple structures even for convolutional layers.
In spite of the word-serial processing of the TDNN, the performance is much higher than those of the
conventional accelerators because the processing of each layer is pipelined.

3.3. Overall Procedure

The overall compilation procedure is depicted in Figure 7. It takes a common feedforward net used
in the machine learning community as input. For the network, we use a data structure similar to other
deep learning frameworks, and the weights in a layer are stored in a multi-dimensional array. For each
convolutional layer, we perform tensor factorization. For each fully-connected layer, we perform
matrix factorization (Step 1). Both are based on singular value decomposition (SVD). Then, all weight
parameters in the network are ranked together using the metric proposed in [21], and all but top k
parameters are set to zero (Step 2). After the pruning, the predictive performance of the network can
be degraded. We thus fine-tune the simplified network again against the training data, recovering
the lost performance (Step 3). We rely on existing deep learning (DL) libraries for the fine-tuning
and the network is converted into a network of a target DL library. This fine-tuning step allows us
to approximate the network very aggressively. In order to prevent the fine-tuning from reverting
the truncated parameters, we use a mask matrix or tensor. We can multiply the weight matrix
or tensor by the mask element-wise, and can set the mask as non-learnable parameters before the
fining-tuning. Alternatively, we can mask the weight update using the mask during the fine-tuning.
When the fine-tuning is done, the weights in the NNC are updated from the weights in the target
DL library. The TDNN conversion is performed after the factorization and the pruning (Step 4).
The time delay neural network generated in this step is represented in a directed acyclic graph (DAG),

J. Low Power Electron. Appl. 2020, 10, 36 8 of 18

and a delay or a neuron (a connection) is represented in a vertex (an edge). The weights are annotated to
the edges. The flow after the TDNN synthesis is similar to that for typical DSP custom hardware design
methodology [23]. Floating-point weights are converted into fixed-point weights (Step 5). For the
fixed-point weights, we use a given fractional bit-width, while the integer bit-width is determined
automatically per layer to be large enough not to cause overflow. Therefore, the total bit-width
(i.e., the word-length) of weights varies per layer. Then, the TDNN simulator written in a high-level
language runs for a given bit-width of activations and given inputs (Step 6). During this process,
it checks if any overflow occurs in the activations. It also evaluates the final accuracy reflecting the
finite-precision effects of both the weights and the activations, and generates the expected outputs
for the given inputs. Finally, the DAG is converted into a Verilog netlist (Step 7). Each vertex
in the DAG corresponds to an instance of pre-designed modules in the netlist and the instances are
connected following the edges in DAG. The inputs and the expected outputs are used for the functional
verification of the netlist and pre-designed modules.

1

1. Layer-wise Tensor Factorization

6. Multi-threaded TDNN Simulator

7. Verilog Writer

3. Fine-tuning

4. TDNN Architecture Synthesis

Trained Net

Simplified Net with low accuracy

Simplified Net with high accuracy

Time Delay Neural Net as a Graph

Final Accuracy

Verilog, Input Vectors,

Expected Output

Caffe

Theano

TensorFlow

Neural Network Compiler

DL Library Backend

Verilog Simulator

Vivado

 Module DB

BIT file and Reports

2. Network Pruning

5. Weight Quantization

Figure 7. Toolflow.

4. Neuromorphic Hardware

A fully connected neural net with N input neurons and N output neurons has N2 connections,
and existing neuromorphic systems equipped with large arrays (e.g., memristor, X-bar, or SRAM) to
implement these dense connections efficiently. However, to implement sparsely connected nets
in the neuromorphic fashion, it is more efficient to use a set of small arrays than a large array
as also pointed out in [24]. Thus, for the compressed (simplified) nets, we need to design a new
neuromorphic hardware architecture different from existing large array-based architectures. However,
instead of designing a new neuromorphic architecture, we can leverage FPGAs since they are already
designed for multi-level circuits with sparse connections. In addition, they have programmable
interconnects. All we need to turn an FPGA into a neuromorphic computing system is to implement
the neuron model in logic. We implement the neuron and the synapse as a bit-serial adder and a
bit-serial multiplier, respectively. Then, we can convert a simplified neural net into a logic circuit as

J. Low Power Electron. Appl. 2020, 10, 36 9 of 18

shown in Figure 8. The sparse connection is essential because otherwise the resulting logic circuit
cannot be routed due to the routing congestion. The bit-serial multipliers and adders not only
reduce the circuit area, but also allow us to manage the interconnection between layers. In addition,
the buffer size for the pipelining across layers becomes only M bits for a layer of M neurons. Note
that a convolutional layer with M output channels is converted into a TDNN with M neurons.
Thus, the convolutional layer requires only a M bit buffer to enable the pipelining. Once the
convolutional layer produces a M-bit code, the next layer can start some processing irrespective
of the output map size. This is possible because our system employs the word-serial and bit-serial
architecture for 2D convolution.

Let nw and na be the bit-widths of weights and activations, respectively. The proposed
neuromorphic hardware is a composition of building blocks and the building blocks in our system
transmit and receive each digit of an activation serially. In our implementation, the least significant bit
(LSB) of an activation comes first. To represent signed real numbers, we use the fixed-point format and
let mw and ma denote the fractional bit-widths of weights and activations, respectively. We manually
design the following modules as the building blocks:

• Synapse: consists of a nw-bit register to store the weight and a bit-serial multiplier, which mainly
comprises full adders and a register to store intermediate results. For minimum area, we employ
the semi-systolic multiplier [25], which approximately requires nw AND gates, nw full adders,
and 2nw flip-flops.

• Neuron: with k inputs comprises a k-input bit-serial adder to sum up the outputs of the k synapses
connected to the neuron. We prepare neurons with various k. Adding a bias and evaluating the
activation function is related to the function of biological neurons, so it may be natural for the
neuron to have units for those functions. However, in our system, many neurons do not require
those functions and we implement them in separate modules.

• Delay element: is realized by a 1-bit na stage shift register.
• Bias: consists of an nw-bit register to store the bias value and a full-adder, whose inputs are fed

by a module input, a selected bit of the register, and the carries out at the previous cycle.
• Relu: zeros out negative activations. Since the sign bit comes last, this module should have na

cycle latency at minimum.
• Max: compares k input activations by using bit-serial substractors. If k = 2, one bit-serial

substractor is used. The comparison is done after the MSB of activations is received, so it should
also have na cycle latency at minimum. If k > 2, we can create a tree of the two-input max modules,
but this increases the latency. For minimum latency, we can perform k(k− 1)/2 comparisons
in parallel.

• Pool: performs subsampling, handles borders, and pads zeros. It keeps track of the spatial
coordinates of the current input activation in the activation map and invalidates the output
activations depending on the border handling and the stride. It can also replace invalidated
activations by valid zeros for zero-padding.

pp w

1n

Synapse

1
Synapse

1-bit adder
as neuron

Figure 8. The simplified network is converted into a logic circuit. The 4-bit output of this layer is sent
to the next layer and is consumed immediately, keeping the buffer size between layers to a minimum.

J. Low Power Electron. Appl. 2020, 10, 36 10 of 18

Figure 9 depicts a timing diagram of our implementation. It takes na + nw cycles to compute
the product of a na-bit activation and an nw-bit weight. To put the product back to the na-bit format,
we truncate the least significant mw-bits, and the first valid output becomes available mw cycles later.
Thus, the synapse comes to have an inherent mw cycle delay. To simplify the design, we pad a na +

nw −mw cycle delay at the output of the neuron, and the registers for this delay can be moved forward
to improve timing (i.e., they are used as pipeline registers and can be re-timed). Then, the outputs of a
layer become available na + nw cycles after the inputs arrive, and all the synapses in the system start a
synaptic operation at the same time at every na + nw cycle. Delay elements perform shift only for the
first half of the na + nw cycle period.

clk

phase

neuron_out
@layer 0

synapse_in
@layer 1

synapse
output

layer 0
valid

layer 1
valid

mw+ma fractional part

mw+ma fractional part

mw+ma fractional part

mw+ma fractional part mw+ma fractional part

ma fractional

ø0 ø1 ø0 ø1

ma fractional synapse_in
@layer 0

na cycles nw cycles na+nw cycles

na + nw - mw

Figure 9. The (na + nw)-bit result is aligned by the pipeline registers, which truncates the least
significant mw bits.

5. Experimental Results

We implement the neural network compiler (NNC) in Python language. Neural networks are
trained off-line using NVIDIA Titan X GPU and are fed into the compiler. We chose Artix 7 100T and
Kintex 7 325T field-programmable gate array (FPGA) as the target platforms. Our experiments can
be considered in two ways. First, FPGAs can be considered a general-purpose, not-highly-optimized
neuromorphic processor, and the experiments are regarded as making software for the processor in
part using existing hardware synthesis tools. FPGAs already have plastic connections, and processing
elements and memories are mixed in space. The SRAM-based look-up tables (LUTs) serve as memories
as well as processing elements. Second, our experiments can also be considered to build a prototype
of an application-specific neuromorphic processor. While the neural network compiler generates a
hardware model in Verilog in an application-specific fashion (e.g., weight parameters are hard-coded),
we can easily extend it into a general-purpose hardware model if programmable interconnects
are available. We elaborate the generated hardware models for a target platform using Xilinx Vivado.
The shift registers in delay elements are refined into a LUT-based shift register, not a chain of flip-flops,
and even long shift registers are implemented efficiently. We measure the power consumption of the
FPGA boards at a 12 V power supply. For the dynamic power consumption of the FPGA chips, we turn
on and off the entire clock distribution and measure the difference. The static power consumption
is obtained from the power report of Vivado. The FPGA logic operates at 1 V and the efficiency of
12 V–1 V conversion is assumed to be 85% for the chip power measurement.

5.1. Benchmarks

To demonstrate our approach, we use three neural networks. To describe the NN architectures,
the fully-connected layer and the convolutional layer are denoted by F and C, respectively. For the

J. Low Power Electron. Appl. 2020, 10, 36 11 of 18

MNIST hand-written digit classification, we use a softmax regression (1F) and a 3-layer convolutional
neural network (2C1F). They achieve 92.23% and 99.57% for the test set of MNIST, respectively. For the
CIFAR-10 natural image classification, we use a 6-layer convolutional neural network (4C2F), which is
trained with data augmentation. We pad zeros to make the size of the input 40× 40, and randomly
crop it to be 32× 32. We also use random flip. The 4C2F has 4 convolutional layers, a fully connected
layer and a final softmax layer. Each convolutional layer has filters of size 3 × 3. The 2nd and the 4th
convolutional layers are followed by 4× 4 max pooling layers with a stride of 2. We use the rectified
linear unit as the activation function. We preprocess the data using global contrast normalization only.
We train this network for 150 epochs. The weight decay (l2 regularization) is set to 0.002; the learning
rate is set to 0.1 initially; we use batch normalization. This network achieves 89.10% classification
accuracy in the test set.

5.2. Network Simplification

We map the two nets for MNIST into Artix 7, and the net for CIFAR-10 into Kintex 7. To fit the three
networks in the target FPGAs, we reduce the numbers of parameters to 3 K, 4 K, and 18 K for 1F, 2C1F,
and 4C2F, respectively. Then, the accuracies of the nets become 92.65% (+0.42%), 99.38% (−0.19%),
and 83.58% (−5.52%), respectively. Since the number of parameters are determined by the capacity of
FPGAs, we lose some accuracy for the two nets. In particular, we require a larger FPGA to maintain
the accuracy of 4C2F, but considering the expense, we use the affordable FPGA. Table 1 compares the
original 4C2F and the simplified 4C2F in detail.

Table 1. We combine tensor factorization with pruning and simplify the convolutional net.

Original Simplified

Config. Params SOPs Config. Params SOPs

conv3-64 1.73 K 1.56 M
conv1-3 9 9.22 K

conv3-27 186 167 K
conv1-64 351 316 K

Subtotal 1.73 K 1.56 M Subtotal 0.55 K 493 K

conv3-64 36.9 K 28.9 M
conv1-64 719 647 K
conv3-64 705 553 K
conv1-64 847 664 K

Subtotal 36.9 K 28.9 M Subtotal 2.27 K 1.86 M

maxpool

conv3-128 73.7 K 8.92 M
conv1-64 1263 213 K

conv3-128 899 109 K
conv1-128 1586 192 K

Subtotal 73.7 K 8.92 M Subtotal 3.75 K 514 K

conv3-128 147 K 17.8 M
conv1-128 2689 325 K
conv3-128 964 117 K
conv1-128 2717 329 K

Subtotal 147 K 17.8 M Subtotal 6.37 K 771 K

maxpool

FC-256 524 K 524 K
conv1-128 1617 26 K
conv4-256 701 701
conv1-256 1497 1497

Subtotal 524 K 524 K Subtotal 4 K 28 K

FC-10 2.56 K 2.56 K FC-10 1166 1166
FC-10 84 84

Subtotal 2.56 K 2.56 K Subtotal 1.25 K 1.25 K

J. Low Power Electron. Appl. 2020, 10, 36 12 of 18

Table 1. Cont.

Original Simplified

Config. Params SOPs Config. Params SOPs

Total

Conv total 260 K 57.2 M Conv total 13 K 3.64 M
FC total 527 K 527 K FC total 5 K 29.3 K
Net total 787 K 58 M Net total 18 K 3.7 M

5.3. Bit-Width Determination

We determine the bit-widths of activations and weights after the network simplification.
The integer bit-widths of activations and weights are fixed to the minimum values not to cause overflow,
but we can freely determine the fractional bit-widths of them, denoted by ma and mw, which are some
of the major design parameters of our system, and allows us to trade off the implementation cost
against the accuracy. Figure 10a shows the accuracy varying mw for 4C2F. The accuracy is obtained
without quantizing activations. Figure 10b,c show the LUT utilization and the total power consumption
of the FPGA varying mw when the activation bit-width is 16. When mw > 8, the design becomes too
large to fit the FPGA. The weight bit-width directly affects the area of the bit-serial multipliers, and the
LUT utilization decreases substantially as the bit-width is reduced. However, to maximize the accuracy,
we use mw = 8 for 4C2F, although mw = 7 results in a higher accuracy in this specific case. The integer
bit-width of weights varies per layer and they are between 1 and 3. Thus, the total weight bit-width
is between 10 and 12 including the sign bit. We obtain the dynamic range of activations using the
training set of CIFAR-10 and the integer bit-width of activations is set to 6 for 4C2F. Figure 10d–f
show the accuracy, the LUT utilization, and the total power varying ma (thus, the total bit-width)
when mw = 8. When the bit-width is larger than 16, the design becomes too large to fit the FPGA.
The activation bit-width does not affect the area of the bit-serial multipliers, although it may reduce the
area of the shift registers for delay elements. In the FPGA, 32-stage 1-bit shift registers are implemented
by using one LUT, and in terms of area, it is rather better to align the activation bit-width to that than
simply minimizing it. Reducing the activation bit-width allows us to run the design at a lower clock
frequency, which can reduce the power consumption substantially. We use ma = 9 for 4C2F, and the
total bit-width of activations becomes 16 (i.e, na = 16). Similarly, we use na = 16 and ma = mw = 7
(ma = mw = 8) for 1F (2C1F).

6 7 8 9 10 11 12

Fractional Bit-width of Weights

0.830

0.831

0.832

0.833

0.834

0.835

0.836

0.837

C
la

ss
if
ic

a
ti

o
n
 A

cc
u
ra

cy

(a)

6 7 8 9 10 11 12

Fractional Bit-width of Weights

0.75

0.80

0.85

0.90

0.95

1.00

1.05

LU
T
 U

ti
liz

a
ti

o
n

(b)

6 7 8 9 10 11 12

Fractional Bit-width of Weights

1.90

1.95

2.00

2.05

2.10

2.15

T
o
ta

l
P
o
w

e
r

(W
)

(c)
Figure 10. Cont.

J. Low Power Electron. Appl. 2020, 10, 36 13 of 18

13 14 15 16 17 18 19

Total Bit-width of Activations

0.79

0.80

0.81

0.82

0.83

0.84
C

la
ss

if
ic

a
ti

o
n
 A

cc
u
ra

cy

(d)

13 14 15 16 17 18 19

Total Bit-width of Activations

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

LU
T
 U

ti
liz

a
ti

o
n

(e)

13 14 15 16 17 18 19

Total Bit-width of Activations

1.90

1.95

2.00

2.05

2.10

2.15

T
o
ta

l
P
o
w

e
r

(W
)

(f)
Figure 10. The weight bit-width affects the space that the circuit takes up, whereas the activation
bit-width affects the computation time.

5.4. Comparison Baseline

We compare our system with CPU, GPU, an FPGA accelerator, and existing neuromorphic systems.
For CPU and GPU, our neural network model is converted to a Caffe model. Then, the forward
propagation time is measured using Caffe’s time command. For CPU, we use an Intel Xeon E5-2650
processor, and during the inference, the CPU power and the DRAM power are obtained by Intel’s
pcm-power utility. For GPU, we use NVIDIA GeForce GTX Titan X GPU. The GPU power is obtained
by nvidia-smi utility. Note that this utility reports the entire board power. The model simplification
reduces the amount of required computation, and the throughput should be increased for the simplified
models taking advantage of zeros. However, all existing deep learning libraries support dense
tensors only, and our simplified models rather worsen the performance due to the increased number
of layers. Thus, we cannot measure the real performance of the simplified models in CPU and GPU
(This is possible only for fully-connected layers using NVIDIA cuSPARSE library at the moment).
The simplified 4C2F requires about 16× less amount of computation than that of the original net,
and ideally, the throughput should be increased by about 16×. However, in practice, this is not
feasible because of the overhead of the sparse representation such as indexing. For example, in [6],
a compressed fully-connected layer requires 11× less amount of computation, but going sparse
matrices from dense matrices gives only 4× speedup. Thus, we will estimate the performance when
using the sparse tensors by P× (1− α) where P is the ideal throughput and α is the sparse overhead
factor, which is assumed to be 0.65. For the FPGA accelerator, we compare our system with the one
proposed in [4], which achieved 61.62 GFLOPS. The original 4C2F requires 58× 2 MFLOPs, so we
assume that its throughput is 61,620/(58× 2) = 531 Images/sec. For the simplified net, we assume
the same sparse overhead factor for the accelerator. For the accelerator, we also assume that the
other components than the FPGA and the DRAM in the board consumes 4 W. The results of existing
neuromorphic systems are obtained by the recent literature.

5.5. Results

Table 2 summarizes the results for the three networks. All the implementations operate at
160 MHz. Thus, the designs take one input pixel at 5 MHz (160 MHz/2 × na) speed seamlessly.
The classification accuracy (Accu) is evaluated for the original models, the simplified models and
the implementations using the test set. Both CIFAR-10 and MNIST have 10,000 samples in the test
set. The implementation accuracy is the predictive performance of the actual system and reflects
the finite-precision effects. Our Python/numpy-based simulator runs for an implementation model
of the TDNNs and measures the accuracy generating expected outputs of the final softmax layer.
These outputs are validated through RT-level simulation using Synopsys VCS. The two convolutional
NNs have a larger number of connections (Conn) than the number of parameters (Param) due to the
weight sharing. For the TDNNs, the number of units (Unit) and the number of delay units (Delay) are
shown as well. Note that the units, connections, and delay units of the TDNNs are mapped one-to-one

J. Low Power Electron. Appl. 2020, 10, 36 14 of 18

onto the neurons, synapses, and delay elements in the implementations, respectively. Thus, they also
indicate the numbers of neurons, synapses and delay elements. For the original NNs, the number
of connections equals the number of required synaptic operations (SOPs), while they are different
in TDNNs. One synaptic operation (SOP) is translated to 1 MAC in fixed-point systems and 2 FLOPs
in floating-point systems. The total area (Area) of the implementation is measured by the number
of look-up tables (LUTs). Most LUTs in the FPGA are used to implement synapses. The hardware
cost is mainly determined by the number of synapses (thus, the number of connections in the TDNN).
Since each synapse performs 5M SOPs per second, the theoretic (actual) performance of 4C2F comes to
87 G (19 G) SOPs per second.

Table 3 compares our system with existing neuromorphic systems for the MNIST task.
Throughput is measured by images per second. Energy-efficiency (Energy) is evaluated by energy
per image. Table 4 compares our system with existing computing systems and shows that it is a
very different type of computing systems from existing ones. As in [6], we assume that our system
targets at latency-critical applications, and compare it to the other systems when the batch size is
one. In addition, when we compare the energy-efficiency of our system with that of the GPU, we use
the board power instead of the chip power since it is not available for the GPU. Our system gives
125×, 4.7×, and 9.2× speed up over the CPU, the desktop GPU, and the FPGA accelerator for the
entire network, respectively. It also provides 2168×, 105×, and 62.5× higher energy-efficiency over the
CPU, the GPU, and the FPGA. Even if we exclude the improvement by the simplification, our system
provides 1.68× speed up over the FPGA, and 19.1×, and 11.4× higher energy efficiency over the GPU
and the FPGA. The improvements over the FPGA accelerator have been achieved by using almost the
same FPGA devices in a different way. Our system based on the off-the-shelf chip is even comparable
to TrueNorth that is based on a custom chip. Our system provides a slightly higher accuracy and 3.9×
speed-up at only 2.75× lower energy-efficiency.

Table 2. An original feedforward neural network is simplified and rolled into a TDNN by the neural
network compiler (NNC). The units, connections, and delays of the TDNN are mapped to neurons,
synapses, and delay elements in the field-programmable gate array (FPGA).

Net Task
Original Model

Accu Param SOPs Conn Unit Delay

1F MNIST 0.9234 7840 7840 7840
2C1F MNIST 0.9957 0.1 M 6 M 6 M - -
4C2F CIFAR 0.8910 0.8 M 58 M 58 M

Net Task
Simplified TDNN Model

Accu Param SOPs Conn Unit Delay

1F MNIST 0.9265 3000 17 K 3161 243 7047
2C1F MNIST 0.9938 4000 0.4 M 4567 1173 5020
4C2F CIFAR 0.8358 18K 3.7 M 17338 3125 4274

Net Task
FPGA Implementation

Accuracy Area Power

1F MNIST 0.9209 29 K 0.72 W
2C1F MNIST 0.9937 49 K 0.54 W
4C2F CIFAR 0.8343 177 K 2.14 W

J. Low Power Electron. Appl. 2020, 10, 36 15 of 18

Table 3. Comparison with existing neuromorphic systems for MNIST dataset.

TrueNorth SpiNNaker Minitaur This Work[26] [4] [27]

Neural Spiking Spiking Spiking Non-
Model spiking

Archtecture Non-von Von Von Non-von
Neumann Neumann Neumann Neumann

Technology Node 28 nm 130 nm 45 nm 28 nm
Off-chip IO No Yes Yes No

Device Custom Custom Spartan 6 Artix 7
Accuracy 99.42% 95.01% 92% 99.37%

Power 0.12W 0.3W 1.5W a 0.59W
Throughput 1000 FPS 50 FPS 7.54 FPS 6337 FPS

Energy 0.121 mJ 6 mJ 200 mJ 0.093 mJ
a Memory power is not included.

A TDNN model is refined to a network of neurons, synapses, and delay elements preserving
the topology, and the IC design tool places them in a space and connects them automatically.
This provides an interesting visualization of neural networks. The 4C2F on the FPGA is shown
in Figure 11a–c. The network on the FPGA is stimulated by images in the test set of CIFAR-10,
which are transferred via UART, and the output of the network is visualized in a screen as shown in
Figure 11d. The neuromorphic system successfully classifies images in real-time, and the results match
with the simulation exactly.

Table 4. Comparison with existing computing platforms for CIFAR-10 dataset.

CPU GPU FPGA Accelerator [4] TrueNorth [28] This Work

Device Type E5-2650 GeForce Titan X Virtex 7 Custom Kintex 7
485T 325T

Memory Array DRAM DRAM DRAM SRAM None

Technology Node 32 nm 28 nm 28 nm 28 nm 28 nm

Net Model Original Original Original Simplified Original Simplified - Simplified

Tensor Type Dense Dense Dense Sparse Dense Sparse - -

SOPs 58 M 58 M 58 M 3.7 M 58 M 3.7 M - 3.7 M

Batch Size 1 1 64 1 1 1 - 1

Accuracy 0.8910 0.8910 0.8910 0.8358 0.8910 0.8358 0.8341 0.8343

Power (B) - 109 W 190 W 109 W 18.61 W 18.61 W - 4.92 W

Power (P + M) 37.25 W - - - 14.61 W 14.61 W 0.204 W 2.14 W

Throughput 39 FPS 1040 FPS 13,502 FPS 5824 FPS 531 FPS 2974 FPS 1249 FPS 4882 FPS

Energy (B) - 105 mJ 14 mJ 18.72 mJ 35.05 mJ 6.26 mJ - 1 mJ

Energy (P + M) 954 mJ - - - 27.51 mJ (a) 4.91 mJ (b) 0.16 mJ 0.44 mJ (c)

Improvement by simplification and hardware (a/c) 62.5×
Improvement by hardware (b/c) 11.2×

B, P, and M are board, processor, and memory, respectively.

J. Low Power Electron. Appl. 2020, 10, 36 16 of 18

(a) (b)

LAYER 1

LAYER 2

LAYER 3

LAYER 4

LAYER 5

LAYER 6

(c)

VGA out

Downloading images via UART

Neural Network on Chip
(Kintex 7 XC7K325T)

(d)

Figure 11. Neural network on a chip and its demonstration. (a) Our system is a network of three types
of building blocks (delays in red, neurons in green, and synapses in blue). The synapses occupy most
area. (b) The connectivity of the building blocks is shown. (c) A function is dedicated to processing
elements in a specific region as in our brain. (d) Our neuromorphic system based on an FPGA classifies
images into 10 categories at the speed of 4882 images per second consuming only 4.92 W at the
board-level. It uses a non-Von Neumann architecture; any external memory is not used in this system.
In addition, the internal block RAMs on the FPGA are not used except those for the frame buffer.

6. Conclusions

In this paper, we have presented a neuromorphic computing system that is newly designed from
the microarchitecture to the compiler in order to forward-execute neural networks with minimum
energy consumption. This neuromorphic system can scale by simply using a larger FPGA. Since more
than 10 times larger FPGAs than the target platform are available in the market, with our approach,
it now becomes easy to build neuromorphic computing systems that can execute neural networks
with more than 7 million real-valued parameters, fully leveraging existing integrated circuit design
techniques. We believe that a neuromorphic chip derived from FPGAs (or, an FPGA tailored towards
the proposed circuits) serves as a practical processor for large-scale deep neural networks such as
AlexNet and VGG. Although we have mapped the time delay neural networks generated by the neural
network compiler into FPGAs, they can also be mapped into emerging neuromorphic devices such
as memristors. We thus believe that the proposed computing systems can also serve as a research
platform for high-level design studies until new neuromorphic devices are available widely.

Author Contributions: Conceptualization, J.C.; methodology, T.H. and Y.K.; software, T.H. and Y.K.;
validation, T.H. and Y.K.; formal analysis, J.C.; investigation, T.H. and J.C.; data curation, T.H. and Y.K.;
writing—original draft preparation, T.H. and J.C.; writing—review and editing, J.C.; visualization, T.H.;
supervision, J.C.; project administration, J.C.; funding acquisition, J.C. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported by the Institute for Information and Communications Technology Promotion
funded by the Korea Government under Grant 1711073912.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ciresan, D.; Meier, U.; Schmidhuber, J. Multi-column deep neural networks for image classification.
In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Providence, RI, USA, 16–21 June 2012; pp. 3642–3649.

2. Sermanet, P.; Eigen, D.; Zhang, X.; Mathieu, M.; Fergus, R.; LeCun, Y. Overfeat: Integrated recognition,
localization and detection using convolutional networks. arXiv 2013, arXiv:1312.6229.

3. Chetlur, S.; Woolley, C.; Vandermersch, P.; Cohen, J.; Tran, J.; Catanzaro, B.; Shelhamer, E.
Cudnn: Efficient primitives for deep learning. arXiv 2014, arXiv:1410.0759.

J. Low Power Electron. Appl. 2020, 10, 36 17 of 18

4. Zhang, C.; Li, P.; Sun, G.; Guan, Y.; Xiao, B.; Cong, J. Optimizing FPGA-based Accelerator Design for Deep
Convolutional Neural Networks. In Proceedings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, Monterey, CA, USA, 22–24 February 2015.

5. Alwani, M.; Chen, H.; Ferdman, M.; Milder, P. Fused-layer CNN accelerators. In Proceedings of the
2016 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), Taipei, Taiwan,
15–19 October 2016; pp. 1–12.

6. Han, S.; Liu, X.; Mao, H.; Pu, J.; Pedram, A.; Horowitz, M.A.; Dally, W.J. EIE: Efficient inference
engine on compressed deep neural network. In Proceedings of the 43rd International Symposium on
Computer Architecture, Seoul, Korea, 18–22 June 2016; pp. 243–254.

7. Shin, D.; Lee, J.; Lee, J.; Yoo, H.J. 14.2 DNPU: An 8.1 TOPS/W reconfigurable CNN-RNN processor for
general-purpose deep neural networks. In Proceedings of the 2017 IEEE International Solid-State Circuits
Conference (ISSCC), San Francisco, CA, USA, 5–9 February 2017; pp. 240–241.

8. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean,
J.; Devin, M.; et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems.
arXiv 2016, arXiv:1603.04467.

9. Miyashita, D.; Lee, E.H.; Murmann, B. Convolutional neural networks using logarithmic data representation.
arXiv 2016, arXiv:1603.01025.

10. Jo, S.H.; Chang, T.; Ebong, I.; Bhadviya, B.B.; Mazumder, P.; Lu, W. Nanoscale memristor device as synapse
in neuromorphic systems. Nano Lett. 2010, 10, 1297–1301. [CrossRef] [PubMed]

11. Schemmel, J.; Bruderle, D.; Grubl, A.; Hock, M.; Meier, K.; Millner, S. A wafer-scale neuromorphic hardware
system for large-scale neural modeling. In Proceedings of the 2010 IEEE International Symposium on
Circuits and Systems (ISCAS), Paris, France, 30 May–2 June 2010; pp. 1947–1950.

12. Benjamin, B.V.; Gao, P.; McQuinn, E.; Choudhary, S.; Chandrasekaran, A.R.; Bussat, J.M.; Alvarez-Icaza, R.;
Arthur, J.V.; Merolla, P.A.; Boahen, K. Neurogrid: A mixed-analog-digital multichip system for large-scale
neural simulations. Proc. IEEE 2014, 102, 699–716. [CrossRef]

13. Merolla, P.A.; Arthur, J.V.; Alvarez-Icaza, R.; Cassidy, A.S.; Sawada, J.; Akopyan, F.; Jackson, B.L.; Imam, N.;
Guo, C.; Nakamura, Y.; et al. A million spiking-neuron integrated circuit with a scalable communication
network and interface. Science 2014, 345, 668–673. [CrossRef] [PubMed]

14. Cassidy, A.S.; Alvarez-Icaza, R.; Akopyan, F.; Sawada, J.; Arthur, J.V.; Merolla, P.A.; Datta, P.; Tallada, M.G.;
Taba, B.; Andreopoulos, A.; et al. Real-time scalable cortical computing at 46 giga-synaptic OPS/watt with
∼100× Speed Up in Time-to-Solution and ∼100,000× Reduction in Energy-to-Solution. In Proceedings
of the International Conference for High Performance Computing, Networking, Storage and Analysis,
New Orleans, LA, USA, 16–21 November 2014; pp. 27–38.

15. Cassidy, A.S.; Merolla, P.; Arthur, J.V.; Esser, S.K.; Jackson, B.; Alvarez-Icaza, R.; Datta, P.; Sawada, J.;
Wong, T.M.; Feldman, V.; et al. Cognitive Computing Building Block: A Versatile and Efficient Digital
Neuron Model for Neurosynaptic Cores. In Proceedings of the 2013 International Joint Conference on Neural
Networks (IJCNN), Dallas, TX, USA, 4–9 August 2013; pp. 1–10.

16. Arthur, J.V.; Merolla, P.A.; Akopyan, F.; Alvarez, R.; Cassidy, A.; Chandra, S.; Esser, S.K.; Imam, N.; Risk, W.;
Rubin, D.B.; et al. Building block of a programmable neuromorphic substrate: A digital neurosynaptic core.
In Proceedings of the 2012 International Joint Conference on Neural Networks (IJCNN), Brisbane, Australia
10–15 June 2012; pp. 1–8.

17. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014,
arXiv:1409.1556.

18. Han, S.; Mao, H.; Dally, W.J. Deep compression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv 2015, arXiv:1510.00149.

19. Gong, Y.; Liu, L.; Yang, M.; Bourdev, L. Compressing deep convolutional networks using vector quantization.
arXiv 2014, arXiv:1412.6115.

20. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.
Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9.

http://dx.doi.org/10.1021/nl904092h
http://www.ncbi.nlm.nih.gov/pubmed/20192230
http://dx.doi.org/10.1109/JPROC.2014.2313565
http://dx.doi.org/10.1126/science.1254642
http://www.ncbi.nlm.nih.gov/pubmed/25104385

J. Low Power Electron. Appl. 2020, 10, 36 18 of 18

21. Chung, J.; Shin, T. Simplifying Deep Neural Networks for Neuromorphic Architectures. In Proceedings of
the 2016 53nd ACM/EDAC/IEEE Design Automation Conference (DAC), Austin, TX, USA, 5–9 June 2016.

22. Bosi, B.; Bois, G.; Savaria, Y. Reconfigurable pipelined 2-D convolvers for fast digital signal processing.
IEEE Trans. Very Large Scale Integr. 1999, 7, 299–308. [CrossRef]

23. Cmar, R.; Rijnders, L.; Schaumont, P.; Vernalde, S.; Bolsens, I. A methodology and design environment
for DSP ASIC fixed point refinement. In Proceedings of the Conference on Design, Automation and Test
in Europe, Munich, Germany, 9–12 March 1999; ACM: New York, NY, USA, 1999; p. 56.

24. Wen, W.; Wu, C.R.; Hu, X.; Liu, B.; Ho, T.Y.; Li, X.; Chen, Y. An EDA framework for large scale hybrid
neuromorphic computing systems. In Proceedings of the 52nd Annual Design Automation Conference,
San Francisco, CA, USA, 8–12 June 2015; ACM: New York, NY, USA, 2015; p. 12.

25. Agrawal, E. Systolic and Semi-Systolic Multiplier. MIT Int. J. Electron. Commun. Eng. 2013, 3, 90–93.
26. Esser, S.K.; Appuswamy, R.; Merolla, P.; Arthur, J.V.; Modha, D.S. Backpropagation for energy-efficient

neuromorphic computing. In Proceedings of the Advances in Neural Information Processing Systems,
Montreal, Canada, 7–12 December 2015; pp. 1117–1125.

27. Neil, D.; Liu, S.C. Minitaur, an event-driven FPGA-based spiking network accelerator. IEEE Trans. Very
Large Scale Integr. Syst. 2014, 22, 2621–2628. [CrossRef]

28. Esser, S.K.; Merolla, P.A.; Arthur, J.V.; Cassidy, A.S.; Appuswamy, R.; Andreopoulos, A.; Berg, D.J.;
McKinstry, J.L.; Melano, T.; Barch, D.R.; et al. Convolutional Networks for Fast, Energy-Efficient
Neuromorphic Computing. arXiv 2016, arXiv:1603.08270.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/92.784091
http://dx.doi.org/10.1109/TVLSI.2013.2294916
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background
	A Neuron Model
	Neural Networks
	Convolutional Neural Networks
	Neuromorphic Architectures

	Neural Network Compiler
	Model Compression (Simplification)
	Time Delay Neural Net Conversion
	Overall Procedure

	Neuromorphic Hardware
	Experimental Results
	Benchmarks
	Network Simplification
	Bit-Width Determination
	Comparison Baseline
	Results

	Conclusions
	References

