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Abstract: Fractional-order controllers have gained significant research interest in various practical
applications due to the additional degrees of freedom offered in their tuning process. The main
contribution of this work is the analog implementation, for the first time in the literature, of a
fractional-order controller with a transfer function that is not directly constructed from terms of the
fractional-order Laplacian operator. This is achieved using Padé approximation, and the resulting
integer-order transfer function is implemented using operational transconductance amplifiers as
active elements. Post-layout simulation results verify the validity of the introduced procedure.

Keywords: CMOS analog integrated circuits; operational transconductance amplifiers; low-
voltage circuits; fractional-order circuits; fractional-order controllers; motion control systems;
Padé approximation

1. Introduction

The concept of a fractional-order proportional-integral-derivative (FO-PID) controller
constitutes a generalization of the conventional integer-order PID controller [1]. It is
denoted by PIλDµ, where λ and µ (λ, µ ∈ R) are two additional parameters to the integral
and the derivative components of the conventional PID controller. The transfer function of
a general FO-PID controller is given by (1).

CFO−PID(s) = Kp +
Ki

sλ
+ Kd · sµ , (1)

where λ, µ ∈ R provide the controller with two extra degrees of freedom and thereby,
with a better adjustment of its characteristics [2–18].

Machine automation is entering an era of rapid changes and technological advances.
Motion-control systems are widely used in various industries in order to develop auto-
mated systems. The purpose of a motion-control device is to move an object in the desired
manner. The basic components of a motion-control device are a controller and a mechanical
system. The mechanical system translates signals generated by the controller into the
movement of an object. While the mechanical system commonly comprises a drive and an
electrical motor, a number of other systems, such as hydraulic or vibrational systems, can
be used to cause the movement of an object on the basis of a control signal. Additionally,
a motion-control device could comprise a plurality of drives and motors to allow for the
multiaxis control of the movement of the object. In a mechanical system comprising a
controller, a drive, and an electrical motor, the motor is physically connected to the ob-
ject to be moved, such that rotation of the motor shaft is translated into the movement
of the object. The drive is an electronic power amplifier adapted to provide power to a
motor to rotate the motor shaft in a controlled manner. On the basis of control commands,
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the controller controls the drive in a predictable manner, such that the object is moved in
the desired manner.

Studies over the past few decades have provided important information on the way
in which variations of the FO-PID controller contribute to the development of the industry
of motion-control systems [18–23]. On the basis of values of λ, µ, the main subcategories of
FO-PID controllers, employed towards this purpose, are summarized in Table 1.

Table 1. Main subcategories of FO-PID controllers employed in motion-control systems.

Type of Controller Order (λ, µ) Transfer Function C(s)

FO-PI Kp

(
1 +

Ki

sλ

)
λ ∈ R

FO-[PI] µ = 0
Kp

(
1 +

Ki
s

)λ

FO-PD Kp(1 + Kd · sµ)
λ = 0

FO-[PD] µ ∈ R Kp(1 + Kd · s)µ

Assuming that C(s) and P(s) are the transfer functions of the controller and plant,
respectively, then, based on the fact that the “flat phase” tuning rule is meaningful for
system stability and robustness in fractional-order controller designs, there are three design
specifications concerned with the phase and gain of open-loop transfer function G(s):

(i) Gain crossover frequency ωc:

|G(jωc)| = |C(jωc)P(jωc)| = 1 . (2)

(ii) Phase margin φm:

∠[G(jωc)] = ∠[C(jωc)P(jωc)] = −π + φm . (3)

(iii) Specification on robustness to loop gain variations with “flat phase”: This specification
demands that the open-loop phase derivative with respect to the frequency is zero:

d(∠G(jω))

dω
|ω=ωc= 0 . (4)

Following the aforementioned specifications, parameters Kp, Ki, Kd, and λ, µ can
be calculated. A comparison between the FO-PD and FO-[PD] controllers shows that
the FO-[PD] controller has less overshoot for a step response than that of the FO-PD
controller, while the FO-PI and FO-[PI] controllers do not have significant differences in
the performance for the fractional-order process systems [24,25].

FO-[PD] controllers were mathematically studied in [20,21], but according to the
authors’ best knowledge, analog implementations of these types of controllers have not
yet been introduced in the literature. This is the contribution made in this work, and
this is achieved through the utilization of Padé approximation, which helps in deriving a
rational integer-order transfer function, which approximates the transfer function of an
FO-[PD] controller. The paper is organized as follows: the procedure for approximating the
controller’s transfer function is presented in Section 2, while the implementation aspects
are discussed in Section 3. The performance of the system is evaluated in Section 4 through
post-layout simulation results obtained through the utilization of Cadence software and
the design kit provided by the Austria Mikro Systeme (AMS) CMOS 0.35 µm technology.
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2. Approximation of Controller Transfer Function

The transfer function of the plant considered in this work is given by (5), as follows:

P(s) =
1

s(Ts + 1)
, (5)

where T = 0.04 s is the associated time constant. The plant gain is normalized to 1 without
loss of generality since it can be incorporated in the gain of the controller.

The gain and phase responses of the plant are given as

|P(jω)| = 1

ω

√
1 + (ωT)2

, (6)

∠P(jω) = −tan−1(ωT)− π

2
. (7)

The transfer function of the FO-[PD] controller is

C(s) = Kp[1 + Kd · s]µ , (8)

with the gain and phase responses being

|C(jω)| = Kp

[
1 + (Kdω)2

] µ
2 , (9)

∠C(jω) = µ · tan−1(ωKd) . (10)

The specifications of Section 1 were applied to the design of the controller; substitut-
ing (6)–(10) into (2), the following relationship between Kd and µ is established:

Kd =
1

ωc
tan
(

1
µ

(
φm −

π

2
+ tan−1(ωcT)

))
. (11)

According to (4),

Kd =
µ±

√
µ2 − 4Aω2

c
2Aω2

c
, (12)

where parameter A is defined by

A =
T

1 + (ωcT)2 . (13)

According to (3), it is derived that

Kp =

(
1 + (Kdωc)

2
) µ

2√
(ω2

c T)2 + ω2
c

= 1 . (14)

The values of Kd and µ can be obtained from (11) and (12). Then, Kp can be calculated
from (14). Considering that ωc = 10 rad/s and φm = 70°, the obtained values of the pa-
rameters are as follows: Kp = 10.7603, Kd = 0.0061 and µ = 0.5081. Therefore, the transfer
function of the controller takes the form of

C(s) = 10.7603(1 + 0.0061 · s)0.5081 . (15)

One clear problem is that the transfer function in (15) cannot be approximated
through the utilization of conventional tools, such as Continued Fraction Expansion and
Matsuda’s method [26], due to the absence of a pure expression that contains the fractional-



J. Low Power Electron. Appl. 2021, 11, 26 4 of 13

order Laplacian operator. The solution of the aforementioned problem is the employment
of other tools, such as the Oustaloup, curve-fitting approximation, and Padé methods.
The Oustaloup method performs the approximation within a given frequency range, but it
suffers from reduced accuracy on the limits of the frequency range of interest. This can
be overcome by increasing the order of approximation at the expense of circuit complex-
ity [13,27–30]. Curve-fitting-based approximation offers improved accuracy compared to
that offered by the Oustaloup method, but the main problem is that it is dependent on
MATLAB software. The Padé method is an one-step process (like the Oustaloup method),
and is actually a generalization of the asymptotic Taylor expansion that is able to extract the
information from power-series expansions with only a few known terms [31,32]. The main
advantage of the Padé form is convergence acceleration, which leads to efficient approx-
imation even outside a power-series expansion’s radius of convergence. Symbolic Math
Toolbox™ function pade can be used towards this purpose. Input data include the expan-
sion point (which is the specific frequency value ωpade around which the approximation is
performed), and the orders of approximation [m, n] (where m is the number of zeros and n
the number of poles) [32]. This method is very efficient in the approximation of the filtering
characteristics of a transfer function, and results in an integer-order polynomial ratio of the
following form.

Cpade(s) =
Bmsm + Bm−1sm−1 + . . . + B1s + B0

sn + An−1sn−1 + . . . + A1s + A0
, (16)

where Ai (i = 0 . . . n), Bj (j = 0 . . . m) are positive, real coefficients. Hereinafter, it is
considered that m = n in all cases; thus, the order of approximation is equal to n.

Considering that ωpade = ωc = 10rad/s, the resulting 5th-order transfer function of
the controller is given by (17), with the values of coefficients being summarized in Table 2.

C(s) =
B5s5 + B4s4 + B3s3 + B2s2 + B1s + B0

s5 + A4s4 + A3s3 + A2s2 + A1s + A0
(17)

Table 2. Values of coefficients in (17) for 5th-order Padé approximation of (15).

Coefficient Value Coefficient Value

B0 1.366× 1015 A0 1.269× 1014

B1 2.291× 1013 A1 1.736× 1012

B2 1.397× 1011 A2 8.197× 109

B3 3.729× 108 A3 1.553× 107

B4 4.062× 105 A4 1.005× 104

B5 124 – –

The gain and phase frequency responses obtained from (17), along with theoretically
predicted ones given by dashes, are depicted in the plots of Figure 1, where the efficiency
of the Padé approximation is readily obtained. The rational integer-order transfer function
in (17) can be implemented by following well-known filter design techniques, including
series (e.g., multifeedback schemes) as well the parallel connection of fundamental filter
functions. The presented concept is general, in the sense that it is independent of the
parameters of the FO-[PD] controller, and from the type of the employed plant, it offers
versatility from an implementation point of view.
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Figure 1. Approximated controller gain and phase frequency responses derived according to (17).

3. Implementation Aspects

Multifeedback structures, such as follow-the-leader feedback (FLF) and inverse follow-
the-leader feedback (IFLF), are extremely useful tools to describe these approximations and
constitute the implementation of a generalized filter structure [33]. The functional block
diagrams (FBDs) in Figure 2 represent these topologies for 5th-order approximation, which
are described by the same transfer function as that given by (18)

HFLF−IFLF(s) =
G5s5 +

G4

τ1
s4 +

G3

τ1τ2
s3 +

G2

τ1τ2τ3
s2 +

G2

τ1τ2τ3τ4
s +

G0

τ1τ2τ3τ4τ5

s5 +
1
τ1

s4 +
1

τ1τ2
s3 +

G2

τ1τ2τ3
s2 +

1
τ1τ2τ3τ4

s +
1

τ1τ2τ3τ4τ5

, (18)

where variables Gi (i = 0, 1, 2, . . . , n) and τj (j = 1, 2, . . . , n) represent scaling factors and
time constants, respectively.

An alternative realization is based on the partial fraction expansion (PFE) of the
transfer function in (17), and the obtained expression is the following:

HPFE(s) = K0 +
K1

1 + τ1s
+

K2

1 + τ2s
+

K3

1 + τ3s
+

K4

1 + τ4s
+

K5

1 + τ5s
, (19)

with scaling factors and time constants given by the formulae: Ki = ri/|pi| and τi = 1/|pi|,
where ri and pi (i = 1 . . . n) are the residues and poles of the transfer function in (17) and
K0 = An [34]. The corresponding FBD is given in Figure 3.

The IFLF topology is more advantageous in terms of active component count than the
FLF is in the case that active elements with differential input are utilized [35]. In this work,
operational transconductance amplifiers (OTAs) are employed; therefore, the IFLF topology
is compared with the corresponding PFE topology. Using (17)–(19), the values of scaling
factors and time constants are summarized in Table 3.

The spread (i.e., the ratio of the maximal and minimal values of a variable) of the
values of the variables in Table 3 is an important performance factor that affects total silicon
area and/or power dissipation. The provided results show that the values of the spread of
time-constants and scaling factors in the case of the IFLF topology are equal to 138.13 and
11.52, respectively. The corresponding values in the case of the PFE topology are 46.75 and
729.41. Taking into account that the time constants in OTA-C topologies are implemented as
τ = C/gm, where gm is the transconductance of the OTA [35], it is obvious that the spread
of time constants affects the total capacitor occupied area. In addition, scaling factors in
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OTA-C topologies are implemented through an appropriate scaling of DC bias currents
of OTAs; consequently, the spread of scaling factors affects the total power dissipation of
the circuit. Therefore, the IFLF is preferable in the case where power dissipation must be
minimized as it offers about 73 times lower maximal current, while the PFE is the best
choice in the case of a system with minimal total capacitor area, as it requires three times
lower maximal capacitance. Just for demonstration purposes, the performance of the IFLF
topology is evaluated in the next section.
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Figure 2. Functional block diagrams of 5th-order (a) FLF and (b) IFLF topologies.
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Figure 3. Functional block diagram of 5th–order PFE topology.
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Table 3. Values of time constants and scaling factors for IFLF and PFE topology implementations.

IFLF PFE

Variable Value Variable Value

G0 10.76 K0 124
G1 13.20 K1 −100
G2 17.05 K2 −9.60
G3 24.01 K3 −2.64
G4 40.40 K4 −0.81
G5 124 K5 −0.17

τ1 (ms) 0.099 τ1 (ms) 0.120
τ2 (ms) 0.647 τ2 (ms) 1.042
τ3 (ms) 1.894 τ3 (ms) 2.600
τ4 (ms) 4.722 τ4 (ms) 4.303
τ5 (ms) 13.675 τ5 (ms) 5.610

4. Simulation Results

The OTA-C topology that implements the FBD in Figure 2b is demonstrated in Figure 4.
An appropriate CMOS OTA topology in terms of linearity is demonstrated in [36] (Figure 5).
Considering MOS transistors biased in the subthreshold region, realized transconductance
is equal to gm = 5IB/9nVT , where IB is the bias current, 1 < n < 2 is the subthreshold
slope factor, and VT ('26 mV at 27 ◦C) is thermal voltage. The time constants that are
implemented following the design equation τi = Ci/gmi, (i = 1, 2, . . . , n) are given by

τi =
9
5
· nCiVT

IB
. (20)

According to (20) the time constants are electronically adjustable, taking into account
that scaling factors Gi (i = 0, 1, 2, . . . , n) for IFLF method and Ki (i = 0, 1, 2, . . . , n) for PFE
method can be realized through the scaling of transconductances, which is also performed
through a scaling of the corresponding bias currents.

_

gm

Figure 4. 5th–order IFLF filter topology using OTAs.
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Figure 5. Layout design of the proposed controller.

The performance of the proposed fractional-order controller realizations were eval-
uated using the Cadence IC design suite and the MOS transistor models provided by
the AMS 0.35 µm CMOS Design Kit. Power supply voltages are VDD = −VSS = 0.75 V.
Assuming operation of the MOS transistors in the subthreshold region, their chosen aspect
ratios are given in Table 4. The values of bias currents and of capacitors, derived using the
content of Table 3, are provided in Table 5.

Table 4. Aspect ratios of the MOS transistors of the OTA in [36] (Figure 5).

Transistor Aspect Ratio (W /L)

Mp1–Mp2 5/15 µm/µm
Mn1, Mn4 10/5 µm/µm
Mn2–Mn3 2/5 µm/µm
Mb1–Mb3 1/8 µm/µm

Table 5. Values of bias currents and capacitors in the OTA-C topology in Figure 4.

Bias Current Value Capacitor Value

IB0 392.2 pA – –
IB1 597.5 pA C1 0.886 pF
IB2 107.8 pA C2 1.15 pF
IB3 31.13 pA C3 1.01 pF
IB4 34.0 pA C4 2.52 pF
IB5 32.4 pA C5 7.30 pF

The layout of the controller was designed using the Virtuoso Layout Editor and is
depicted in Figure 5, with the dimensions of 190.55 µm × 174.98 µm. The post-layout gain
and phase responses of the controller, along with those derived from (15) and those derived
from (17), are demonstrated in Figure 6.
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Figure 6. Post-layout gain and phase frequency responses of the controller.

The corresponding open- and closed-loop responses of the controller–plant system
are given in Figures 7 and 8, respectively. The time-domain behavior was evaluated
through the stimulation of the system by a 150 mV step signal, and the waveforms of the
corresponding outputs are depicted in Figure 9.
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Figure 7. Post-layout open-loop gain and phase-frequency responses of the system (controller-plant).
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Figure 8. Post-layout closed-loop gain and phase frequency responses of the system (controller-plant).
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Figure 9. Post-layout step-response of the closed-loop system stimulated by a step input voltage
150 mV.

The robustness of the system was evaluated through Monte Carlo analysis offered by
the Analog Design Environment for 100 runs. Considering the effects of MOS transistor
parameters mismatching and process-parameter variations, the derived histograms related
to the overshoot and settling time are given in Figure 10a,b, respectively. The values of the
standard deviation were 0.366% and 5.931 ms with the corresponding mean values being
6.855% and 307.97 ms. The most important performance factors are summarized in Table 6,
where the observed deviations in the time-step performance were mainly caused by the
nonlinearity imposed by the OTA when it was leaving the small signal operation region.

Table 6. Comparison of derived phase-margin, overshoot, settling-time, and rise-time values.

System Phase Margin Overshoot Settling Time Rise Time

Ideal 70.00 o 1.621% 256.1 ms 164.3 ms
Post-layout 70.86 o 6.866% 308.2 ms 178.0 ms
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Figure 10. Histogram plots of (a) overshoot and (b) settling time of open-loop system (controller-plant).

5. Conclusions

The utilization of the Padé approximation solves the problem of the analog implemen-
tation of FO-[PD] controllers. The provided design example, where such a controller was
employed in a motion-control system, showed that a high level of accuracy with regards
to controller characteristics was achieved in both the frequency and the time domain.
The main benefit of the proposed procedure is that it is general, in the sense that it is inde-
pendent from specific controller characteristics and plant type. Another important aspect is
the offered flexibility on the choice of the topology that could be utilized for implementing
the derived integer-order transfer function. Choosing active elements with electronically
controlled characteristics, such as OTAs, the resulting controller topology is fully adjustable
and versatile because the characteristics of the controller are tuned through appropriate
DC bias currents. On the other hand, in the case in which a controller with predefined
characteristics must be designed, the employment of op-amp-based RC filter topologies
is a cheaper solution [9,22]. Another attractive solution that combines an easy design
procedure with programmability and versatility is the utilization of field-programmable
analog arrays (FPAAs), which are based on configurable analog blocks (CABs) connected
through programmable interconnects [37,38].
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Abbreviations
The following abbreviations are used in this manuscript:

CMOS Complementary metal oxide semiconductor
FO Fractional order
FBD Functional block diagram
FLF Follow-the-leader feedback
IFLF Inverse follow-the-leader feedback
IC Integrated circuits
IO Integer order
OTA Operational transconductance amplifier
PFE Partial fraction expansion
PID Proportional integral derivative
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