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Abstract: This article describes a software environment called HybroGen , which helps to experiment
binary code generation at run time. As computing architectures are getting more complex, the
application performance is becoming data-dependent. The proposed experimental platform is
helpful in programming applications that can be reconfigured at run time in order to be adapted
for a new data environment. The HybroGen platform is adapted to heterogeneous architectures and
can generate instructions for different targets. This platform allows to go farther than classical JIT
compilation in many directions: the code generator is smaller by three orders of magnitude and
faster by three orders of magnitude, compared to JIT (Just-In-Time) platforms, and allows making
code transformation that is impossible in traditional compilation schemes, such as code generation
for non von Neumann accelerators or dynamic code transformations for transprecision. The latter
is illustrated in a code example: the square root with Newton’s algorithm. We also illustrate the
proposed HybroGen platform with two other examples: a multiplication with a specialization on a
value determined at run time, and a conversion of degrees Celsius to degrees Fahrenheit. This article
presents a proof of concept of the proposed HybroGen platform in terms of its functionalities, and
demonstrates the working status.

Keywords: transprecision; dynamic compilation; heterogeneous; just in time; code specialization

1. Introduction

Compilation and code generation are 50- year-old research domains, parallel to the
computer architecture research domain [1]. Compilers have the difficult task of transform-
ing a source code application into a running binary code. Due to the constant evolution
of both application domains and computing systems, this task becomes more and more
complex. The difficulty comes from the fact that those evolutions go in opposite directions.

From the classical application development point of view, the priority is to make
programmers efficient by providing richer programming environments. As an illustration,
the Java SDK environment contained around 100 classes in the 1.0 release (1995) and 13,367
for the 1.5 (J2SE 5.0 2004) release (by counting the .class objects). These two orders of magni-
tude in complexity create a very rich programming environment that makes programmers
very efficient because of the “job oriented API” (JDBC for database applications, Graphic
for gaming, etc.).

This organization improves programmer efficiency but augments the “distance” be-
tween the computing architecture and the problem to solve: the programmer generally
focuses on problem-solving by using complex APIs based on high level layers, which
augments the differences between the data to compute on and the hardware capabilities.

A first solution to deal with this problem is to delay the code generation at run time
by using JIT (Just-In-Time) compilation in Java. The hotspot compiler [2] is efficient and
compiles on demand but is based on method count, not on a hardware counter, nor on
data set characteristics. JIT compilation needs a huge memory footprint and needs a long
latency to react to new application behavior.
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In another domain, scientific computation applications, the programmer is aware of
the underlying hardware. They take care of the performance by using efficient compilers
and use algorithms where the data accuracy is computed at the application level. To illus-
trate this, many examples are available in the classical book, Numerical Recipes [3]. A typical
example is the conjugate gradient algorithm, where the iteration number relies on a residue
value. This value decreases during the computation and controls the end of the program.

In this domain, it is interesting to do the computation with reduced precision, which
allows computing faster, thanks to the reduction in the memory bandwidth pressure,
and switching to an improved precision at the end. This simple scheme is very complex to
set up practically.

In this article, we present a new compilation infrastructure proof of concept that allows
solving the two identified difficulties that the classical compilation chain does not solve:

• Make applications aware of the data set characteristics and allow to take advantage of
this knowledge to optimize the code.

• Render the possible dynamic transprecision, i.e., allow transforming the binary code
at run time to change the data types during the application run.

We present HybroGen , a new software environment that allows to experiment binary
code generation at run time. We detail the compilation flow and the different code gen-
eration steps. We also show three demonstrations examples to experiment and prove the
capabilities of our tool: a conversion of degrees Celsius to degrees Fahrenheit, a multipli-
cation with specialization on data fixed at run time, and finally, the computation of the
square root with Newton’s algorithms.

The article is composed of he following. In Section 2, we introduce some other compi-
lation approaches. Then, Section 3 presents the compilation objectives and also explains
the targeted compilation scenarios. Section 4 illustrates how the proposed compilation
chain works on small tutorial examples. Section 5 discusses the future evolution of this
compilation infrastructure. Finally, Section 6 concludes this paper.

2. Related Works

Many existing compilers works can be cited about compilation, but there are not so
many works related to delayed code generation or at least a compilation scenario which
allows taking optimization decision at a different time than the static compilation.

2.1. Code Specialization

All standard C compilers are able to do partial evaluation and, for example, able to
replace expression containing constants by a resulting value.

The initial idea to do run-time code specialization (i.e., partial evaluation) for the C
language coming from C. Consel in the 1990s [4]. However, at that time, the underlying
hardware was simpler in terms of memory hierarchy and ALU capability.

The library approach in [5] proposes a software emulation which cannot use real hardware.
The AIR approach [6] uses a similar approach based on software functions which do

not generate code at run time.
Difference from HybroGen : real implementation, generates binary code at run time

to use hardware accelerators.

2.2. Install Time

Many works have tried to do detect possible optimization during program install on a
new machine.

ATLAS in 2001 [7] is a BLAS implementation with semi-automatic optimization
detection. Other works including source code generation push the limit farther for other
mathematical kernels: FFTW in 2005 [8] for FFT implementations and SPIRAL for linear
algebra kernels [9].

Interestingly, FFTW has a dynamic scheduler which chooses the best implementation
at run time, depending on the FFT signal size.
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Difference from HybroGen : we generate binary code at runtime, not only choosing
the most efficient version, but a gain in code size.

2.3. High Level Intermediate Representation

Leaving the C language offers opportunity to rely on a high-level intermediate format.
Java hostspot compiler [2] has an interesting strategy using different compiler strategies. It
starts the execution by interpreting the code, then, depending on the number of function
calls, it applies different aggressiveness levels of compilation. However, the strategy is only
based on function call statistics and execution timing. There is no direct relation between
the data set and the compilation strategy, and no vectorization concept.

JavaScript also uses a JIT compilation strategy, but both Java and Javascript have a
very costly compilation phase as described in [10].

A similar approach is described in this Vapor SIMD article [11] but no practical
implementation is proposed.

Difference from HybroGen : real implementation and code generation directly based
on data values, not on statistical method count and gain in code transformation speed.

2.4. deGoal

Another attempt was made with the deGoal tool [12]. This tool allows implementing
similar compilation scenarios. The programming language is portable across similar
SIMD architectures but is at assembly level, which makes complex applications difficult
to implement.

Difference from HybroGen : implementation based on a programming language, not
assembly level: gain in expressivity and code generation quality.

Those main approaches are summarized in Table 1 where the tool activity is shown
depending on the “compilation time”.

Table 1. State of the art comparison of compilation scenarios, and comments on the different
transformation steps. The green X shows where the tool has an activity.

Tool Name
Compilation Time

Install Static Execution Time

Atlas [7] X: Archi. testing
FFTW [8] X: Code eval.: X: Code selectors
Consel [4] X: No actual implem.

VaporSIMD [11] X: agnostic vectors X: No actual implem.
Java [2] X: agnostic bytecode X: Method count

deGoal [12] X: ISA description X: Assembly level

HybroGen X: ISA description X: Generate generators X: Data dep. Code gen.

3. Compiler Level Support for Transprecision

This section presents challenges in terms of compilation for applications using transprecision.

3.1. Transprecision and Challenges for Compilers

Transprecision computing [13] is explored by the H2020 European project OPRE-
COMP [14].

The idea is to reduce energy consumption by using approximate computing. For ex-
ample, the precision can be decreased by using small float, i.e., 8-bit or 16-bit, floating
point numbers. The precision is adapted during the computation with the criteria to use
more precision at the end of the computation. This is particularly convenient for iterative
mathematical applications, where the iteration number is controlled by a reduced value.

Several articles present work around transprecision computing, such as FlexFloat [5],
AIR [6] or the work in [15]. For FlexFloat, Grosser et al. describe the C/C++ library for
transprecision computing. AIR presents an algorithmic approach to use transprecision.
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These proposals address the challenge of transprecision computing during the application
development. One of the characteristics of transprecision is the fact that it is adapted at run-
time and controlled by the application of the data size which is not known at compilation
time. Compiler optimization, in particular, loop statements, cannot be used in this case
because the compiler knows when applications move toward more precision.

3.2. HybroLang : A New Language

In this paper, we propose HybroLang , a new language developed within the proposed
HybroGen compilation platform. It permits to declare more complex data types, such
as vectors, data with varying length and multiple arithmetics, integers, floats, complex
numbers, pixels, IP addresses, etc.

3.2.1. Compiler: When Should Code Generation Arise?

There are different code generation times to generate a code for an application. In a
standard development flow, the code is generated at static compilation times. Data values
are resolved at run time and with only one step of compilation before the execution, some
optimizations cannot be applied.

Usually, programmers want to write simple code with good performance on all
computers. This is not the case in real life. In fact, programmers need to specialize code for
a specific architecture. Moreover, programmers develop different versions of the code to
adapt programs to data types, such as float, integer and different word size.

With HybroGen , we propose to generate instructions during the execution to take
advantage of data values resolved at run time. Our platform allows experimentation on
multiple scenarios of code generation time.

3.2.2. Run-Time Code Generation Scenarios

Figure 1 explains our goal in terms of code generation. On the top of the figure, we
illustrate the timing between static compilation Figure 1a and execution time. We illustrate a
classical use case where the execution is composed of a prelude, multiple kernel executions
and a postlude.

Figure 1. Chronograms of different compilation scenarios. On the top, the static compiler
(a), without any code specialization at run time. On the bottom, our proposition for dynamic
compilation (b) with three scenarios: binary code specialization at program init, kernel init or
application controlled.

When the data set is not known at the compilation time, whatever the static compi-
lation time devoted to the kernel compilation, the compiler should be conservative and
cannot take into account the data characteristics which could be used for optimization
(loop bound, data values, needed precision, etc.).



J. Low Power Electron. Appl. 2021, 11, 28 5 of 13

In our case, we want to generate the binary code at run time and use the dynamic
compilation in Figure 1b. We list the following code generation scenarios:

• Program init: The code generation takes place at the beginning of the application and
minimal knowledge makes small optimization possible. The binary code is generated
once, and the binary code is called many times.

• Kernel init: In the second scenario, code generation is done at each kernel invocation.
The data set information is so rich that the generated code is very efficient, thanks
to the optimizer contained in the code generator. The code generation time can be
amortized at each kernel call.

• Application driven: In some situations, the application has a knowledge of the con-
text, and the programmer wants to have control of the code generation. For example,
many mathematical applications have loops controlled by a “residue” value. This
value can be used to decide when the code generation should be called to improve
the precision.

Those scenarios are illustrated on some tutorial examples in Section 4.

3.2.3. Language Features

In this paper, we propose HybroLang as a new language with syntax close to the C
programming language. We develop HybroLang to add support for dynamic compilation of
applications with different targeted architectures. This language uses specific data types,
which are defined in triplicate: type, vector size and word size. This language is used only
to describe the part of kernel that we want to optimize; we name this part a compilette.
The other part of the program is written with the language targeted. In this paper, we chose
C language, but we can imagine other languages such as JavaScript or Python.

3.2.4. Data and Code Generation Interleaving

The main characteristics of our HybroGen environment are the following:

• The possibility to delay the code generation and have a versatile code generation
scheme that is demonstrated later in this article.

• Variables are hardware registers.
• There is no parenthetical expression to avoid local register allocation.
• Special constructions #(expression) allow plugging expression results into the binary

code. This point is very important, as it allows the following:

– Insert values into binary code, thus avoiding memory access.
– Change the vector length at run time.
– Change the data type length at run time.

Those characteristics are demonstrated in the later examples.

3.3. HybroGen Platform

HybroGen is composed of four steps, shown in Figure 2 which correspond to differ-
ent times: install time, source-to-source compilation time, source-to-binary compilation
time and execution time. At install time (Figure 2a), the description of the instruction
set architecture (ISA) is stored, maps to the compilation source to source and is specific
to the proposed HybroGen compilation flow. The input is a kernel described with Hy-
broLang language as described previously. Our compiler HybroGen implements different
passes of compilation, such as a classic compiler, but at the output, it produces a code in an
existing programming language; for this paper, it produces C code. HybroLang requests
the database to construct a code generator, which writes the correct encoding at run time.
After using HybroLang , we use a compiler for the second compilation time (Figure 2c)
such as gcc or clang. In this paper, we used gcc. Finally, depending on the scenario choice,
at execution time (Figure 2d), the code of the compilette is executed, which generates the
instructions that are executed at the backend.
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Figure 2. Overview of HybroGen platform with four steps: (a) install time, (b) compilation source-to-source transformation,
(c) compilation source-to-binary transformation and (d) execution time

4. Demonstration of HybroGen for Transprecision Applications

In this section, we present the demonstrations and results of using HybroGen for
transprecision applications on different platforms, such as power or RISC-V.

4.1. Experimental Platform

To run the demonstrations, a system-level simulator and real platform are used.
Qemu [16] is used to simulate POWER8 and RISC-V architectures. This simulator exists
for different architectures, such as x86, MIPS or ARM, and supports different variants. For
example, there is a version for RISC-V 32 bits and another for the 64-bit architecture. In this
paper, we use qemu-riscv32 version 5.0.0 and qemu-ppc64le version 5.0.0. We also verify
our results on a physical POWER8. For the static compilation, e.g., the source-to-binary
compilation, we use riscv32-elf-gcc-9.3.0 and powerpc64le-linux-gnu-gcc-8.

Figure 3 shows the different steps of our compilation chain from Figure 2b, which
rewrites the HybroLang section of the application to a C version that is able to generate the
multiple binary version. This capability to generate the multiple binary version is very
important in multiple contexts: adapt to hardware characteristics, data set parameter and,
as we focus on this article, data set precision.

Figure 3. HybroLang compilation chain. Contains classical compilation steps—lexer and parser,
generic and specific IR optimizations— and also specific ones, using an SQL database to store
instruction specifications and C code generation, which act as the polymorphic binary code generator
at run time.

4.2. Application Scenarios of HybroGen

Dynamic compilation allows code generation at different times during the execution
of a program. Figure 4 presents three moments to generate instructions corresponding
to the kernel, similar to Figure 1 but in an algorithmic form. In the first case, the code is
generated only once and at program initialization. This case illustrates a situation where
the generated code is executed more than once, N times in the figure, to amortize the cost of
dynamic compilation. In Figure 4, we can see that parameter of the execution, i.e., i, is not
used for the code generation, but it can be used in the parameter of the code generated call.
We also see the specialization parameter s, which is a parameter of the generated function
genAdd in this figure. In the second case, Figure 4 part (2), the code generation takes place
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just before the execution of the kernel, and this maps to the kernel initialization. In this
case, we want to generate the most optimized code which is specific to one execution with
constant injection. The cost of the code generation can be amortized because this compilette
uses fewer instructions than a classical compiler. In the last case, Figure 4 part (3), code
generation can take place several times during the execution; it sets off by a condition on
the data value. The code generation is driven by the application and especially by the
execution and results values. In transprecision applications, this ability is very useful to
adapt precision according to the data value.

Figure 4. Code generation time where i is the compilette parameters, s corresponds to the parameters
to specialize to the compilette and t is the threshold which is a condition to re-generate code.

4.3. Demonstration Example

To illustrate the three cases described in Figure 4, we chose three examples: conversion
of Celsius to Fahrenheit, multiplication with a specialization on a constant value, and
square root with Newton’s algorithm. The latter example demonstrates the advantage of
using HybroGen for transprecision applications.

4.3.1. Celsius to Fahrenheit

The first demonstration is the conversion of degrees Celsius to degrees Fahrenheit.
This example illustrates the case of an expression of multiple arithmetic operations. We
chose this code example for its simplicity. The code of the compilette is described with
HybroLang language in Listing 1.

Listing 1. Celsius to Fahenreit compilette.

h2_insn_t * genC2F ( h2_insn_t * ptr )
{
# [
i n t 32 1 C2F ( i n t 32 1 a )
{
i n t 32 1 r ;
r = a * 9 / 5 + 3 2 ;
return r ;
}
]#
return ( h2_insn_t * ) ptr ;
}

In all code examples, the compilette begins with the two symbols #[ and finishes with ]#.
Only the compilette is rewritten in C language by HybroLang . Other lines correspond to the
prototype of the C function, and the last line is the return of the function.

This example only uses arithmetic operations; we can see that HybroLang allows affec-
tation with more than one operator. The function named genC2F contains the description of
the compilette and returns a pointer to the beginning of the code generated. The compilette
C2F is called in the main program with different parameters, which correspond to tempera-
ture values that we want to convert. This is a typical example of one code generation for
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several calls to generated code. A more sophisticated version can have data types (int, in
this example) in parameters and the same compilette can generate code for int, float 16 bits,
float 32 bits, and so on. The data value description is very flexible with HybroLang .

4.3.2. Multiplication with Specialization

In this part, we focus on a small example of using specialization with HybroLang . It
illustrates a specific functionality to HybroGen : injected value at run time. This code is
as small as possible to focus on specialization of data at run time. We select a compilette
which computes a multiplication of a value by a constant. This constant is not known at
the static compilation time, only at the execution time. HybroGen can inject the value, b in
the following code identified by #(b) in the compilette during the execution. The gener-
ator named genMult, written using C language, and the compilette mult described with
HybroLang are given in Listing 2.

Listing 2. Multiplication with specialization compilette.

h2_insn_t * genMult ( h2_insn_t * ptr , i n t b )
{
# [
i n t 32 1 mult ( i n t 32 1 a )
{
i n t 32 1 r ;
r = #( b ) * a ;
return r ;
}
]#
return ( h2_insn_t * ) ptr ;
}

The sentence, which contains #(b), is an example of data injection which implements
code specialization at run time. The result of this compilette is a function which multiplies
by the specific constant b.

4.3.3. Square Root with Newton’s Algorithm

This application is a perfect example of using transprecision for computation. The com-
putation of the square root with Newton’s algorithm uses a function for one step of the
iteration. At each step, an approximate value of the square root of the value u is computed
with the formula: (u + (val/u))/2, where val is the precision. This function written with
HybroLang is provided in Listing 3.

Listing 3. Square root with Newton’s algorithm compilette.

h2_insn_t * g e n I t e r a t e ( h2_insn_t * ptr , i n t FloatWidth )
{
# [
f l t # ( FloatWidth ) 1 i t e r a t e ( f l t # ( FloatWidth ) 1 u ,
f l t # ( FloatWidth ) 1 val , f l t # ( FloatWidth ) 1 div )
{
f l t # ( FloatWidth ) 1 r , tmp1 , tmp2 ;
tmp1 = val / u ;
tmp2 = u + tmp1 ;
return tmp2 / div ;
}
]#

return ( h2_insn_t * ) ptr ;
}
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At the beginning of the application, the float precision is sufficient to compute an
approximate result, but during the execution, if there is no difference between the current
and the previous result, then the application generates a new code with better precision.
The program stops when a step of the iteration achieves a result with the required precision.
The main program is described in Listing 4.

Listing 4. Square root with Newton’s algorithm main.

i n t main ( i n t argc , char * * argv )
{
. . .
f P t r 1 = ( p i f f ) g e n I t e r a t e ( ptr , FLOAT ) ;
do
{
i f ( ( d i f f < prec f ) && i s F l o a t )
{ / * Code g e n e r a t i o n with d o u b l e f o r b e t t e r p r e c i s i o n * /
f P t r 2 = ( pidd ) g e n I t e r a t e ( ptr , DOUBLE) ;
i s F l o a t = Fa l se ;
}
value = next ;
next = ( i s F l o a t ) ? f P t r 1 ( value , af , 2 . 0 ) : f P t r 2 ( value , af , 2 . 0 ) ;
d i f f = ABS( next − value ) ;
} while ( i s F l o a t || ( ! i s F l o a t && ( d i f f > precd ) ) ) ;
}

In this code, we can see two calls to genIterate, which is the function responsible
for code generation: the first with float precision and the second with double precision.
The computation of one step of iterations corresponds to the call of fPtr1 or fPtr2 where
value maps to the previous result, and af is the precision that we want to obtain. At
the end of the loop, we compute the difference between the current and the previous
result to decide if the precision was reached to either change to double precision or to stop
the program.

4.4. An Example of HybroGen Compilation for Multiplication with Specialization

To detail the different step of HybroGen flow, we provide an example of the application
Multiplication with specialization described previously.

4.4.1. Static Compilation with HybroLang

The HybroLang compiler transforms the compilette in C code, which is composed
of a call to generate function. Each instruction of the compilette corresponds to one or
more call to generate functions, which are in charge of selecting instructions based on data
types and the type of each operand. In multiplication with specialization, the main
operation is the multiplication; HybroLang converts that into a call to power_genMUl_3 or
riscv_genMUl_3, respectively, for POWER and RISC-V architecture. The number 3 refers
to the number of operands because C language does not allow an overloaded function.
In this example, the first and the second parameters are the same, and map to an integer
register with a word size fixed to 32 bits and initialized with a value of b to specialize, in
this code, on b. Finally, this register contains the result of the multiplication. The third
parameter maps to the first register in the input, which is represented by the variable a in
the initial code. To summarize, the generation of the code for the multiplication of a by b to
transform on two functions of generation is as follows:

h2_sValue_t a = { REGISTER , ’ i ’ , 1 , 32 , 10 , 0 } ;
h2_sValue_t h2_0 = { REGISTER , ’ i ’ , 1 , 32 , 6 , 0 } ;
riscv_genMV_2 ( h2_0 , ( h2_sValue_t ) {VALUE, ’ i ’ , 1 , 32 , 0 , ( b ) } ) ;
riscv_genMUL_3 ( h2_0 , h2_0 , a ) ;
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4.4.2. Back-End Code Generation Using Database Request

Generation functions are composed of a conditional structure to select the best instruc-
tion. For example, riscv_genMV_2 is used to select instruction for the move operation with
2 operands. This function is generated by HybroLang as follows:

void riscv_genMV_2 ( h2_sValue_t P0 , h2_sValue_t P1 ) {
i f ( ( P0 . a r i t h == ’ i ’ ) && ( P0 . wLen <= 32) && ( P0 . vLen == 1)

&& i s R e g i s t e r ( P0 ) && i s R e g i s t e r ( P1 ) ) {
RV32I_MV_RR_I_32 ( P0 . regNro , P1 . regNro ) ;
}
e lse i f ( ( P0 . a r i t h == ’ i ’ ) && ( P0 . wLen <= 32) && ( P0 . vLen == 1)
&& i s R e g i s t e r ( P0 ) && isValue ( P1 ) ) {
RV32I_MV_RI_I_32 ( P0 . regNro , P1 . valueImm ) ;
}
e lse {
h2_codeGenerationOK = 0 ;
}
}

In this function, the first case maps to move operation from register P1 to register
P0; the second case corresponds to the move operation of integer P1 to register P0. We
also generate error messages if there is no operation for this operand. For example,
moving a float into a register is not possible with this selector function. Functions such
as RV32I_MV_RI_I_32 are called by the selector function to write instruction encoding.
This macro is generated with a SQL request to a database which contains instructions
for encoding and the format for different architectures and variants. The Application
Binary Interface (ABI) is also described in the database and requested by HybroLang to
build C code.

4.4.3. Binary Code Generation at Execution

Finally, the execution of this compilette on RISC-V architecture produces the following
instructions:

0 x19008 : o r i t1 , zero , 3
0 x1900c : mul t1 , t1 , a0
0 x19010 : mv t0 , t1
0 x19014 : mv a0 , t0
0 x19018 : r e t

The same program executed on POWER gives this result:

0 x4000021260 : l i r15 , 3
0 x4000021264 : mullw r15 , r15 , r3
0 x4000021268 : addi r14 , r15 , 0
0 x400002126c : addi r3 , r14 , 0
0 x4000021270 : b l r

Registers t1 and r15, respectively for RISC-V and POWER, contain the specialized
value: 3, in this execution. This value is multiplied with instructions mull and mullw by
the value in the input register a0 or r15. To improve the performance of HybroGen , some
passes of optimization are needed to reduce the number of move instructions. For example,
the results of the multiplication are stored in t1 or r3, the output registers for, respectively,
RISC-V and POWER.

The example below shows instructions generated with a specialized value fixed to −5:

0 x4000021260 : l i r15 , −5
0 x4000021264 : mullw r15 , r15 , r3
0 x4000021268 : addi r14 , r15 , 0
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0 x400002126c : addi r3 , r14 , 0
0 x4000021270 : b l r

A careful reader has noticed that those tutorial codes are not optimal. We know that
there are specialized instructions that use constant values; these examples are only to
explain the workflow and show that the proposed HybroGen compiler environment is able
to generate multiple binary codes from the same compilette.

4.5. Metrics and Evaluation of HybroGen Flow

To evaluate the HybroGen compilation flow, the number of Lines of Code (LoC) is a good
indicator to evaluate the extra cost to port C code to hybrid HybroLang and C code. Table 2
presents the number of LoC for the three experimented applications and for the different parts of
the code. The compilette code is written with HybroLang and we can see that it is very small: 12 to
14 lines, depending on the application. This code is compiled with HybroLang , which generates
C code specific for an architecture. For all the applications, and in particular the two targeted
architectures, the number of lines of C code generated is between 96 and 284. This difference can
be explained by the number of instructions in the database for each architecture: the semantic
instructions and arithmetic use in the application. The latter column corresponds to C code used
for the management, such as call to the generators, call to generated code and parameters for
management. This code is the same for all architectures and depends on applications. For these
applications, the number of LoC is between 28 and 55.

Table 2. Lines of Code (LoC) of C and HybroLang for demonstration applications.

Applications Compilette Code
(HybroLang )

Generated Code (C) Main Without
Compilette (C)RISC-V POWER

Celsius to
Fahrenheit 12 179 284 36

Multiplication
with specialization 12 96 102 28

Square root with
Newton algorithm 14 159 188 55

5. Discussion and Working Direction

This article presents a new compilation infrastructure called HybroGen . We have
shown that our tool is already working on small examples, which are a challenge in terms
of compilation chain complexity.

Our technical targeted metrics are (1) code generation speed and (2) code generation
size. As we use the same code generation scheme as deGoal [12], we already know that
those two metrics are similar to, faster than and smaller than any JIT compiler.

As scientific targets, we want to follow two main objectives which are the following:

• Scientific support for transprecision: We target to support applications containing
run-time transprecision and support scientific transprecision applications. This ob-
jective is very useful on hardware platforms which contain many floating point
representations. For example, the RISC-V platform from GreenWaves, GAP9, has
support for floating point variants of 8, 16 and 32 bits. The RISC-V standard platform
has support for 32 and 64 bits, while the IBM Power8 platform has support for 32 and
64 bits. Those platforms are good candidates.

• Compilation support for non von Neumann architecture: We also support code
generation for “in memory computing” devices [17]. On those devices, the difficulty
comes from the fact that there are two synchronized instruction flows to generate.
This platform is not in the scope of this article.
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This article showed a proof of concept of the initial results. We will continue to
improve our HybroGen tool, and in future experiments, we will focus on other metrics
which are as follows:

• Speedup for scientific applications: Thanks to our run-time optimization, we will
have speedups that will help scientific applications which need run-time transprecision
support, mainly those who rely on a residue value that decreases.

• Code generation speed: As we can regenerate the binary code very often, it is very
important to generate it as fast as possible. HybroGen is designed to generate the binary
code generator which is very fast because our compiler is able to restrict the code
generation to the only instructions that are needed by the application.

• Code generator size: Thanks to the previous point, our final code generator is very
small (KB order of magnitude), does not rely on an external library and can be suited
for embedded systems.

Table 3 summarizes the current supported platforms.

Table 3. Supported hardware platforms, working both in simulation mode and on hardware plat-
forms.

ISA Instruction Set Emulator Hardware

RISCV qemu-riscv32 GreenWave / Gap9 platform

CSRAM qemu-riscv32
+ In Memory Processing plugin CEA / RiscV + In MemoryComputing

Power qemu-ppc64le IBM / Power8 systems

Kalray kvx-mppa Kalray / Coolidge

Our HybroGen infrastructure will be open source, but it is not yet ready for public
release. Nevertheless, it is possible to take the HybroLang input sources, the output C and
a Makefile containing the commands to run the application. The public repository is
https://github.com/oprecomp/HybroLang (accessed on 28 June 2021) and contains a
README which explains how to reproduce the experimentation and run the applications.

6. Conclusions

In this article, we demonstrated the opportunity to break classical compilation static
strategies and open the door to make applications auto-adaptive to the context.

We demonstrated three new code generation scenarios, which have binary code
generation at run time in common. The first one shows only binary code generation,
the second allows code specialization at run time and the third shows a code specialization
based on transprecision.

Our HybroGen infrastructure proof of concept gives to the programmer the possibility
to control their application, and links the data parameter to the architecture.

We showed in this article that those capabilities are useful, do not rely on complex
and big JIT infrastructures, and the binary code is small and fast.

We continue to extend our HybroGen infrastructure and develop demonstrations of its
capabilities in two directions: (1) on scientific demonstrators of the transprecision capabili-
ties because it is a challenge for IA applications, and (2) on heterogeneity, i.e., the capability
to generate binary code at run time for multiple processors, from high performance Power8
up to small RISC-V compute nodes.

Our HybroGen infrastructure will be open source but has not reached release quality.
Nevertheless, we share the code example version (HybroLang , generated C code) in the fol-
lowing repository: https://github.com/oprecomp/HybroLang (accessed on 28 June 2021).
this code allows reproducing the code generation scenarios described in this article.

https://github.com/oprecomp/HybroLang
https://github.com/oprecomp/HybroLang
https://github.com/oprecomp/HybroLang
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