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Abstract: The rising concerns about global warming have motivated the international community
to take remedial actions to lower greenhouse gas emissions. The transportation sector is believed
to be one of the largest air polluters. The quantity of greenhouse gas emissions is directly linked to
the fuel consumption of vehicles. Eco-driving is an emergent driving style that aims at improving
gas mileage. Real-time fuel estimation is a critical feature of eco-driving and eco-routing. There
are numerous approaches to fuel estimation. The first approach uses instantaneous values of speed
and acceleration. This can be accomplished using either GPS data or direct reading through the
OBDII interface. The second approach uses the average value of the speed and acceleration that can
be measured using historical data or through web mapping. The former cannot be used for route
planning. The latter can be used for eco-routing. This paper elaborates on a highly pipelined VLSI
architecture for the fuel estimation algorithm. Several high-level transformation techniques have
been exercised to reduce the complexity of the algorithm. Three competing architectures have been
implemented on FPGA and compared. The first one uses a binary search algorithm, the second
architecture employs a direct address table, and the last one uses approximation techniques. The
complexity of the algorithm is further reduced by combining both approximated computing and
precalculation. This approach helped reduce the floating-point operations by 30% compared with the
state-of-the-art implementation.

Keywords: FPGA; eco-driving; floating-point arithmetic

1. Introduction

The transportation sector is experiencing a paradigm shift thanks to the fast develop-
ment in information and communication technologies (ICT). Sustainability and a multitude
of other factors have contributed to the establishment of transportation 4.0. It has been
argued in many published reports that the legacy transportation system is inefficient, pol-
luting, and unsafe [1–3]. To remedy the problems associated with road traffic, the intelligent
transportation system based on dedicated short range communication (DSRC), has been
proposed with the following chief aims [4]: reduce congestion, increase road safety, improve
drive experience, lower greenhouse gas emission, and make the transportation more effi-
cient. In [5], the authors proposed an eco-routing system based on vehicle-to-infrastructure
(V2I). The energy consumption on a given road is transmitted to a road-side unit (RSU) and
forwarded to the traffic management center (TMC). Drivers use this information to find
fuel-efficient routes. This solution necessitates a strong ICT infrastructure, which can be
prohibitive. The same design principle has been advocated in [6].

The revolution in communication, embedded systems, and the associated disruptive
technologies have contributed to the realization of the fourth industrial revolution, com-
monly known as industry 4.0. The smart city is yet another concept that emerged with the
development of the Internet of Things, as well as machine learning techniques. As pictured

J. Low Power Electron. Appl. 2022, 12, 17. https://doi.org/10.3390/jlpea12010017 https://www.mdpi.com/journal/jlpea

https://doi.org/10.3390/jlpea12010017
https://doi.org/10.3390/jlpea12010017
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jlpea
https://www.mdpi.com
https://orcid.org/ 0000-0003-3339-0845
https://doi.org/10.3390/jlpea12010017
https://www.mdpi.com/journal/jlpea
https://www.mdpi.com/article/10.3390/jlpea12010017?type=check_update&version=1


J. Low Power Electron. Appl. 2022, 12, 17 2 of 13

in Figure 1, smart mobility is one of the pillars in the smart city [7]. In the EU model for the
smart city, the smart mobility indicator includes safety, sustainability, and innovation.

1 
 

 
Figure 1. Pillars of the smart city framework.

In academia, reducing car emissions has been the focus of intensive work. Many
parameters impact car fuel consumption (load, tire pressure, road, weather, vehicle age,
etc.). It has been demonstrated through intensive experiments that driving style substan-
tially impacts fuel consumption. Three driving styles have been investigated in [8]. It
was found that economic driving style reduces fuel consumption by 21% compared to
dynamic driving.

In the literature, several algorithms have been devised for the estimation of fuel con-
sumption [9–12]. Real-time implementation of fuel estimation algorithms has received scant
attention. This work is an extension of previously published work [9,13]. The contributions
reported in this work are the following:

• Reducing the computational complexity by 66% using high-level transformation
techniques;

• Devising two techniques for computing the RPM: binary searching based on a direct-
addressable table and approximation algorithm;

• Implementation of the devised architecture using both an IP method and a high-level
synthesis tool (GAUT).

The rest of the paper is organized as follows. Section 2 compares our work with exist-
ing techniques. Section 3 reviews the fuel estimation algorithm described in [9]. Section 4
describes techniques to reduce the computational complexity of the fuel estimation algo-
rithm and elaborates three hardware architectures. Section 5 reports the implementation
results. Section 6 concludes the paper.

2. Related Work

In the last decade, numerous fuel estimation algorithms have been proposed. The authors
of [14] elaborated an algorithm using a power-based model. The algorithm requires instanta-
neous values for the acceleration and speed; consequently, it cannot be used for eco-routing.

An Android application was devised in [15]. The app reads vehicle parameters
through on-board diagnostics parameter ID (OBDII) interface. The system uses artificial
intelligence techniques to provide the driver with eco-driving tips.
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Using the Willan’s internal combustion engine, the author of [9] devised a non-iterative
fuel estimation model. The technique devised in [16] for the vehicle routing problem (VRP)
is determined by the comprehensive modal emission model (CMEM). CMEM requires both
speed and acceleration to estimate the fuel consumption. The engine RPM was fixed to
2800 for a passenger vehicle and 2400 for a truck. The authors of [13] envisioned an RPM
algorithm and designed a hardware architecture using floating point arithmetic for the
implementation of the fuel estimation algorithm.

Approximated computing is a new design technique that has been conceived to reduce
the power consumption or increase the speed of VLSI circuits. Floating-point arithmetic
consumes more area, is slower, and is more power-hungry compared with fixed-point
arithmetic. Fortunately, approximated computing have also been shown to substantially
reduce delay and power consumption [17].

3. Real-Time Fuel Estimation Algorithm
3.1. Preliminaries

Table 1 lists the parameters along with their typical values used to elaborated on
the architecture.

Table 1. Parameters list with their their typical values.

Parameter Explanation Unit Typical Value/Range

d Distance meter NA

t trip time second NA

RPM Rotations per minute dimensionless 0–7000

mv Vehicle’s mass kg 750

ml Vehicle’s load kg 600

B Diameter of the cylinder (in piston) m 0.067

S Engine stroke m 0.067

z number of cylinders dimensionless 4–8

A f Frontal area of a vehicle m2 1.97–3.2

cd drag coefficient dimensionless 0.29–0.32

cr A rolling friction coefficient dimensionless NA

ttrac percentage of traction time dimensionless 60%

ρa Ambient air density kg/m3 1–1.3

egb efficiency index of the gearbox dimensionless 0.92–0.95

P0,gb the gearbox power loss W 3% of the rated power of the gear box

Nstops Frequency of stopping dimensionless NA

Hl the fuel’s lower heating value J/kg 43.5106 (for RON—95 gasoline)

ρ f Density of the fuel kg/L 0.75 (for RON—95 gasoline)

g earth acceleration m/s2 9.83

Ftrac attractive force N NA

ζe engine efficiency dimensionless NA

Subsequently, we review the equations used to elaborate the macroscopic fuel estima-
tion algorithm described in [9,18,19].

Figure 2 summarizes the forces exerted on a vehicle in an acceleration mode. Those
forces are: the traction force (~Ft(t)), the aerodynamic friction(~Fa(t)), the rolling friction
(~Fr(t)), the gravity force(~Fg(t)), and the disturbance force (~Fd(t)). The relation between
those forces is described in (1) [19].
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mv~a = ~Ft(t)−
(
~Fa(t) + ~Fr(t) + ~Fg(t) + ~Fd(t)

)
, (1)

where is mv denotes the mass of the vehicle’s body, and~a represents the acceleration of
the vehicle.

Figure 2. Major forces acting on an accelerated vehicle along a ramp.

In traction mode, the distance traveled by the vehicle is determined using (2).

xtotal =
∫

t∈trac
v(t)dt. (2)

Equations (3) and (4) are, respectively, used to estimate the average value of the speed
and the acceleration.

v̄i =
vi + vi−1

2
. (3)

āi =
vi − vi−1

h
. (4)

Given the air density (ρa), the vehicle frontal area (A f ) , the aerodynamic drag coeffi-
cient (cd), and the rolling friction coefficient ( cr), (5)–(8) are used to calculate the average
value of the traction force.

F̄t = F̄a + F̄r + F̄m, (5)

where F̄m is the acceleration force.

F̄a =
1

xtot

1
2

ρa A f cd ∑
i∈trac

v̄3
i h. (6)

F̄r =
1

xtot
mvgcr ∑

i∈trac
v̄ih. (7)

F̄m = mv
1

xtot
∑

i∈trac
āi v̄ih. (8)
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The mechanical power is determined from the traction as shown in (9).

P̄trac =
F̄tv̄
ttrac

. (9)

The gearbox input power is calculated from (10).

Pi,gb =
1

egb

(
P̄trac + P0,gb

)
, (10)

where egb is the efficiency of the gearbox, and P0,gb the idle power of the gearbox at a given
engine speed.

The additional energy consumed after each stop is approximated using (11).

Estart ≈
1
2

v2
0mv, (11)

where v0 is the attained speed from the standing mode.
The mean value of the fuel power consumption given by (12).

P̄f uel = ttrac(Pstart + P̄trac)

[
pme + pme0(cm)

ζe pme

]
, (12)

where ζe = the engine efficiency parameter, pme = fuel mean pressure, pmeo = pressure losses
inside the engine, and Pstart = power consumed when the vehicle is accelerating from a
standstill to a given speed. Both pmeo and ζe can be obtained from the engine map.

The fuel flow is estimated using (13).

Vf = P̄f uel/
(

Hl · ρ f

)
, (13)

where Hl (J/kg) is the fuel’s lower heating value, and ρ f (kg/l) is the fuel density.

3.2. Algorithm for Fast Fuel Estimation

To simplify the calculations, the author of [9] used the driving cycle to estimate the
fuel consumption. The known driving modes are MVEG-95 (Motor Vehicle Emissions
Group), ECE (European Cycle Emission), and EUDC (Extra-Urban Driving Cycle) [19]. The
steps are described in Algorithm 1.
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Algorithm 1 Fuel estimation algorithm elaborated in [9].

1: procedure FUEL ESTIMATION(d, t, RPM, mv,B, S, z, A f , cd, cr, ttrac, ρa, egb, P0,gb, Nstops,
Hl , ρ f , g, ml)

2: v̄← d
t

3: ωe ← RPM(v̄)
4: M← mv + ml
5: h1 ← 1

xtot
∑i∈trac v̄3

i h
6: h2 ← 1

xtot
∑i∈trac v̄ih

7: h3 ← 1
xtot

∑i∈trac āi v̄ih.
8: Ftrac ← h1

1
2 ρa A f cd + h2 ·M · g · cr + h3M

9: Ptrac ← Ftrac ·v̄
ttrac

10: Pi,gb ←
Ptrac+P0,gb

egb

11: Pstart ← 4.5·M
Nstops ·v̄

12: cm ← 2·S·ωe
60

13: pme ←
16·Pi,gb
zπB2cm

14: ζe ← 0.4·pme ·10−5

pme ·10−5+1.6

15: Pf uel =
ttrac ·(Pi,gb+Pstart)

ζe

16: Vf ←
Pf uel
Hl ·ρ f

17: f̂c ←
Vf ·105

v̄
18: end procedure

4. Optimized Hardware Architecture

The hardware architecture for implementing the fuel estimation algorithm needs to
have the following features: (1) an RPM unit that determines the engine rotation per minute
given the driving speed; (2) a functional unit for computing h1, h2, and h3; (3) a hardware
module for calculating Ftrac, Ptrac, Pi,gb, Pstart,Pf uel , Vf , f̂c; and (3) a memory unit for storing
the constants used by the precedent unit.

To reduce the computational complexity of the fuel estimation algorithm, the following
techniques can be used efficiently. A predefined driving mode can be utilized to estimate
h1, h2, and h3. Table 2, lists the values of h1,2,3 for the three driving cycles.

Table 2. Statistical values of h1, h2, and h3.

Driving Cycle h1 h2 h3

MVEG-95 319 0.856 0.101

ECE 82.9 0.81 0.126

EUDC 455 0.88 0.086

The computational complexity can be further reduced by precomputing the first term
of Ptrac, that is, the quantity h1

1
2 ρa A f cd. Table 3 reports the precomputed values for the

three driving cycles for air density ρa = 1.293 kg/m3, cd = 0.312, A f = 2.06 m3.

Table 3. Precomputed value of K1 = h1
1
2 ρa A f cd in N.

MVEG-95 ECE EUDC

132.38 34.44 189.05
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It is further possible to reduce the computational cost of tractive force, Ftrac, by the
transformation shown in (14):

Ftrac = K1 + M(h2 · g · cr + h3) = K1 + K2 ·M, (14)

where K1 and K2 are constants that depend on the driving cycle. Tables 2 and 4 show the
value of, respectively, K1 and K2 for the three driving cycle modes.

Table 4. Precomputed value of K2 = h2 · g · cr + h3 for cr = 8.63× 10−3.

MVEG-95 ECE EUDC

0.173 0.194 0.160

Having performed the rearrangements, the number of multiplications is reduced from
3 to 1. The required number of arithmetic operations before and after optimization is
summarized in Table 5. The control data-flow graph of the original and refined algorithm
is shown in Figure 3. The control data-flow graph can be further improved by insert-
ing pipeline latches, which reduce the critical path delay to one arithmetic unit, that is
τ = max(tadd, tdivider, tmultiplier), where tadd, tdivider, tmultiplier are, respectively, the critical
path delay of a floating point adder, divider, and multiplier.

Table 5. Arithmetic cost of the fuel estimation algorithm.

Operation Before Transformation After Transformation Savings in (%)

Addition 6 4 33.3

Multiplication 11 8 27.7

Division 4 4 0

The fuel estimation algorithm requires as input the RPM value (ωe). The closed-form
expression to compute ωe is shown in (15).

ωe =
v̄γAγG

πD
, (15)

where D is the diameter of the wheel expressed in meters, γA is the axle ratio, and γG is
the gearbox ratio.

In [19], the author proposed an approximation formula to compute the engine RPM,
which is described in (16):

ωe =
2 · v̄γi

D
, (16)

where γi is the gear ratio. The RPM unit can be implement in one of the following ways:
a look-up table that stores a pre-calculated value or a datapath unit that computes ωe
using (16). To verify the accuracy of (16), the RPM and speed have been measured using a
sedan vehicle. Table 6 compares the measured RPM to the approximated one using (16).
The results shows that the approximation error has an acceptable accuracy.
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(a)

(b)

Figure 3. Two methods for the calculation of the RPM: (a) CDFG for the unoptimized fuel estimation
algorithm; (b) pipelined and optimized CDFG for the refined fuel estimation algorithm.
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Table 6. Comparison between measured and estimated RPM.

Speed (kmph) Gear Position Gear Ratio Measured ωe (tr/min) Estimated ωe Error in %

20 2nd 1.93 1500 1140 31.5

30 2nd 1.93 2000 1710 17

40 3rd 1.29 1800 2116 15

50 3rd 1.29 2000 2645 24.38

60 3rd 1.29 2500 3174 21.23

70 4th 1 2200 2870 23.3

80 4th 1 2500 3280 23.7

90 5th 0.68 2200 2509 12.3

100 5th 0.68 2500 2788 10.3

110 5th 0.68 2700 3067 12

120 5th 0.68 3000 3346 10.3

130 5th 0.68 3000 3625 17.24

The RPM unit designed using a look-up table requires the implementation of a search-
ing algorithm. The algorithm takes as input the average speed and returns the engine
RPM (ωe). The known searching algorithms are: linear, binary, hash table, and direct-table.
The complexity of those algorithms is summarized in Table 7. Hardware implementation
of the search algorithm. For the fuel estimation algorithm, the direct address table is
the most appropriate way for searching the engine RPM, as the size of the table is small.
The Algorithm 2 computes the engine RPM using the direct address table.

Table 7. Complexity-based search techniques.

Algorithm Linear Search Binary Search Hash Table Direct Address Table

Complexity O(n) O(log n) O(1) O(1)

The data-flow graph of the RPM unit using the approximating equation, the search
algorithm using the direct address table, and the binary search algorithm are pictured in
Figure 4.

Algorithm 2 Pseudo-code for the RPM calculation unit.

1: procedure RPM-2(v̄, TRPM, Tspeed)
2: I← (0.1 · v̄)− 1
3: ωe ← TRPM(I)
4: return ωe
5: end procedure
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(a)

(b)

(c)

Figure 4. Three methods for the calculation of the RPM: (a) DFG for the RPM calculation unit using
approximated equation; (b) RPM unit calculation using a binary search algorithm; (c) RPM unit
calculation using a direct address table.

5. Implementation Results

Three types of architecture have been implemented using FPGA technology. Those
architectures are summarized in Table 8. The architecture ArchApproxRM uses an approxi-
mation formula to compute ωe. The binary search algorithm is used by the architecture
ArchBinaryRPM. The last one uses a direct address table.

Table 8. Features of the hardware architectures.

Architecture ArchApproxRPM ArchBinaryRPM ArchDirectRPM

Feature Approximation Binary Search Direct

For automated architecture synthesis of the RPM unit, the academic high-level syn-
thesis tool (GAUT) has been used [20]. The design flow using GAUT is shown in Figure 5.
Comparison between three architectures for the implementation of the RPM calculator is
presented in Table 9. From the presented results, it is clear the the approximation method
consumes fewer resources as compared with the two others.
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Figure 5. High-level synthesis using GAUT.

Table 9. Synthesis results for the RPM calculator.

Architecture ArchBinaryRPM ArchDirectRPM Approximation

Block Name Size Number Size Number Size Number

Single-port ROM 32× 12 1 32× 12 1 0 0

Adders 5-bits 11 0 0 0 0

Comparators 9-bits 24 0 0 0 0

Multiplexers 2-to-1 44 0 0 0 0

Multiplier 0 0 10× 10 1 10× 10 1

The data path of the fuel estimation algorithm necessitates the implementation of
floating-point arithmetic. This is due to the high-dynamic range of the coefficients used
in the fuel estimation algorithm. Floating-point arithmetic is supported in VHDL 2008
operations [21]. Furthermore, a number of vendors offer IP for floating point operations.
To select the suitable method for the realization of the data path, both the floating-point
package and the IP provided by Xilinx ISE tool were implemented and tested using Virtex-6
FPGA. The core is reconfigurable and can be used to design adder, multiplier, absolute
value, exponential function, square-root, conversion between fixed and floating-point,
natural logarithm, and accumulator [22].

The comparison presented in Table 10 favors the IP over the floating-point package.
The critical delay for the data path is 4 ns, which is nearly 17.8 times less than the one
proposed in [13]. The proposed architecture can be used for eco-routing. The circuit can
be further optimized by fine-tuning the floating-point arithmetic. Furthermore, the fuel
estimation model does not consider factors such as driving comfort and weather conditions.
A more detailed investigation will be conducted from both an algorithm standpoint as well
as a hardware implementation standpoint.
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Table 10. Comparison between a commercial IP and the floating point package.

Operator Fmax (IP) Fmax (fp Package)
Divide 237 MHz 13.6 MHz

Multiplier 245 MHz 38.2 MHz

Adder 236 MHz 22.8 MHz

6. Conclusions

Approximation computing is a very attractive design techniques for reducing the
implementation complexity of DSP algorithms. In this paper, high-level transformation
techniques were used to implement a fuel estimation algorithm for a passenger car. Three
architectures were devised and implemented on FPGA technology. High-level synthesis
using GAUT was employed to design the RPM calculation unit. Pre-calculation combined
with approximated computing was exercised to further reduce the floating-point opera-
tions. The results show that the architecture that uses approximated multiplication for the
computation of the engine RPM consumes fewer hardware resources compared with the
binary-based searching method. Furthermore, the control data-flow graph was pipelined
to reduce the critical path delay. The synthesis results were determined using a commercial
IP. The maximum operating frequency of the data path is 236 MHz, which is dictated by
the floating-point adder.
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