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Abstract: Deep submicron technologies continue to develop according to Moore’s law allowing
hundreds of processing elements and memory modules to be integrated on a single chip
forming multi/many-processor systems-on-chip (MPSoCs). Network on chip (NoC) arose as an
interconnection for this large number of processing modules. However, the aggressive scaling of
transistors makes NoC more vulnerable to both permanent and transient faults. Permanent faults
persistently affect the circuit functionality from the time of their occurrence. The router represents
the heart of the NoC. Thus, this research focuses on tolerating permanent faults in the router’s input
buffer component, particularly the virtual channel state fields. These fields track packets from the
moment they enter the input component until they leave to the next router. The hardware redundancy
approach is used to tolerate the faults in these fields due to their crucial role in managing the router
operation. A built-in self-test logic is integrated into the input port to periodically detect permanent
faults without interrupting router operation. These approaches make the NoC router more reliable
than the unprotected NoC router with a maximum of 17% and 16% area and power overheads,
respectively. In addition, the hardware redundancy approach preserves the network performance in
the presence of a single fault by avoiding the virtual channel closure.
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1. Introduction

The advancements in the semiconductor industry towards deep-sub micrometer technologies
were motivated by Moore’s law in the last decades, allowing the integration of billions of transistors
on a single chip [1,2]. These chips embed hundreds of memory modules and functional intellectual
property (IP) blocks forming multi/many-processor systems-on-chip (MPSoCs) [2,3]. Increasing
processing elements numbers in a single chip presents complexity in interconnection architecture
making traditional bus-based interconnections unsuitable in MPSoCs [4]. Therefore, network on chip
(NoC) interconnection architecture appeared as an alternative on-chip interconnection in MPSoCs
due to its high performance, reusability, scalability, and fault tolerance characteristics [1,4,5]. Figure 1
shows the MPSoCs scheme interconnected by NoC.

NoC [6–9] interconnection consists of a group of shared router nodes joined by shared channels or
links, making this structure more efficient than buses. The connections between the routers and their
attached processing elements (PEs) are constructed by network interfaces (NIs) [10]. The functionality
of an NoC is defined by its topology, routing algorithm, flow control, and switching technique.
Switching techniques are used to determine data format to traverse its path, such as the wormhole
packet switching technique, which is the most widely adopted technique. Wormhole switching divides
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the packet into smaller fixed size parts called flits (flow control information units) and traverses them
in a pipelined scheme through the network [9,11,12].J. Low Power Electron. Appl. 2019, 9, x FOR PEER REVIEW 2 of 18 

 

 

Figure 1. The multi/many-processor systems-on-chip (MPSoCs) scheme interconnected using 38 
network on chip (NoC). 39 

NoC [6–9] interconnection consists of a group of shared router nodes joined by shared channels 40 
or links, making this structure more efficient than buses. The connections between the routers and 41 
their attached processing elements (PEs) are constructed by network interfaces (NIs) [10]. The 42 
functionality of an NoC is defined by its topology, routing algorithm, flow control, and switching 43 
technique. Switching techniques are used to determine data format to traverse its path, such as the 44 
wormhole packet switching technique, which is the most widely adopted technique. Wormhole 45 
switching divides the packet into smaller fixed size parts called flits (flow control information units) 46 
and traverses them in a pipelined scheme through the network [9,11,12]. 47 

By going deeper into the sub micrometer technology and the continuous device downscaling, 48 
the on-chip interconnects and routers became more susceptible to faults. There are two different 49 
kinds of NoC potential reliability challenges, soft (transient) and hard (permanent) faults. Soft errors, 50 
which are unpredictable errors that occur for a short time and are caused by different sources, such 51 
as energetic particle strikes [13], electrical noise [14], or process variation [15], may affect the NoC by 52 
misrouting packets or making them invalid. Hard faults, which are permanent, persistently affect the 53 
circuit functionality from the time of their initiation and are caused by many sources, such as 54 
electromigration [16], and time-dependent dielectric breakdown [17]. 55 

Many researchers proposed fault tolerance techniques to improve NoC reliability, which is the 56 
network probability of delivering messages correctly in a certain time [9]. The faults may occur in 57 
some or all components of NoC, namely links and routers. Fault tolerance techniques are achieved 58 
mainly by redundancy, which can be time redundancy, such as data retransmission with the selfsame 59 
component, information redundancy by adding code for error correction, or spatial redundancy 60 
achieved by redundant elements [18]. The soft errors can be countered mainly by error control coding 61 
whereas the hard faults can be countered by spare module/gate for replacements, faulty part 62 
isolation, or fault tolerant routing [10]. 63 

The main part of NoC is the router, which carries out the essential task of steering and 64 
coordinating the data flow. It consists of three major parts: input buffers element, routing 65 
components, and crossbar component. The flits are stored in the input buffer component and routed 66 
by routing components, which are the route computation component, virtual channel allocation 67 
component, and switch allocation component. The crossbar component is used to transfer flit to 68 
destination node physically [10]. Some works, such as [19–23], addressed the permanent faults in the 69 
router by addressing the different components. 70 

The proposed scheme tolerates permanent (hard) faults in very important fields of the input 71 
buffer (port) component called the virtual channel state fields, which they track the flits the moment 72 
the buffer is reserved until it is released. To the best of our knowledge, these fields have not been 73 
considered yet. The proposed scheme uses the hardware redundancy technique for tackling 74 
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By going deeper into the sub micrometer technology and the continuous device downscaling,
the on-chip interconnects and routers became more susceptible to faults. There are two different
kinds of NoC potential reliability challenges, soft (transient) and hard (permanent) faults. Soft errors,
which are unpredictable errors that occur for a short time and are caused by different sources, such as
energetic particle strikes [13], electrical noise [14], or process variation [15], may affect the NoC by
misrouting packets or making them invalid. Hard faults, which are permanent, persistently affect
the circuit functionality from the time of their initiation and are caused by many sources, such as
electromigration [16], and time-dependent dielectric breakdown [17].

Many researchers proposed fault tolerance techniques to improve NoC reliability, which is the
network probability of delivering messages correctly in a certain time [9]. The faults may occur in some
or all components of NoC, namely links and routers. Fault tolerance techniques are achieved mainly by
redundancy, which can be time redundancy, such as data retransmission with the selfsame component,
information redundancy by adding code for error correction, or spatial redundancy achieved by
redundant elements [18]. The soft errors can be countered mainly by error control coding whereas the
hard faults can be countered by spare module/gate for replacements, faulty part isolation, or fault
tolerant routing [10].

The main part of NoC is the router, which carries out the essential task of steering and
coordinating the data flow. It consists of three major parts: input buffers element, routing components,
and crossbar component. The flits are stored in the input buffer component and routed by routing
components, which are the route computation component, virtual channel allocation component,
and switch allocation component. The crossbar component is used to transfer flit to destination
node physically [10]. Some works, such as [19–23], addressed the permanent faults in the router by
addressing the different components.

The proposed scheme tolerates permanent (hard) faults in very important fields of the input
buffer (port) component called the virtual channel state fields, which they track the flits the moment
the buffer is reserved until it is released. To the best of our knowledge, these fields have not been
considered yet. The proposed scheme uses the hardware redundancy technique for tackling permanent
faults in these fields. Furthermore, a built-in-self-test circuitry is integrated into the input port to detect
the faults and configure the hardware redundancy circuit accordingly.

The rest of the paper is structured as follows: Section 2 presents related works addressing
permanent faults in the NoC router. Section 3 describes the architecture of the baseline 4-stage NoC
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router. Section 4 presents the proposed design that tolerates permanent faults in the input buffer
component of the NoC router. Section 5 discusses the results of the proposed design in terms of
delay, area overhead, power consumption, reliability, and network performance. Section 6 concludes
this paper.

2. Related Works

In this section, we review earlier works on fault-tolerant NoC router architectures that focus on
tolerating permanent faults in the NoC router pipeline.

N-modular redundancy (NMR) approaches were adopted in the BulletProof router [19] to
provide fault tolerance from permanent faults. However, NMR techniques significantly increase
the area and power consumption because they require redundant reproductions of hardware.
Vicis methodology [20] was suggested to tolerate permanent faults using inherent redundancy at two
levels, network and router. At the network level, Vicis approach employs input port swapping
supported by an adaptive routing algorithm to tolerate permanent faults. At the router level,
it tolerates faults in the crossbar of the router using a bypass bus and in the datapath of the router
using error-correcting codes (ECC). Although Vicis router provides better fault tolerance with lesser
area overhead than BulletProof [19], it causes a reduction in performance with increasing faults.
Furthermore, it can sustain at most one permanent fault at the buffer component.

In [21], the Row-Column (RoCo) Decoupled router was proposed, which divides the router into
individual row and column modules. The division process was enabled by using decoupled parallel
arbiters and smaller crossbars for row and column connections. Because the row and column modules
are independent in their work, a permanent fault in one module does not affect the other module,
and the router operates correctly with the fault-free module. The RoCo router tolerates permanent
faults in the buffers via a bypass path, in the routing computation stage by using a double route
computation in the next router, and in the switch allocation stage by sharing arbiters from virtual
channel allocators. Fault tolerance property is not applied for the virtual channel allocation and the
crossbar stages. This decomposition strategy is energy-efficient and reliable. However, its recovery
designs for faulty modules cause latency penalties and performance degradations.

In [22], the researchers suggested a permanent fault tolerant router (PFTR) and further extended
in the Shield router [24], which has the ability to tolerate multiple permanent faults in the pipeline
stages. Its reliability is accomplished by adding minimal extra circuitry and exploiting temporal
parallelism to individual stages of the baseline router pipeline. The PFTR tolerates permanent faults
for the routing computation (RC) stage by using a redundant RC component for each input port,
for the virtual channel allocation (VA) stage by using resource sharing, for the switch allocation (SA)
stage via bypass path for each arbiter, and for the crossbar (XB) stage by providing two paths for each
output port of the crossbar implemented by adding smaller sized decoders of the crossbar. The PFTR
module provides better reliability than a baseline router and other fault-tolerant routers. However,
the technique of using the idle time of existing fault-free resources degrades performance under high
traffic. Furthermore, the PFTR scheme cannot tolerate faults in the input port.

A reliable NoC router based on a 2-stage generic router was presented in [23]. It employs five
different fault tolerance techniques for all components in the baseline router. It tolerates permanent
faults in the input buffers using error correction code and virtual channel closing technique. It used
a double routing technique for the RC component, default winner technique for the VA component,
runtime arbiter selection technique for the SA component, and double bypass bus technique for the
XB component. The suggested router enhances reliability with lower hardware overhead than earlier
reliable router schemes. However, the fault tolerance using ECC detection and virtual channel closing
strategy gives an extra cycle latency before transferring flits to the crossbar stage.

Previous approaches mainly focused on tolerating permanent faults in the Routing Computation
(RC) component, Virtual channel Allocation (VA) component, Switch Allocation (SA) component,
and crossbar (XB) component. In contrast, limited attention was given to permanent faults in the input
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buffer component. As a result, providing fault tolerance strategies to this component increases the
reliability of the entire router. The fault tolerance technique used in the input buffer unit of our design
tolerates faults in the input virtual channel state fields, which play a main role to control the flow of
messages in the NoC router.

3. Baseline 4-Stage NoC Router

The baseline router composes of 4-stages pipeline (RC, VA, SA, and switch traversal ST) each one
takes one clock cycle to be executed. In this section, the background of a generic 4-stage NoC router
is illustrated.

3.1. Router Architecture

Figure 2 shows the architecture of a baseline 4-stage NoC router [9]. The router has five input
ports and five output ports, each input port has 1: V demultiplexer, V:1 multiplexer, and V virtual
channels (VC’s). The control components of the router are the routing computation (RC) component,
the virtual channel allocation (VA) component, the switch allocation (SA) component, and the crossbar
(XB) which connects the input ports to the output ports of the router [23]. Since the baseline router uses
wormhole packet switching technique, the packet is divided into three types of smaller fixed size flits
namely a head flit which allocates router resources to the packet, a body flit which contains the packet
payload, and a tail flit which de-allocates router resources from the particular packet [22]. Each packet
starts with a head flit followed by zero or more body flits and a tail flit. In single flit packets, the head
flit is also marked as a tail flit. Flit types are shown in Figure 3.
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3.2. Router Pipeline

Figure 4 shows the pipeline of the baseline 4-stage NoC router. A packet is processed through the
pipeline of the NoC router to be transferred to the next router or to the desired processing element (PE)
of that router. The RC and VA stages are called (once per packet) because they perform computation
for head flit of each packet. On the other hand, the SA and XB stages are called (once per flit) because
they perform computation for all flits (head, body, and tail) of the packet [7]. During the processing of
flits in each router component, the virtual channel state fields (G, R, O, P, and C) are changed according
to that component as shown in Figure 4.

J. Low Power Electron. Appl. 2019, 9, x FOR PEER REVIEW 5 of 18 

 

Route Info Payload CheckTypeVC

Type Payload CheckVC

Head flit

Body or Tail flit  

Figure 3. Flit types. 148 

3.2. Router Pipeline 149 
Figure 4 shows the pipeline of the baseline 4-stage NoC router. A packet is processed through 150 

the pipeline of the NoC router to be transferred to the next router or to the desired processing element 151 
(PE) of that router. The RC and VA stages are called (once per packet) because they perform 152 
computation for head flit of each packet. On the other hand, the SA and XB stages are called (once 153 
per flit) because they perform computation for all flits (head, body, and tail) of the packet [7]. During 154 
the processing of flits in each router component, the virtual channel state fields (G, R, O, P, and C) 155 
are changed according to that component as shown in Figure 4. 156 

Cycle
Head flit

Body flit 1
Body flit 2

Tail flit

not changed state fields
R OG CP

i: needed input fields o: changed fields after completion

RC VA SA ST

SA ST

SA ST
SA ST

RC VA SA ST

SA ST

SA ST
SA STW1 W2

W1 W2
W1 W2

W1 W2

CC1 CC2 CC3 CC4 CC5 CC6 CC7

O

G
R
G G

C
P

G

C
P

R
GG

R
O

G

C
P

R
O

G

C
P

R
O

G

C
P

R
O

G

C
P

i o i o i o i o i o i o i o

C
P

C
P

CC8 CC9 CC10 CC11 CC12 CC13 CC14

C
P

C
P

i o i o i o i o i o i o i o

C
P

C
P

CT W1 W2 CU
CT W1 W2 CU

CT W1 W2 CU
CT W1 W2 CU

CC15 CC16 CC17 CC18 CC19

R
G

C
P

C
P

O

G G

C
P

G

C
P

C
P

R
G

R
O

G

C
P

R
O

G

C
P

i o i o i o i o i o
G

C
P

Credit (head)
Credit (body1)
Credit (body2)
Credit (tail)

Head flit(same OVC) RC VA SA ST

Credit count 4 4 4 3 2 1 0 0 0 0 0 0 0 1 2 3 4 4 3

• White stages for upstream router • Gray stages for downstream router  

Figure 4. The pipeline of the baseline 4-stage NoC router, assuming two cycles link traversal (W1, 157 
W2). 158 

3.3. Architecture of Router Components 159 

3.3.1. Input Buffer Component (Input Port Component) 160 
In a baseline router, each input port is decomposed into groups of flit buffers. These buffers are 161 

organized as a compound of fixed size queues as shown in Figure 2. Each queue is named a virtual 162 
channel, and all virtual channels for the same input port share a physical channel of that port [23]. 163 
Therefore, each new arriving flit is stored in a specific VC buffer selected by VC identifier of that flit. 164 
All flits of the same packet are stored in the same virtual channel. Each input virtual channel is 165 
tracked by five virtual channel state vectors or fields called Global state (G), Route (R), Output VC 166 
(O), Pointers (P) and Credit count (C) fields [9]. The G field represents the status of the current virtual 167 
channel and takes one of the following states, either idle (I), routing (R), waiting for an output VC 168 
(V), active (A), or waiting for credits (C). The R field stores the output port for the packet and is set 169 
after the routing computation stage is completed. The O field holds the output VC of port R assigned 170 
to the current input VC, which is the result of the virtual channel allocation stage. The P field stores 171 
the head flit and tail flit pointers that point to the buffers in the input VC as shown in Figure 5. The 172 
C field indicates the credits count of available in downstream flit buffers for the output virtual 173 

Figure 4. The pipeline of the baseline 4-stage NoC router, assuming two cycles link traversal (W1, W2).

3.3. Architecture of Router Components

3.3.1. Input Buffer Component (Input Port Component)

In a baseline router, each input port is decomposed into groups of flit buffers. These buffers are
organized as a compound of fixed size queues as shown in Figure 2. Each queue is named a virtual
channel, and all virtual channels for the same input port share a physical channel of that port [23].
Therefore, each new arriving flit is stored in a specific VC buffer selected by VC identifier of that flit.
All flits of the same packet are stored in the same virtual channel. Each input virtual channel is tracked
by five virtual channel state vectors or fields called Global state (G), Route (R), Output VC (O), Pointers
(P) and Credit count (C) fields [9]. The G field represents the status of the current virtual channel and
takes one of the following states, either idle (I), routing (R), waiting for an output VC (V), active (A),
or waiting for credits (C). The R field stores the output port for the packet and is set after the routing
computation stage is completed. The O field holds the output VC of port R assigned to the current
input VC, which is the result of the virtual channel allocation stage. The P field stores the head flit and
tail flit pointers that point to the buffers in the input VC as shown in Figure 5. The C field indicates the
credits count of available in downstream flit buffers for the output virtual channel O on output port R.
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Table 1 displays the function of each state field and a summary of the possible effects of faulty fields,
which shows the importance of these fields to the flow of messages in the NoC router.
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Table 1. Function of the input virtual channel state fields and the effect of faults.

State Field Function Faults Effect

G (Global state)
Represents the status of the current virtual channel:
idle (I), routing (R), waiting for an output VC (V),

active (A), or waiting for credits (C).

The state of VC is changed. Many effects can
occur but in general, the pipelined operation will

not proceed correctly or may stop.

R (Route) Stores the output port for the packet and is set after
the routing computation stage is completed. The packet is misrouted.

O (Output VC)
Holds the output VC of port R assigned to the

current input VC which is the result of the virtual
channel allocation stage.

The wrong O leads to wrong output VC. Packet(s)
may be lost.

P (Pointers) Stores the head flit and tail flit pointers that point to
the buffers in the input VC.

The faulted P leads to pointing on the wrong
location of buffers. Flits or even packet can be

lost, and VC may stay unreleased.

C (Credit count)
Indicates the credits count of available downstream
flit buffers for output virtual channel O on output

port R.

If C is wrong, then the number of free buffers in
output VC is wrong. Flits may be forwarded to a

full buffer or flits may stay while the buffer
is available.

3.3.2. Routing Computation Logic Component (RC)

In a baseline router, all input ports have one shared routing computation (RC) component, which
computes the output port that the packet should be headed to. This decision is taken according to the
destination information that exists in the head flit of that packet and on the routing algorithm used.
The output port number is stored in the Route (R) field of the virtual channel status fields. The RC
component operates only on the head flit of a packet [22].

3.3.3. Virtual Channel Allocation Component (VA)

The virtual channel allocation (VA) component is responsible for allocating the available virtual
channel in the downstream router to the arriving packet. This component operates on head flit only
and stores its result in the (O) field [22].

3.3.4. Switch Allocation Component (SA)

The switch allocation (SA) component determines which input VC of the input port can transfer
its flits through the crossbar component to the output port in the following cycle [22]. It operates on all
flits and updates the (C) field when successful.

3.3.5. Switch Traversal Component (Crossbar XB) or (ST)

The crossbar (XB) component connects the input ports with the output ports of the same router.
It is controlled by the control signals generated by the switch allocator (SA) [22].
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3.4. Alternative Router Pipelines

To reduce the number of cycles in the pipeline, the stages may work in parallel in a single cycle
with speculation technique. A pipeline with 3-stages is designed by speculatively performing SA in
parallel with VA. This can be further enhanced to a 2-stage pipeline where the flit is sent to the ST stage
while the VA and SA are being executed at the same cycle. One stage pipeline is designed by combining
the 3-stages are speculation (VA, SA, and ST) with the lookahead RC property, where the next output
port is computed in the upstream router and sent with the head flit. These alternatives do not affect
the VC state fields, thus, keeping their role crucial in all cases and the proposed protection solution
can be incorporated in these pipelines as well. As a result, this work will consider the 4-stage router.

4. Proposed NoC Router

In this section, the proposed router is illustrated, where the focus is on tolerating permanent
faults in the state fields of the input buffer component to increase its reliability. Other components
or stages were tackled from faults to increase reliability by many researchers [20–23] and can be
adopted to provide complete protection. The proposed buffer component employs the hardware
redundancy technique to tolerate permanent faults in the input virtual channel state fields (G, R, O, P,
and C). In addition to this hardware redundancy technique, the proposed buffer component provides
a VC-closing technique and a detection mechanism. The latter is responsible for the detection of faults
and controls the hardware redundancy and VC-closing accordingly.

4.1. Detection Mechanism

The proposed detection circuitry represents a built-in-self-test (BIST) mechanism that detects
faults, identifies their location, and accordingly provides a decision applied for the virtual channel
state fields and for the spare registers. The BIST mechanism aims to detect stuck at 0 and stuck at
1 faults which are the most widely used fault models, then writes the result in the status registers;
a 4-bit register State1 for (G, R, O, and C) fields and a 2-bit register State2 for P field (head and tail
pointers). Figure 6 shows the operation flow chart of the detection circuitry. The stuck at 1 fault test
is first done by applying all zeros value to the testing fields and then checking the output of these
fields at the next clock cycle. If the output is all zeros it indicates that there is no stuck at 1 fault
found, otherwise the found fault is marked in the corresponding bits of status registers. Stuck at 0
fault test is similarly carried out by applying all ones and looking for faults represented by a zero at
the output at the next clock cycle. The same registers are updated according to the test result as well.
This mechanism generates the main outputs (test, State1, State2, and vc_closing_out) to be used by
the proposed hardware redundancy that will be discussed in the next subsection. The first output
(test signal) goes high to start the BIST process when (reset = 1) which means the router operation has
started or (G = 3 and vc_release = 1) which means that the packet has left the VC. Otherwise, the test
signal goes low, and the normal router operation is resumed. State1 and State2 registers identify
the faulted input state field in the proposed hardware redundancy technique. The vc_closing_out
signal goes high to close the input virtual channel when it the number of detected faults exceeds the
maximum number of tolerated faults in the proposed fault tolerance technique.

The BIST mechanism requires three clock cycles to be completed. In the first cycle, all input
VC state fields are set to zero but their outputs will be visible in the next cycle. In the second cycle,
the state fields outputs are checked for any stuck-at-1 faults, and their inputs are set to one. In the last
cycle, the new state fields outputs are checked for stuck-at-0 faults, and their inputs are set to zero
to prepare them for the normal operation in the next cycle. Each input VC has an idle time of ten
clock cycles between its release until its next reservation as shown in Figure 4. At this idle time the
downstream router waits for credits indicating that the upstream router input VC is free. Therefore,
the BIST exploits this idle time to perform a periodic fault detection to avoid interrupting the router
operation. For a single stage pipeline with one cycle link traversal, the idle time of each input VC
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is four clock cycles (from 7 to 10) between its release until its next reservation as shown in Figure 7,
which is still enough to accommodate the proposed BIST.
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4.2. Hardware Redundancy Technique

The VC status fields are split into two groups according to their role. The first group includes (G, R,
O, C) which represent the control of the VC. The second group includes the P field, encompassing the
head pointer (PH) and tail pointer (PT) which control the buffer read and write operations, respectively.
The hardware redundancy technique is realized by adding two spare registers, Sp1 and Sp2. The former
is used as a spare for the first group to replace one of the state fields (G, R, O, or C) when one is
faulty. The size of Sp1 depends on the maximum size of state fields (G, R, O, or C). The Sp2 register
represents the spare register for the second group, replacing PH or PT when one is faulty. The size
of Sp2 depends on the number of buffers in the VC (size of head and tail pointers). The hardware
redundancy technique can sustain a single fault in each group. The general scheme of the proposed
hardware redundancy circuit, shown in Figure 8, depends on the outputs of the BIST circuit, State1
and State2, which are used to indicate the faulty field that should be replaced with Sp1 and Sp2,
respectively. Figure 9 shows the internal design of the BIST and Group2. The Baseline Router VC FSM
is the unaltered hardware that changes G, R, O, P, and C according to the VC status and generates the
new (next) values of G, R, O, P, and C. The BIST Controller starts the test operation when (reset = 0) or
(G = 3 and vc_release = 1) and controls the Pattern Generator, Faults Detection, and States.

4.3. VC-Closing Property

When the number of faults in the VC status fields exceeds the hardware redundancy fault tolerance
capability, the VC will malfunction. This occurs when more than one fault affects the same group
of VC status fields in the VC. As a result, VC-closing technique is used to close this faulty VC and
inform the upstream router to avoid allocating packets to this VC. This is realized by adding a new
signal for each VC in each input port (VC_closing_out signal) which goes out from the input port of
the downstream router to the output port of the upstream router to prevent the latter from allocating
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this faulty VC during the VA stage, as shown in Figure 10. This technique preserves packets transfer
through an input port in the event of VC failures until all VCs of that input port fail.J. Low Power Electron. Appl. 2019, 9, x FOR PEER REVIEW 10 of 18 
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5. Results and Discussion

Our reliable router is compared with the baseline router from delay, area, power, and reliability
perspectives. Both routers are developed in Verilog HDL, functionally verified using ModelSim,
and then synthesized using Synopsys Design Compiler with 45 nm Nangate’s Open Cell library.
All analyses were conducted on a router with five input ports and five output ports. Different numbers
of virtual channels were considered, namely 2 VCs, 4 VCs, and 8 VCs, with four flits per VC and 32-bit
flit size.

5.1. Critical Path Delay Analysis

Figure 11 shows the delay of our reliable router compared to the baseline router for 2 VCs, 4 VCs,
and 8 VCs with four flits per VC for each case. The delay is increased by 23%, 9%, and 11% for 2,
4, and 8 VCs, respectively, when our proposed fault detection and tolerance circuitries are added.
The critical path delay results were found by repeating the synthesis process while changing the clock
period until zero slack is obtained. The virtual channel allocation component in both the baseline and
the proposed design represents the critical path, which takes the input virtual channel state fields as
input to reserve the output virtual channel and saves the result in the input virtual channel state field
O. Due to the additional multiplexers and demultiplexers and their corresponding selection signals
the critical path has increased in the proposed design.
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5.2. Area Analysis

Figure 12 shows the area overhead of our reliable router compared to the baseline router for
2 VCs, 4 VCs, and 8 VCs at a clock frequency of 426 MHz, 339 MHz, and 222 MHz, respectively.
The area of baseline router for 2 VCs, 4 VCs, and 8 VCs is increased by 17%, 17%, and 15%, respectively,
when our proposed fault detection and tolerance circuitries are added. Figure 13 shows how the area
is partitioned among the different router parts for the baseline and the spare routers for 4 VC case. It is
clear how the input port consumes the highest portion of the router area. It can be seen that the input
ports are affected by the highest amount of area overhead since they are the target of the proposed
design. The output ports also suffer from slight area overhead due to the VC_closing technique. It is
also important to indicate that the VC state fields in the baseline router consume an area of 1490 µm2,
which is higher than that of the RC, SA, and ST components.
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5.3. Power Analysis

Figure 14 shows the dynamic power consumption of our reliable router compared to the baseline
router for 2 VCs, 4 VCs, and 8 VCs at a clock frequency of 426 MHz, 339 MHz, and 222 MHz,
respectively. The static power is neglected, as it constitutes less than 1% of the total power consumption.
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The dynamic power consumption of the baseline router for 2 VCs, 4 VCs, and 8 VCs are increased by
16%, 11%, and 10%, respectively, due to the fault tolerance circuit and the BIST circuit.
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5.4. Reliability Improvement

The silicon protection factor (SPF) metric is used to assess the reliability of our proposed reliable
NoC router as compared to the baseline router and other state-of-the-art reliable routers. SPF is defined
as the ratio of the mean number of faults required to cause a failure and the area overhead acquired
due to the fault tolerance circuitry [19]. Our reliable router tolerates only input buffer component
faults in NoC router, so other components (RC, VA, SA, and ST) are not tolerated.

SPF= [(max + min + 1)/2]/(1+area overhead) (1)

area overhead= [(area of proposed router − area of baseline)/(area of baseline)] × 100% (2)

where min is the minimum number of faults to cause a failure, max is the sum of maximum faults
tolerated by each component. Since the stages RC, VA, SA, and ST are not tolerated, then the minimum
number of faults that cause failure is one, and the maximum number of faults tolerated in each stage is
zero, and there is a maximum number of faults tolerated in input buffer stage only. To compute the SPF
of the proposed router when the number of VCs is four so the minimum number of faults that made
failure in each stage of proposed router (IB, RC, VA, SA, and ST) are (2, 1, 1, 1, and 1), respectively,
and the maximum number of faults that are tolerated in each stage of proposed router (IB, RC, VA,
SA, and ST) are (55, 0, 0, 0, and 0), respectively. The maximum number of tolerated faults in each port
for four VCs is the case when three VCs are closed (having three faults in each), and the fourth VC is
active and having two faults. The SPF of the baseline is one in all cases because the minimum number
of faults that made failure in the baseline router equals one, the maximum number of faults that can be
tolerated in each stage equals zero, and the total area is one. So, from Equations (1) and (2), it can be
inferred that the SPF of the baseline router for any number of VCs is one. As a result, the total number
of faults for a single port is 11, and for all ports of the 5-ports router, the total maximum number of
tolerated faults is 55 faults. Substituting the two values (min = 1 and max = 55) in Equations (1) and
(2) infers that the SPF of the proposed router for 4 VCs with area overhead of 0.17 is 24. Similarly,
the SPF for 2 VCs and 8 VCs equals 12 and 51, respectively. Figure 15 shows the SPF for our proposed
router compared with the baseline router for 2 VCs, 4 VCs, and 8 VCs. The results indicate that for our
proposed design the SPF increases when the number of VCs increases. Table 2 shows the comparison
of area overhead and SPF for Poluri [24] and Wang [23], and our proposed router. Poluri’s [24] SPF
resulted from the minimum faults that cause failure in stages RC, VA, SA, or ST namely (2, 4, 2, 2),
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and the maximum tolerated faults in all these stages (5 + 15 + 5 + 2). The mean number of faults to
cause failure is 15 ([2 + 28]/2) and the normalized area is 1.31, so the SPF equals 11(15/1.31). In the
same way, the SPF of Wang [23] resulted from max (IB, RA, VA, SA, and ST) equals 56 (16 + 5 + 20 +
10 + 5), min(4(IB), (1) RC, (2) VA, (2) SA, or (2) ST) equals 1, then the mean number of faults to cause
failure is 28.5. Since the normalized area is 1.30, the SPF value becomes 21.9.
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Table 2. Comparison of area overhead and silicon protection factor (SPF) for Vicis, Shield, Wang,
and our proposed router.

Architecture Area #Mean Permanent
Faults to Cause Failure Fault Tolerance Methods SPF

Poluri Router [24] 31% 15
Redundant RC unit, sharing arbiters
for VA, bypass path for arbiters of SA,

and two paths for a crossbar.
11

Wang Router [23] 30% 28.5

ECC detection and VC closing
strategy for input buffer faults, double
routing strategy for RC faults, default

winner strategy for VA, runtime
arbiter selection strategy for SA, and a

crossbar with double bypass bus.

21.9

Proposed Router 17% 28.5
BIST detection, VC-closing strategy,

and Hardware Redundancy technique
for input virtual channel state fields.

24.35

Rather than suggesting protecting only the VC state fields, this work aims to highlight their
importance and the possible reliability enhancement when protected. In addition, the proposed input
port fault tolerance can be integrated into the other reliable routers to realize a complete, reliable router.

In addition to the SPF factor, we estimate the lifetime enhancement achieved by the proposed
input port component compared to the input port component of the baseline 4-stage NoC router using
the mean time to Ffailure (MTTF). The main equation of MTTF is:

MTTFSystem =
1

1
MTTF1

+ 1
MTTF2

+ 1
MTTF3

=
109

FIT1 + FIT2 + FIT3
(3)

where 1, 2, 3 are the components of the system; FIT is the number of failures in billion hours. The MTTF
of the input port component of the baseline router can be given by:

MTTFbaseline input port =
109

FITbuffer + FITGroup1 + FITGroup2
. (4)
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where FITbu f f er is failure in time of the buffer component; FITGroup1 is failure in time of Group1 of
VC state fields, and FITGroup2 is failure in time of Group2 VC state fields. The MTTF of the input port
component of the reliable router is:

MTTFreliable input bu f f er component =
109

FITbuffer +
1

MTTFreliable Group1
+ 1

MTTFreliable Group2

(5)

Each group in the proposed input port can work normally if the baseline group or the
corresponding correction circuitry are fault-free. Accordingly, the MTTF of each group can be given
by [23,24]:

MTTFreliable Group1 =
109

FITGroup1
+

109

FITcorrection Group1
+

109

FITGroup1 + FITcorrectionGroup1
(6)

MTTFreliable Group2 =
109

FITGroup2
+

109

FITcorrection Group2
+

109

FITGroup2 + FITcorrection Group2
(7)

The FIT values of the fundamental components due to time-dependent dielectric breakdown
(TDDB) can be found in [23,24]. Table 3 lists the fundamental components (FC), their corresponding
FIT values as given in [23,24], total number of each FC, and the total FIT values in the input port
component. Similarly, Tables 4 and 5 present the computed values for Group1 correction circuitry and
Group2 correction circuitry, respectively. The FIT of each group correction circuitry is the sum of the
FIT of the spare bits and state bits. Substituting the values of Table 3 into Equation (4), the value of
MTTF of baseline input port component is found to be (699301) hours. From the values of the three
tables (Tables 3–5), we substituted these values in Equations (5)–(7) the MTTF of the reliable input port
component is found to be 781,250 h, which is higher than that of the baseline input port.

Table 3. Failures in billion hours (FIT) values of the input port of the baseline 4-stage NoC router.

Fundamental Component (FC) FIT of FC #FCs FIT of FCs

32-bit DFF (BF) 0.5 5 × 4 × 4 1280
11-bit input VC state fields DFF Group1 (G1) 0.5 5 × 4 110
4-bit input VC state fields DFF Group2 (G2) 0.5 5 × 4 40

Table 4. FIT values of Group1 correction circuitry.

Fundamental Component (FC) FIT of FC #FCs FIT of FCs

3-bit DFF (Sp1) 0.5 5 × 4 30
4-bit DFF (State 1) 0.5 5 × 4 40

Table 5. FIT values of Group2 correction circuitry.

Fundamental Component (FC) FIT of FC #FCs FIT of FCs

2-bit DFF (Sp2) 0.5 5 × 4 20
2-bit DFF (State 2) 0.5 5 × 4 20

5.5. Latency Analysis

We considered an 8 × 8 mesh topology and each packet is composed of four flits with 32-bit each.
A uniform traffic pattern with Bernoulli injection is used in the simulations. Figure 16 compares three
cases: first case is when all VCs are working, the second case is when one VC is closed in the north
input port component of the router (y = 4, x = 3), and the last case is when one VC is closed in the west
input port component of the router (y = 3, x = 4). It can be seen that the performance degrades when
one VC in one router out of 64 routers is closed for both west and north VC closed cases. The west port



J. Low Power Electron. Appl. 2019, 9, 11 16 of 18

has higher performance degradation because in XY routing strategy the west port may send packets to
any of the other ports whereas the north port may send to the south and local ports only. This gives an
interesting result that requires further analysis, which is out of the scope of this work. Based on the
results in the figure it is clear the importance of avoiding the closure of any VC. This was resolved
in the proposed design by adding the spare registers (Sp1, Sp2) which allow the router to continue
working at full performance in spite of the occurrence of a single fault in each group (Group1, Group2),
and the proposed scheme closes a VC only when two faults affect the same group.
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A reliable input buffer component in NoC router is proposed in this work. The proposed solution
includes fault detection and fault tolerance techniques to tolerate permanent faults in critical fields of
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consumption, and delay overheads with respect to the baseline router. In addition, the proposed router
achieved 11% higher reliability than other fault tolerant router designs, represented by the silicon
protection factor metric. The protection by hardware redundancy has an important effect on preserving
the network performance since one VC closure showed a clear effect on the average packet latency.
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