
Journal of

Low Power Electronics
and Applications

Article

Novel Approaches for Efficient
Delay-Insensitive Communication

Florian Huemer * and Andreas Steininger

Institute for Computer Engineering, TU Wien, 1040 Vienna, Austria; steininger@ecs.tuwien.ac.at
* Correspondence: fhuemer@ecs.tuwien.ac.at

Received: 7 December 2018; Accepted: 29 March 2019; Published: 6 April 2018

Abstract: The increasing complexity and modularity of contemporary systems, paired with increasing
parameter variabilities, makes the availability of flexible and robust, yet efficient, module-level
interconnections instrumental. Delay-insensitive codes are very attractive in this context. There is
considerable literature on this topic that classifies delay-insensitive communication channels according
to the protocols (return-to-zero versus non-return-to-zero) and with respect to the codes (constant-weight
versus systematic), with each solution having its specific pros and cons. From a higher abstraction,
however, these protocols and codes represent corner cases of a more comprehensive solution space, and an
exploration of this space promises to yield interesting new approaches. This is exactly what we do in this
paper. More specifically, we present a novel coding scheme that combines the benefits of constant-weight
codes, namely simple completion detection, with those of systematic codes, namely zero-effort decoding.
We elaborate an approach for composing efficient “Partially Systematic Constant Weight” codes for a given
data word length. In addition, we explore cost-efficient and orphan-free implementations of completion
detectors for both, as well as suitable encoders and decoders. With respect to the protocols, we investigate
the use of multiple spacers in return-to-zero protocols. We show that having a choice between multiple
spacers can be beneficial with respect to energy efficiency. Alternatively, the freedom to choose one
of multiple spacers can be leveraged to transfer information, thus turning the original return-to-zero
protocol into a (very basic version of a) non-return-to-zero protocol. Again, this intermediate solution can
combine benefits from both extremes. For all proposed solutions we provide quantitative comparisons
that cover the whole relevant design space. In particular, we derive coding efficiency, power efficiency,
as well as area effort for pipelined and non-pipelined communication channels. This not only gives
evidence for the benefits and limitations of the presented novel schemes—our hope is that this paper can
serve as a reference for designers seeking an optimized delay-insensitive code/protocol/implementation
for their specific application.

Keywords: asynchronous circuits; asynchronous communication; delay-insensitive; DI codes;
DI protocols; completion detection

1. Introduction

Compared to synchronous approaches, asynchronous delay-insensitive (DI) communication links
have very desirable properties with respect to their robustness against timing variations and delay
assumptions required to implement them. This makes them especially interesting as a form of system-level
intra-chip or inter-chip connection, particularly in the context of Globally Asynchronous Locally
Synchronous (GALS) systems [1]. Hence, in this paper we seek to explore the design space of how

J. Low Power Electron. Appl. 2019, 9, 16; doi:10.3390/jlpea9020016 www.mdpi.com/journal/jlpea

http://www.mdpi.com/journal/jlpea
http://www.mdpi.com
https://orcid.org/0000-0002-2776-7768
https://orcid.org/0000-0002-3847-1647
http://dx.doi.org/10.3390/jlpea9020016
http://www.mdpi.com/journal/jlpea

J. Low Power Electron. Appl. 2019, 9, 16 2 of 41

such links can be implemented and provide new insights into key components and communication
protocols involved.

In many contemporary applications, energy efficiency of semi-conductors is a major concern. It is well
understood that communication links between function blocks (within an SoC, or on a PCB) are a significant
contributor to the overall power consumption of a system, due to the relatively high capacitances involved.
In this context, synchronous communication has some disadvantages due to the high transition rate of
the clock line. Moreover, delay mismatch (skew) among the different wires of the communication link is
problematic. This also holds true for those asynchronous approaches that employ some kind of “valid
signal” for a bundle of data wires. With ever-increasing process/voltage/temperature (PVT) variations
these issues steadily gather more relevance. DI communication elegantly overcomes these problems:
Here the data encoding is chosen such that the receiver can recognize when a code word is complete (i.e.,
all wires made their final transitions)—in the absence of an accompanying clock or valid signal, and even
in the presence of arbitrary skew on the transmission link. Such links have been successfully employed in
many applications, such as Spinnaker [2,3], or Chain [4].

However, special DI codes must be used to encode the data being transmitted. These codes are
required to allow the receiver to use a completion detector (CD) for deciding whether the input bit pattern
is a valid (i.e., complete) code word, or if further transitions must be awaited. If a code word is complete,
the receiver asserts the acknowledgment (ack) signal (an additional wire from receiver to sender) to notify
the sender that the code word has been consumed. One drawback of DI codes is that they are generally
not well-suited for data processing. Even for codes where this is comparatively easy to implement,
a considerable hardware (i.e., chip area) overhead must be expected. Hence for our analysis we assume
that the transmitter and receiver operate on binary coded data, in particular we consider asynchronous
bundled data (BD) channels. Consequently, we will also discuss circuits that convert binary coded data
(i.e., a data word) to a DI code word, which we refer to as encoders, as well as circuits that perform the
reverse operation, called decoders. Figure 1 shows where these components as well as the CDs reside in the
DI link.

Intermediate
Pipeline StagesTransmitter Receiver

Encoder

Decoder

CD

CD

DI Bus

ack

BD Input
Channel

BD Output
Channel

Figure 1. Delay-insensitive link overview.

A fundamental problem of DI interconnection is to find the right balance between efficiency of the
DI code and protocol on the one hand, and the implementation complexity on the other (i.e., the area
overhead for encoders, decoders, and CDs). In this context, efficiency refers to the number of data bits a
code word of a given length can hold as well as to the number of bus transitions it requires for transmission.
Generally, complex codes and protocols have a better efficiency but are more costly to implement.

In this work we investigate and compare constant weight (i.e., m-of-n) and Berger codes [5]. In general,
Berger codes excel because of their simple encoding and the complete absence of a decoder, while,
unfortunately, their CDs tend to become complex and difficult to realize in a complete DI way (i.e.,
without timing assumptions). Constant-weight codes, on the other hand, often provide higher coding
efficiency and facilitate completion detection with significantly lower efforts, but incur a higher penalty
for encoding and decoding. The reason for the high overhead is that constant-weight codes are not
systematic, i.e., the mapping between data words and code words is not predetermined by the code itself

J. Low Power Electron. Appl. 2019, 9, 16 3 of 41

(in contrast to Berger codes). However, this mapping strongly impacts the implementation overhead,
and even optimizing the implementation for a given mapping is non-trivial as was already tackled in [6].

Consequently, the first contribution of this paper is a code word mapping approach for
constant-weight codes, which divides the code words into a systematic and a non-systematic part. We refer
to this mapping scheme as Partially Systematic Constant-Weight Codes (PSCWCs). Our presumption is
that the systematic part will simplify the encoding and decoding process. Building on our previous work
from [7] we show that this approach indeed yields very regular mappings with reoccurring sub-codes for
the non-systematic part, which allows for efficient encoder and decoder circuits. Although the method is
not fully generalized, we carefully explore the design space relevant for DI communication links.

The second contribution we present in this work is a new class of DI protocols, which bridge the
two “classical” asynchronous approaches—that is the return-to-zero and the non-return-to-zero protocol.
With these hybrid protocols, whose concept we had already introduced in [8], we are able to show that
there is a whole spectrum of DI communication schemes, each with different use cases, complexity,
advantages and disadvantages.

Furthermore, we provide, based on some prior work [9–11], improved CDs for the m-of-n and Berger
code classes that work with the return-to-zero as well as the new hybrid protocols. In our construction
approach, we carefully avoid so-called orphan transitions, which compromise the timing model of the CD
circuits and which are not fully avoided by current state-of-the-art solutions.

Finally, we present an extensive case study were we systematically analyze all techniques presented
in this paper. We not only investigate the area overhead for encoders, decoders, and CDs for all codes
and protocols discussed in this paper but also consider the overall implementation costs of complete
DI communication links for the model-architectures we use in this context. In addition, we perform a
systematic analysis of the performance implications of the different approaches. This analysis provides
useful insights into the advantages and disadvantages of the individual approaches for different use cases.

The paper is structured as follows. First Section 2 will give a brief overview of DI codes and
communication protocols and introduce important notation and definitions used throughout the paper.
The PSCWCs, hybrid protocols and completion detectors are discussed in Sections 3–5, respectively.
Section 6 then provides example implementations for all protocols discussed in this paper, while Section 7
presents an overall comparison of all approaches. Finally, Section 8 concludes the paper.

2. Asynchronous Delay-Insensitive Communication

In contrast to the rigid time-driven regime of synchronous design, asynchronous circuits always use
some form of closed-loop handshaking protocol to control the data transfer between storage elements (e.g.,
pipeline stages). This is actually the key for obtaining tolerance against PVT variations.

As shown in Figure 2 this handshake (usually) involves two signals, request (req) and
acknowledgment (ack) line. The rising edge of the req signal is typically used as an indicator by the
source to notify the sink that new data is available. The sink then uses the ack signal to inform the source
that it has received the data and that new data can be transmitted. This explanation assumes push channels.
In pull channels the meaning of the request and acknowledgment signals are reversed, see [12] for a more
detailed discussion. However, the rest of the paper will only consider push channels.

Event 0

Event 0

Event 1

Reset

Event 2

Event 1

Event 3

Reset

2-phase:

4-phase:

S
o
u
rc
e

S
in
k

req

data

ack

req

ack

Figure 2. Asynchronous handshaking protocols.

J. Low Power Electron. Appl. 2019, 9, 16 4 of 41

At this point we must address the difference between 2-phase and 4-phase protocols, which is
also shown in Figure 2. In the former case, every transition of req and ack conveys actual information.
Hence every handshaking cycle (labeled Events in the figure) consists of two transitions. 4-phase protocols,
on the other side, always entail a reset phase where both signals return to zero again. Please note that there
is an immanent race condition between the request signal and the data that is being transmitted. It must
be guaranteed that the request reaches the sink only after the data is stable at its input. In the so-called BD
approach this is usually accomplished with delay elements. This requirement is not dissimilar from the
setup-constraint in synchronous design and it has the same drawback, namely the need to know a bound
for the propagation delay of the data path.

2.1. Delay-Insensitive Protocols

The request mechanism does not need to be implemented as a dedicated req signal. Another possibility
is to implicitly encode the request into the transmitted data. It is then the responsibility of the receiver to
decide when this data is complete (i.e., valid) and can thus be consumed. This process is referred to as
completion detection and is only possible if the code used to encode the data has certain properties [5].
Possible choices are e.g., constant-weight (m-of-n) or Berger codes (see Section 2.2). The CD itself will be
thoroughly discussed in Section 5. Of course, this encoding causes a certain overhead. However, it has the
advantage that the communication is DI, i.e., the transitions on the individual wires (also referred to as
rails) of a DI link may arrive in any order and there is no race condition between data and request (as with
the BD approach).

DI communication can also be implemented in a 2- or 4-phase scheme. In 4-phase or return-to-zero
(RZ) protocols two successive code words (data phase) are always separated by a spacer (zero or null
phase), which does not carry any information and is usually encoded by logical zeros on all rails. Figure 3a
shows an example transmission using this protocol and the 3-of-6 code. For 2-phase or non-return-to-zero
(NRZ) protocols level or transition encoding can be used. With level-encoded protocols the currently
transmitted value can directly be derived from the state of the DI bus. The Level-Encoded Transition
Signaling [13] is an example for such a protocol. For transition encoding every 4-phase DI code can be
used. However, here the information is only contained in wire transition events (no matter the direction),
the actual DI bus state is only meaningful when compared to the previous state. Hence, the actual
transmitted code word can only be obtained be performing a bit-wise XOR between the current bit pattern
on the bus and the previous one. Figure 3b visualizes this approach. Notice that there are no spacer
phases where the data rails and the ack signal must return to a known ground state. This has the obvious
benefit of needing fewer bus transitions to transmit the same information when compared to 4-phase
protocols. However, as will be shown in the following sections there is significant area overhead associated
with actual hardware implementations of this protocol. Please note that in this paper we only consider
transition encoded NRZ protocols.

DI data

ack

Spacer cn Spacer cn+1

000000 000111 000000 001110

(a) RZ (4-phase) protocol

DI data

ack

cn = 000111 cn+1 = 001101 cn+2 = 001110

111000 111111 110010 110011

(b) NRZ (2-phase transition signaling) protocol

Figure 3. Delay-insensitive handshaking protocols (example transmissions).

J. Low Power Electron. Appl. 2019, 9, 16 5 of 41

2.2. Delay-Insensitive Codes

Since there are no assumptions on signal delays in DI communication schemes, transitions of the
individual rails of a DI bus may arrive at the receiver in any order. Let F2n = {0, 1}n denote the set of all
possible n bit vectors. Furthermore, if v ∈ F2n denotes a bit vector then v0 to vn−1 refer to the individual
bits. We define a code C with code word length n as a subset of F2n . Verhoeff [5] shows that a (4-phase) DI
code must be unordered. This means that there must not exist a code word that is contained in another
code word, i.e., the positions of the ones in a code word may not be a subset of the positions of the ones in
another code word. Consider the following example, let c1 = 001 and c2 = 011 be two elements of some
set C ⊆ F23 . Since c1 is contained in c2, i.e., c1 @ c2, C cannot be a DI code. Hence, formally we can state
that a code C is DI iff for all c1, c2 ∈ C we have that c1��@c2. In this paper, we focus on constant-weight
(m-of-n) and Berger codes which both meet this requirement. In the following we will introduce some
notations and definitions that will be used throughout the next sections.

A constant-weight or balanced code Ccw
m,n ⊂ F2n is defined by Equation (1):

Ccw
m,n = {c ∈ F2n | h(c) = m}, (1)

where h(c) denotes the Hamming weight of the bit vector c. The size (i.e., the number of symbols or code
words) of an m-of-n code is given by the binomial coefficient (

∣∣Ccw
m,n
∣∣ = (n

m)). However, when transmitting
binary data, only a subset of these code words is actually used, usually the nearest power of two. Except for
the dual-rail code, m-of-n codes are non-systematic. This means that there does not exist a subset of bit
positions in the code that contains the unencoded data (i.e., the data word) for all code words. Hence, one is
completely free to choose a suitable mapping for a particular purpose. In Section 3 we will present one
possible mapping strategy.

The Berger code [14], on the other hand, is a systematic code. Hence every code word can be split
into a b-bit data part d and a k-bit check (parity) part p, where p carries the binary representation of the
number of zeros in the data part. As shown in the formal definition of the Berger code in Equation (2),
the size of k depends on the size of the data part. Here the colon symbol denotes concatenation, while JpK
returns the numerical value of the binary vector p. The size of the Berger code CB

b is naturally given by 2b.

CB
b =

⋃
d∈F2b

{d : p | p ∈ F2k , JpK+ h(d) = b}, where k = dlog2(b + 1)e (2)

The encoding process for Berger codes is quite straightforward. Every bit of the inverse of the data
word is basically treated as a one-bit number and these are added together. The resulting number holds
the number of zeros in the data word and can hence directly be used as the parity part of the code word.
Since the Berger code is systematic, there is no hardware overhead for the decoding process.

There are a few aspects that define the quality of a DI code. Of course, the overheads for encoding
and decoding as well as completion detection must be considered. Besides that, it is also important how
many bits of information can be encoded by a given code and how may bus transitions it takes to transmit
it. The coding efficiency R specifies how many bits can be encoded per rail and always yields a value
0 < R < 1 (larger values are better). The power metric P on the other hand measures how many transitions
are required to transmit a single bit (smaller vales are better).

J. Low Power Electron. Appl. 2019, 9, 16 6 of 41

Equations (3) and (4) show the coding efficiency and power metric for constant-weight codes using
the RZ protocol. The binomial coefficient in these equations calculates the number of code words in an
m-of-n code. Since this number is generally not a power of two we need the floor operation.

Rcw|RZ
m,n =

blog2 (
n
m)c

n
(3)

Pcw|RZ
m,n =

2m
blog2 (

n
m)c

(4)

The coding efficiency of the RZ Berger code protocol is quite straightforward to calculate (Equation (5)).
The variable k again denotes the number of parity bits as defined in Equation (2). However, since the code
words of the Berger code have different Hamming weights the determination of the power metric is a
little bit more involved. For that we assume that every code word is equally likely to occur. Equation (6)
basically goes through all possible values p for the parity part p, calculates the Hamming weight of the
whole code word ((h(〈p〉) + b − p) depending on p and multiplies it with the number of code words
((b

b−p)) that have this Hamming weight. Please note that the operator 〈p〉 returns a binary vector with the
numerical value of p such that we can apply the Hamming weight function (formally the operator can
be defined as 〈p〉 = p|p ∈ F2dlog2(p+1)e ∧ JpK = p). The sum of these products is then divided by the total
number of symbols (2b) and the number of bits (b). Notice that Berger codes are most efficient (in terms of
both R and P) if b = 2x − 1, because then all available symbols in the parity part p are actually used in
some code word.

RB|RZ
b =

b
b + k

(5)

PB|RZ
b = 2 ∗

∑0≤p≤b (h(〈p〉) + b− p) ∗ (b
b−p)

2b ∗ b
(6)

Notice that since NRZ protocols lack the null phase, the power metric is halved (i.e., PRZ = 2PNRZ);
the coding efficiency, however, stays the same.

3. Partially Systematic Constant-Weight Codes

This section covers the PSCWC, a semi-generic mapping scheme we use to find efficient encoder
and decoder circuits for the constant-weight codes used in the case study in Section 6. We first give
a formal definition of the approach and then show how it can be used to create efficient encoder and
decoder circuits.

3.1. Formal Definition

Given a j-of-k constant-weight code, where j < k
2 , Equation (7) defines the partially systematic

(j + s)-of-(k + s) code.

Cps
j,k,s =

⋃
d∈F2s

{d : c | c ∈ Ch(d)} where s ≤ k− 2j, e ≤ blog2 (
k
j)c, Ch ⊆ Ccw

j+s−h,k s.t. |Ch| = 2e
(7)

This definition ensures that every code word is composed of a systematic part d containing s bits of
the data word and a non-systematic part c containing the remaining e bits in some encoded form. Since the
Hamming weight of the whole code word must be constant, the Hamming weight c is dictated by the
Hamming weight of d, with its minimum being j (if h(d) = s). This minimum determines the number
of bits e encodable in the non-systematic part c. Also note the restriction on the size of s imposed by

J. Low Power Electron. Appl. 2019, 9, 16 7 of 41

Equation (7). If h(d) = 0, then the symbols for c are supplied by the (j + s)-of-k code C0. Under the
assumption of the number of systematic bits s being maximal (i.e., s = k − 2j, as also constrained by
Equation (7)), we have j + s = k− j and C0 ⊆ Ccw

k−j,k. Because of a basic property of the binomial coefficient,
stated in Equation (8), it is guaranteed that there are enough symbols in this code to encode the required e
bits. This holds for all values of h(d) in between 0 and s.

(n
m) ≤ (n

x), where m ≤ x ≤ n−m (8)

The resulting code Cps
j,k,s is a subset of Ccw

j+s,k+s; however with its size of 2s+e it may encode a smaller
number of bits.

To better illustrate this concept, consider the example of the Cps
1,4,1 code. Here a single systematic bit

(i.e., s = 1) is appended to the 1-of-4 code (i.e., j = 1, k = 4, e = 2) resulting in the partially systematic
2-of-5 code. Notice that since k− 2j = 2, s fulfills the constraint imposed on it by Equation (7). Equation (9)
shows the resulting definitions for this concrete example.

Cps
1,4,1 = {0 : c | c ∈ C0} ∪ {1 : c | c ∈ C1} ⊆ Ccw

2,5

C0 = {0101, 0110, 1001, 1010} ⊆ Ccw
2,4

C1 = {1000, 0100, 0010, 0001} ⊆ Ccw
1,4

(9)

Notice how the Hamming weight of the systematic part (i.e., the single systematic bit) determines the
code for the non-systematic part. The combined Hamming weight of the systematic and non-systematic
part is always two, though. So, we obtain a subset of the 2-of-5 code comprising only eight symbols (while
(5

2) = 10). Hence we can still encode three bits of data but encoding and decoding may potentially be
simplified because of the systematically mapped bit.

This illustrates the basic concept: Use the freedom to (a) select a suitable subset of the full code
set and (b) choose a suitable mapping from data words to code words, to make at least part of the bits
within the code word systematic, thus simplifying the encoder/decoder implementation. Concerning (b),
Equation (9) illustrates how fixing the first bit to be systematic restricts the choice in the encoding of the
remaining bits. Still, the mapping of elements within, e.g., C0 to data words starting with 0 can be freely
permuted, which leaves further room for optimization in the implementation (which we perform in a
heuristic fashion later in Section 3.2). Also, there would have been other choices for the four elements
within C0.

However, since we are interested in maximizing the coding efficiency, we want to take a slightly
different construction approach. By starting out with an m-of-2m code, which offers the best coding
efficiency regarding the length of its code words (2m), we try to map as many bits systematically as
possible, without compromising on the total number of bits that can be encoded. This approach is outlined
by Equation (10). Again s denotes the number of systematic bits in each code word and e the number of
bits encoded in the non-systematic part. However, now s is restricted to be the largest number x, such that
the code used for the non-systematic part is still able to encode blog2 (

2m
m)c − x bits. Since the capacity (in

number of encoded bits) of the non-systematic part is bounded by the capacity of the m-of-(2m− x) code,
it is given by blog2 (

2m−x
m)c.

J. Low Power Electron. Appl. 2019, 9, 16 8 of 41

Cps
m =

⋃
d∈F2s

{d : c | c ∈ Ch(d)},

where s = max(S),

S = {x | x ∈ N, x ≤ m, blog2 (
2m
m)c − x = blog2 (

2m−x
m)c},

e = blog2 (
2m
m)c − s, Ch ⊆ Ccw

m+s−h,2m−s s.t. |Ch| = 2e

(10)

To demonstrate this construction with the help of an example, let us take a more in-depth look at the
partially systematic 3-of-6 code Cps

3 , which can encode four bits of data. First s needs to be calculated. It is
not too difficult to verify that the set S only contains the values {0, 1, 2}, hence s = 2 and e = 2. With this
information, the sets C0, ..., C2 can be defined, which are in turn used to finally specify Cps

3

Cps
3 = {00 : c | c ∈ C0} ∪ {01 : c | c ∈ C1}∪

{10 : c | c ∈ C1} ∪ {11 : c | c ∈ C2} ⊆ Ccw
3,6

C0 = {1110, 1101, 1011, 0111} ⊆ Ccw
3,4

C1 = {0101, 0110, 1001, 1010} ⊆ Ccw
2,4

C2 = {0001, 0010, 0100, 1000} ⊆ Ccw
1,4

(11)

Since there are three unique values the Hamming weight of the two systematic bits can take,
three different codes are required to supply the symbols for the non-systematic part, such that the
Hamming weight of the combined code words is always three.

An important question is how many systematic bits can be encoded in a given m-of-2m code. It is
quite straightforward to verify by enumeration that for relevant values of m (m ≤ 20), s is always smaller
than 4. Table 1 shows the partitionings of codes with m ≤ 6. We will use these codes for the comparison in
Section 7.

Table 1. Examples for Partially Systematic Codes.

Code # Systematic Bits # Non-Systematic Bits

3-of-6 2 2
4-of-8 1 5
5-of-10 3 4
6-of-12 3 6

At this point, we want to emphasize the difference to Knuth’s coding scheme [15] and related
approaches such as [16]. These schemes use a strict separation between data and parity bits. To encode a
data word in Knuth’s approach, the first g data bits are inverted, such that the whole data part always has
the same Hamming weight. This number g is then encoded with some constant-weight code to get the
parity bits of the code word. For decoding, first the number g must be extracted from the parity bits and
then the data must be inverted accordingly. This approach is very generic and works for arbitrary data word
lengths. It can easily be applied to data words several tens or hundreds of bits long. However, as a result
of this strict separation the code does not use the full capacity of the underlying constant-weight codes.

In our proposed approach, there is no clear distinction between data and parity bits. Moreover, it is
mainly targeted for short length code words and provides optimal coding efficiency for these cases.

3.2. Encoding and Decoding

When compared to the quite simple encoders and decoders for the Berger code, the circuits for the
partially systematic (PS) m-of-n codes are more involved. Unfortunately, we are not aware of a complete

J. Low Power Electron. Appl. 2019, 9, 16 9 of 41

procedure that directly yields efficient circuits. Figure 4 shows the general structure of an encoder for
a PSCWC Cps

j,k,s. We use di to denote the individual bits of the data words (d0 is the LSB) and ci to
denote the rails of the code words. The systematic part of the code words (cs+k−1...ck) is hence always
given by the vector (de+s−1...de). Since the encoding of the non-systematic part changes based on the
Hamming weight of the systematic part, an x-of-k multi-encoder is employed, with x being controlled by
a sorting-network-based or adder-based structure that computes h(de+s−1...de). This encoder must be able
to produce code words of all x-of-k codes (j ≤ x ≤ j + s) required for the non-systematic part.

s rails k rails code word ce bitss bitsdata word d

systematic
part

unencoded
non-systematic

part

systematic
part

non-systematic
part

7→

e
x-of-k Multi-Encoder

j≤ x≤ j+ s

Control logic
s

k

de+s-1
...
de de-1

...
d0

ck+s-1
...
ck ck-1

...
c0

Figure 4. PSCWC encoder for Cps
j,k,s.

Consider the encoder circuit for the PS 3-of-6 code (as defined by Equation (11)), shown in Figure 5a.
The control logic consists of an AND and an XOR gate (i.e., a half-adder) generating the two control signals
for the {1, 2, 3}-of-4 multi-encoder out of the systematic bits (d3d2).

d1
d0

c3
...
c0

d2 c4

d3 c5

{1,2,3}-of-4 Multi-Encoder

control logic

(a) Encoder

c3

c2

c1

c0

d1

d0

c4 d2

c5 d3

{1,2,3}-of-4 Multi-Decoder

(b) Decoder

Figure 5. Circuits for the partially systematic 3-of-6 code.

The decoder circuits for the PSCWCs are built in a similar way. Again, the systematic part can be used
to generate control signals for an appropriate multi-decoder. However, often this is not really necessary,
as the non-systematic part obviously carries the information about the respective value of x. Therefore,
in contrast to the multi-encoder, the multi-decoder has all required information to generate the binary
output. So, in principle, no additional control signals generated from the systematic part are necessary,
albeit such a design approach can yield more efficient circuits. Figure 5b shows the decoder circuit for
the PS 3-of-6 code. Here it can be seen that no additional control logic is required that depends on the
Hamming weight of the systematic part. The {1,2,3}-of-4 multi-decoder is by itself able to decode all 1-of-4,
2-of-4 (i.e., dual-rail) and 3-of-4 code words.

Obviously, the multi-encoders and decoders have a large impact on the total hardware overhead
of the encoder and decoder circuits. Hence it is very important to find mappings of data words to the

J. Low Power Electron. Appl. 2019, 9, 16 10 of 41

respective code words of the non-systematic part that allow for an efficient implementation of encoder
and decoder. To give a more general approach for dealing with this problem, we draw some ideas from
the incomplete m-of-n codes proposed in [6]. Here larger DI codes are assembled by a concatenation of
simpler sub-codes according to certain construction rules. A simple example for this approach is the
incomplete 2-of-7 code, where the code words fall in one of two categories: Either the first three bits are
zero and concatenated with two dual-rail bits, or the first three bits constitute a 1-of-3 code word followed
by a 1-of-4 code word in the next four bits. The term incomplete refers to the fact that some code words,
such as 1100000, are not part of the code, although they would be valid 2-of-7 code words. However,
they are excluded because they do not follow the construction rule of the code. The incomplete 2-of-7
encoding is also shown in the first row of Table 4. The notation used in this table as well as Tables 2, 3
and 5 is as follows: The functions m-of-n(v) express the encoding of the binary vector v to an m-of-n code
word. Consequently DR(v) is used to denote the dual-rail encoding. Please note that since there are only
three symbols in the 1-of-3 and 2-of-3 codes, one vector cannot be encoded by these functions. In our
implementation this is the data word 00.

The usage of incomplete codes simplifies the implementation of the encoder (and decoder) circuits,
because it allows to distribute the task of encoding a (complex) code word to simpler sub-encoders. Hence,
for the example of the incomplete 2-of-7 code, a {0, 1}-of-3 and a {1, 2}-of-4 multi-encoder are required.
The price is a reduction in the number of available code words, but as long as all data words can still be
encoded, this is unproblematic.

Tables 2–5 show the mappings performed by the multi-encoders for the PS 3-of-6, PS 4-of-8, 5-of-10,
and 6-of-12 codes, respectively. Please note that every line in these tables defines an incomplete m-of-n
code. The condition column specifies when a certain code word structure must be used. The 3-of-7 and
4-of-7 as well as the 2-of-7 and 5-of-7 codes used by 6-of-12 code are exactly the same ones as those listed
in the tables for the PS 4-of-8 and 5-of-10 codes.

It can be seen that the construction rules for all x-of-j codes of a particular PS code are very similar.
For a specific section of a code word there is only certain number of possible encodings (i.e., sub-codes).
For example, for the section c3...c0 of the PS 5-of-10 code either a 1-of-4, dual-rail, or 3-of-4 code is used.
This property holds across all codes supported by a particular multi-encoder, which allows for efficient
hardware reuse when designing these circuits.

Table 2. {1,2,3}-of-4 multi-encoder for the PS 3-of-6 code Cps
3 .

h(c5c4) Ch Condition c1...c0

2 1-of-4 - 1-of-4(d1d0)
1 2-of-4 - DR(d1d0)
0 3-of-4 - 3-of-4(d1d0)

Table 3. {3,4}-of-7 multi-encoder for PS 4-of-8 code Cps
4 .

h(c7) Ch Condition c6c5c4 c3...c0

1 3-of-7
d4 = 0 d3d2 = 00 000 3-of-4(d1d0)

d3d2 6= 00 2-of-3(d3d2) 1-of-4(d1d0)

d4 = 1 d3d2 = 00 1-of-3(d1d1) d0d0d0d0
d3d2 6= 00 1-of-3(d3d2) DR(d1d0)

0 4-of-7
d4 = 0 d3d2 = 00 111 1-of-4(d1d0)

d3d2 6= 00 1-of-3(d3d2) 3-of-4(d1d0)

d4 = 1 d3d2 = 00 2-of-3(d1d1) d0d0d0d0
d3d2 6= 00 2-of-3(d3d2) DR(d1d0)

J. Low Power Electron. Appl. 2019, 9, 16 11 of 41

Table 4. {2,3,4,5}-of-7 multi-encoder for the PS 5-of-10 code Cps
5 .

h(c9c8c7) Ch Condition c6c5c4 c3...c0

3 2-of-7 d3d2 = 00 000 DR(d1d0)
d3d2 6= 00 1o f 3(d3d2) 1-of-4(d1d0)

2 3-of-7 d3d2 = 00 000 3-of-4(d1d0)
d3d2 6= 00 1-of-3(d3d2) DR(d1d0)

1 4-of-7 d3d2 = 00 111 1-of-4(d1d0)
d3d2 6= 00 2-of-3(d3d2) DR(d1d0)

0 5-of-7 d3d2 = 00 111 DR(d1d0)
d3d2 6= 00 2-of-3(d3d2) 3-of-4(d1d0)

Table 5. {3,4,5,6}-of-9 multi-encoder for the PS 6-of-12 code Cps
6 .

h(c11c10c9) Ch Condition c8c7 c6...c0

3 3-of-9 d5 = 0 00 3-of-7(d4...d0)
d5 = 1 DR(d4) 2-of-7(d3...d0)

2 4-of-9 - DR(d5) 3-of-7(d4...d0)

1 5-of-9 - DR(d5) 4-of-7(d4...d0)

0 6-of-9 d5 = 0 11 4-of-7(d4...d0)
d5 = 1 DR(d4) 5-of-7(d3...d0)

4. Hybrid Protocols

This section proposes four novel 2-phase/4-phase hybrid DI communication protocols that both rely
on allowing more than a single spacer. All these protocols use one default spacer (the all-zero pattern) and a
set of other special spacers (for one protocol this set only contains one code word). Hence one transmission
cycle of the new the protocols consists of the data phase and one of two possible spacer phases (default
or special).

Recall that in Section 2.1 we introduced the notion of the spacer for the RZ protocol and stated that
it is usually encoded by the all-zero pattern on every rail of the DI bus. We can generalize that to the
statement that the spacer must simply be a single distinct bit pattern. For each bit of the spacer pattern
that is zero (one) we can now define that the corresponding rail of the DI bus must only perform

(i) rising (falling) transitions when the bus switches from the spacer to the data phase and
(ii) falling (rising) transitions when the bus switches from the data to the spacer phase.

The code words of the DI code must then be unordered with respect to this chosen spacer pattern s.
This means that the set of bit vectors that is obtained by taking the bit-wise XOR of s and every bit pattern
that should constitute a valid DI code word, must be unordered. If we again look at the case of the RZ
protocol with the all-zero spacer, only rising (falling) transitions are allowed when switching from the data
(spacer) phase to the spacer (data) phase. Notice that since there are no spacers in NRZ protocols every
rail is always allowed to make a transition when switching from one data phase to the next.

With the hybrid protocols we can relax the two constraints for the switching behavior of RZ protocols
formulated above to a certain degree, without allowing the “complete” freedom of the NRZ protocol.
We do this by allowing more than a single spacer, and applying a new set of rules depending on the current
state the protocol is in. When the protocol is in the default spacer phase again only rising transitions
can occur. However, in the data phase one of two things can happen. Either all rails return to zero
again (default spacer) or additional ones appear at the DI bus until a special spacer is reached. In the

J. Low Power Electron. Appl. 2019, 9, 16 12 of 41

special spacer phase again only falling transitions back to the next data phase (i.e., next valid code word)
are allowed.

Although it would be again possible to use an arbitrary bit pattern for the default spacer of the hybrid
protocols, we do not consider this in our explanations for the sake of simplicity. Note that the ack signal
still makes two transitions for each complete bus transaction (i.e., the transmission of one code work and
one spacer).

4.1. Data Spacer Protocol

The Data Spacer (DS) protocol uses the spacer to transmit one additional bit of information in the
spacer phase and works with m-of-n as well as Berger codes. After each data phase, the transmitter checks
this bit bs and decides whether to go to the all-zero or the all-one spacer (see Figure 6). This is possible
because every code word of a DI code can be reached from either of these two spacers without any potential
for misinterpretation (unorderedness property). Please note that when applied to a single dual-rail bit,
a special case of this approach is the LEDR protocol [13]. So in a sense, the DS protocol represents the
smallest step from a 4-phase protocol with its single spacer (that only carries control information but
no data) to a 2-phase protocol (in which all protocol phases carry data, and the control information is
embedded in the set of code words used to encode these data). While in a conventional level-encoded
2-phase DI code such as LEDR the two code sets have equal size, the DS protocol is a very unbalanced
2-phase protocol—which is likely to yield different properties that we are interested to explore.

if bs = 0 if bs = 1

all-one
spacercode word

all-zero
spacer

Figure 6. DS protocol state diagram.

Through the addition of the single extra bit transmitted by the spacer, this approach obviously has
improved coding efficiency with respect to a single-spacer (i.e., the RZ) protocol (Equation (12)).

Rcw|DS
m,n =

blog2 (
n
m)c+ 1
n

, RB|DS
m,n =

b + 1
b + dlog2(b + 1)e (12)

To calculate the power metric, we must consider four different cases. A transmission starts out in
one of the two spacers, transitions to the code word and finally transitions either to the all-zero or all-one
spacer. We denote the number of DI bus transitions involved in each of those cases with tzz, tzo, too and toz.
For m-of-n codes these values can easily be calculated:

tzz = 2m, tzo = n, too = 2(n−m), toz = n (13)

If we assume uniformly distributed data for bs the average number of transitions for one transmission
is given by the mean of those four values, which immediately yields the power metric:

Pcw|DS
m,n =

n
blog2 (

n
m)c+ 1

(14)

Furthermore, Equation (14) shows that for some cases (e.g., for the class of m-of-2m codes) the DS
Protocol also improves the power metric.

J. Low Power Electron. Appl. 2019, 9, 16 13 of 41

The same approach is used to derive the power metric for Berger codes. The values for tzo and toz

are straightforward to calculate because these cases involve the switching of all b + k rails. The other two
values depend on the actual code word structure, i.e., the value of p:

tzz
p = 2(h(p) + b− JpK), too

p = 2(k− h(p) + JpK) (15)

This could potentially demand for a case distinction based on the different possible values of p.
However, when calculating the mean of the four cases it turns out that all terms containing p cancel out
and one is left with b + k. Hence the final power metric for Berger codes using the DS protocol is given by:

PB|DS
b =

b + k
b + 1

(16)

Recall that Berger codes are most efficient (in terms of both R and P) if b = 2x − 1 (i.e., 3, 7, 15, 31 etc.)
data bits. Hence one additional bit comes in handy to “fill” up the transmitted data to some multiple of
a byte.

4.2. Short Distance Spacer Protocol (m-of-n Codes)

We observe that a 4-phase m-of-n code requires m transitions to go from a code word back to the
spacer, and another m to transmit the next code word. The basic idea behind the Short Distance Spacer
(SDS) protocol is to dynamically select a suitable spacer between two m-of-n code words cn and cn+1 based
on their Hamming distance D(cn, cn+1) in such a way that only d transitions are required to get from cn

to that spacer, and another d to get from there to cn+1, where d < m. Please note that unlike with the DS
protocol, here the spacer does not carry any extra information (as it cannot be freely chosen), so the SDS
protocol is still considered 4-phase.

Figure 7 shows a state graph visualizing this principle. Besides the usual all-zero (i.e., 0-of-n) spacer,
the protocol also uses another type of spacer. However, this spacer, which we will refer to as short distance
(SD) spacer, is not a single distinct bit pattern, but rather one dynamically chosen from a set of (m + d)-of-n
code words (i.e., the code Ccw

m+d,n). Starting in the left-most state, the code word cn is transmitted by
applying m transitions. After acknowledgment the transmitter checks the next code word cn+1 that will
be sent, to see whether it could be reached via an (m + d)-of-n SD spacer. If this is the case the number
of transitions to reach cn+1 can be reduced to 2d. Otherwise the system falls back to the regular all-zero
spacer, which ultimately results in 2m transitions to reach the next code word.

otherwise if D(cn,cn+1)≤ 2d

0-of-n
spacer

m-of-n
code word

(m+d)-of-n
short-distance spacer

Figure 7. SDS protocol state diagram.

Consider the following example, shown in Figure 8. Here a DI link using the 3-of-6 code transmits
the two code words cn =000111 and cn+1 = 001110 using the SDS protocol with d = 1. Using the normal
(single-spacer) RTZ protocol this transmission would require nine transitions. However, the SDS protocol
can leverage the SD spacer 001111 to separate the two code words and hence only needs five transitions.

J. Low Power Electron. Appl. 2019, 9, 16 14 of 41

DI data
ack

Spacer cn SD Spacer cn+1

000000 000111 001111 001110

Figure 8. SDS protocol example timing diagram.

The important question, arising from this concept, is that of the optimal value for d (to achieve the
best power metric). Observe that the Hamming distance between two code words in a constant-weight
code is always a multiple of two. To calculate the power metric, we assume that every code word is
equally likely to be transmitted. The number of neighboring code words to any m-of-n code word with a
maximum Hamming distance of 2d is given by Equation (17).

Nm,n,d =
d

∑
x=0

(
m
x

)(
n−m

x

)
(17)

This equation has some similarity with Vandermonde’s identity. The intuition behind the formula
is that the first binomial coefficient provides the number of ways x ones can be selected from the m
one-positions in a code word, while the second coefficient yields the number of possibilities how these x
ones can be arranged in the n−m zero-positions. Knowing this number, we can argue that the percentage
p of cases in which the SD spacer can be used is given by

pm,n,d =
Nm,n,d

(n
m)

. (18)

Hence the power metric Pcw|SDS of the SDS protocol is (approximately) given by

Pcw|SDS
m,n,d ≈ 2dpm,n,d + 2m(1− pm,n,d)

blog2 (
n
m)c

(19)

The denominator of Equation (19) holds the number encodable bits. Since the binomial coefficient is
generally not a power of two only a subset of the actual code words provided by the code is actually used.
Please note that the selection of this subset obviously has an impact on p, which is disregarded by the
equation. A precise way for calculating Pcw|SDS is provided by Equation (20), where C is the set of used
code words. However, for the codes we have examined in this work, the approximation of Equation (19)
was quite accurate (within a few percent).

Pcw|SDS
C,k =

1
|C|2 ∑

c1∈C
∑

c2∈C
n(c1, c2),

where n(c1, c2) =

{
2d if D(c1, c2) ≤ 2d

2H(c1) otherwise

(20)

The optimal value for d is given exactly by the number for which PSDS is minimal. Figure 9 shows
that the improvement for the power metric lies in the range of up to ∼38% for the class of m-of-2m codes.
Note that an NRZ protocol leads to an improvement of exactly 50% (disregarding the transitions on the ack
wire). The bold entries in the figure are exact values for the PSCWCs, or sub-codes thereof (as defined in
Tables 2–5) discussed in the previous section, the rest are estimates obtained with Equation (19). The only
exceptions are the 2-of-6 and 2-of-8 codes, which are actually just concatenations of two 1-of-n codes.
A 1-of-2 and a 1-of-4 code in the case of former code and two 1-of-4 codes for the latter code.

J. Low Power Electron. Appl. 2019, 9, 16 15 of 41

m\n 5 6 7 8 9 10 11 12 13 14
2 34|1 31|1 30|1 22|1 21|1 19|1 17|1 16|1 15|1 14|1
3 33|1 30|2 27|2 26|2 24|2 22|2 21|2 19|2 18|2
4 38|2 31|2 27|2 23|2 21|3 21|3 20|3
5 35|3 33|3 30|3 27|3 25|3
6 35|3 31|3 29|4
7 37|4

Figure 9. Improvement of P [%] | Optimal value for d.

It is obvious that this this protocol is little more involved to implement than the RZ, DS, or even
NRZ protocol. The crucial component in the transmission link is the spacer generator, which basically
has two tasks. First it must determine if an SD spacer is applicable to separate the two given code words
cn and cn+1 or the system must fall back on the all-zero spacer. If the SD spacer can be used it must
then provide an appropriate bit pattern at its output that is element of Ccw

m+d,n. In the simplest case, i.e.,
if D(cn, cn+1) = 2d the SD spacer is obtained by a bit-wise OR operation between the two code words.
However, if D(cn, cn+1) < 2d, the bit-wise OR produces a bit pattern with a Hamming weight smaller than
m + d. Hence, there must be some circuitry that allows to set “dummy” zero-positions in this bit pattern
to get to the required Hamming weight for a valid SD spacer. This part of the spacer generator needs a
considerable amount of resources, because its hardware overhead is proportional to the maximal number
of “dummy” bits such that it must be able to set in a bit pattern. In the worst case (i.e., if cn = cn+1) exactly
d such dummy positions need to be set.

Hence, one small optimization that can be implemented is not use the SD spacer if the same code
word is transmitted twice. This would essentially add the condition cn 6= cn+1 to the arc between the
code word and the SD spacer in the state diagram in Figure 7. Assuming uniformly distributed data the
exclusion of this case does not has a huge impact on the overall power metric.

4.3. Short Distance Dual Spacer Protocol (Berger Codes)

Since there are multiple different values for the Hamming weight of Berger code words, it is also
possible to leverage the all-one spacer to reduce the number of bus transitions, instead of transmitting an
additional bit of data. Figure 10 illustrates this approach, which we refer to as Short Distance Dual Spacer
(SDDS) protocol.

otherwise if b+ k > h(cn)+h(cn+1)

all-one
spacer

Berger
code word

all-zero
spacer

Figure 10. SDDS protocol state diagram.

Whenever the protocol is in the code word (i.e., the middle) state, the Hamming weight of the next
code word (h(cn+1)) is calculated and compared to the one of the code word that has just been sent (h(cn)).
Based on these values it can then be determined whether it is cheaper (in terms of the number of transitions
required) to transition to the next code word through the all-one or all-zero spacer. Please note that k again
denotes the number of the parity bits (i.e., the width of p).

Equation (21) shows how the power metric of the SDDS protocol is calculated. The equation is
quite similar to Equation (6). However here we go through every possible transition with respect to

J. Low Power Electron. Appl. 2019, 9, 16 16 of 41

the Hamming weights of the code words involved. The minimum function selects that value, whose
corresponding spacer yields the minimum amount of transitions.

PB|SDDS
b =

∑0≤p1≤b ∑0≤p2≤b min
(

f (p1, p2), 2(b + k)− f (p1, p2)
)
(b

b−p1
)(b

b−p2
)

2b2 ∗ b
,

where f (p1, p2) = h(〈p1〉) + h(〈p2〉) + 2b− p1 − p2

(21)

When compared to the RZ protocol, this approach obviously does not affect the coding efficiency.
The advantage of this protocol is that it has increased power efficiency and is quite simple to implement,
because at least some of the values needed for the spacer-decision (i.e., the Hamming weights of the data
parts) already need to be calculated for the encoding process anyway.

4.4. Unbalanced Spacer Protocol (Berger Codes)

The Unbalanced Spacer Protocol (UBS) can be viewed as the SDS protocol for Berger codes. However,
where the spacer for the SDS protocol was basically defined by its Hamming weight, here the spacer
definition is a bit more involved. Figure 11 shows the state graph of this protocol.

otherwise if ∃s s.t. (h(ds)+ JpsK = b+d)∧ (cn @ s)∧ (cn+1 @ s)

unbalenced spacer s = ds : ps
h(ds)+ JpsK = b+d

Berger
code word

all-zero
spacer

Figure 11. UBS protocol state diagram.

It can be seen that as with the code words themselves, the spacer s is also divided into a data part
ds and a parity part ps. Recall that all code words of a Berger code have a certain balance between
the Hamming weight of the data part and the numerical value represented by the parity part (i.e.,
h(d) + JpK = b, see Equation (2)). The spacer s is now defined as a bit vector for which this balance
deviates from the balance of the code words by exactly the value of d (i.e., h(ds) + JpsK = b + d). Hence the
name unbalanced (UB) spacer protocol. The set of all possible spacers for a Berger code with a given b and
d is denoted by Sb,d.

Let us now discuss the condition for when the UB spacer can be used. The first thing a potential
transmitter for this protocol has to check is if the balance of the bit pattern obtained by a bit-wise OR
of the code words cn and cn+1 is less than or equal to b + d (i.e., h(dcn ∨ dcn+1) + Jpcn ∨ pcn+1K ≤ b + d).
Notice that this is a necessary condition that must be fulfilled to use a UB spacer. The UB spacer must
be a bit vector that contains (in the sense of the unorderedness property) both of the code words cn and
cn+1, because it must be possible to use only rising transitions to switch from cn to s and then only falling
ones to make the switch from s back to cn+1. Hence the simplest way to generate such a bit pattern is to
use the bit-wise OR of the code words. However, if the balance of this vector is already greater than b + d,
then there cannot exist a suitable spacer. On the other hand, it may be the case that the balance is strictly
smaller than b + d, which means that some “dummy” bits must be set to generate a valid spacer (similar
to the spacer generation of the SDS protocol). This is exactly what the condition in Figure 11 expresses.

Notice that there are cases where the balance of the bit-wise OR of the code words is smaller than
b + d, but there still does not exist a suitable spacer. Consider the following example of a Berger code with
b = 4 (i.e., k = 3) and d = 2. The bit-wise OR of the code words c1 = 1111:000 and c2 = 1110:001 is c1 ∨ c2 =
1111:001 (we use the colon to emphasize separation of the data and the parity part). The balance of this bit
vector is b + 1, hence the necessary condition would be fulfilled. However, to get to a spacer we still need

J. Low Power Electron. Appl. 2019, 9, 16 17 of 41

to increase this balance by one, which is not possible in this case because the only bits that could be set
would increase the balance to b + 3 or b + 5.

Figure 12 shows a comparison between the power metrics of the RZ, DS, SDDS, and UBS protocols.
The power metric for the UBS protocol has been calculated using a numerical method, which is the also the
reason we only have values for b ≤ 20. For each Berger code with a certain bit width b, the power metric
was evaluated for increasing values of d, starting with d = 1. The figure shows the first local minimum of
the power metrics obtained by this process. The corresponding values for are shown in Table 6.

Table 6. d values used for the power metric evaluation of the UBS protocol.

b 3 4 ≤ b ≤ 7 8 ≤ b ≤ 9 10 ≤ b ≤ 15 16 ≤ b ≤ 17 18 ≤ b ≤ 19 20

d 1 2 3 5 6 7 10

Recall that for a single transmission cycle (i.e., a code word and a spacer phase) the DS protocol needs
on average b + k transitions. For the SDDS protocol this is the maximum number of transitions required.
However, the DS protocol transmits one bit more per transmission cycle, hence the for values b < 7 it is
more efficient. The UBS protocol always yields the best results of the four protocols. However, it is still not
able to reach the efficiency of the NRZ protocol, and as we will see in Section 7 it is also quite expensive to
implement, because of its complex encoder (i.e., spacer generator).

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1

1.2

1.4

1.6

Berger code data width [bits]

P
[T

ra
ns

iti
on

s/
bi

t]

RZ
DS

SDDS
UBS

Figure 12. Power metric comparison for Berger code protocols (RZ, DS, SDDS, and UBS).

5. Completion Detection

This section shows how to implement efficient CDs for all codes and protocols discussed in this work.
We start out by addressing this problem for the RZ protocol and show how these CDs can also be used for
NRZ protocols. Then we generalize the presented approach to also work with new hybrid protocols.

The core challenge when implementing CDs is that the resulting circuits must conform to the design
rules of the quasi DI (QDI) timing model. The only timing constraint that is imposed on QDI circuits is
the isochronic fork assumption, which basically means that the delay after a signal fork must be equal for
every path [17]. This assumption is the reason we speak of quasi DI and not complete DI circuits, because it
can be shown that the latter class of circuits is very limited does not offer much practical use. Except for the
isochronic fork constraint, gate and wire delays can be completely arbitrary and even change arbitrarily
during operation. As a result of that, it must be guaranteed that QDI circuits are free from hazards (i.e.,
do not produce glitches) and do not contain orphan transitions. An orphan transition is a transition that
happens inside a circuit for some input pattern without having any influence on the primary outputs

J. Low Power Electron. Appl. 2019, 9, 16 18 of 41

of the circuit. Hence, if there is such an orphan, it is not possible to determine if a circuit has finished
processing by just observing its primary outputs.

A completion detector for the RZ and the hybrid protocols is a function block that issues a logic one
at its (done) output, if the bit pattern presented to its input corresponds to a valid code word for some
DI code. The CD’s output must go to zero when the input constitutes a valid spacer. While the input
transitions from the spacer to a valid code word the output must remain at zero. Consequently, it must
remain at one during the transition from a code word to the spacer. This implies a hysteresis behavior.

CDs for the NRZ (transition signaling) protocol have a slightly different behavior. Their done output
must change its state whenever a new set of transitions arrive at their inputs, whose positions constitute
a valid DI code word. This value must be kept until the next valid input pattern is detected. With the
exception of 1-of-n codes where the NRZ CD is a simple parity function (i.e., cascaded XOR gates),
NRZ CDs are usually constructed using 4-phase CDs combined with a 2-phase wrapper circuit [3,11].

This principle is illustrated in Figure 13. For every input rail this wrapper contains one (shadow) latch
to store the previous bus state and one XOR gate to detect transitions. Initially the latches are opaque, and
their output value is equal to the DI bus state x0, ..., xn−1. Input transitions are hence converted to rising
transitions at the input of the internal 4-phase CD. As soon as the done output of the internal CD is asserted
the latches are made transparent again, which resets the inputs of the internal CD. This again leads to a
falling transition on the internal done signal prompting the latches to capture the new bus state. The T
flip-flop generating the actual done output changes its state with every falling transition on the internal
done signal. This behavior essentially emulates a RZ protocol for the internal 4-phase CD and artificially
introduces the all-zero spacer. Note however that this introduces a timing constraint, because it must be
guaranteed that the latches are opaque before the next set of transitions arrive at the inputs x0, ..., xn−1.

At this point we also want to mention a class of special CD circuits proposed in [11], which do not
rely on this wrapper concept. However, these CDs can only be used with 2-of-n codes. Since we do not
include these particular codes in our analysis, these circuits are not considered or further addressed.

en
D

en
D

x0

xn-1

RZ CD T done

Figure 13. NRZ CD constructed from RZ CD with 2-phase wrapper circuit.

For 4-phase completion detection circuits binary sorting networks (SN) offer a very generic and
efficient design approach [9–11]. The idea behind SNs is that a set of numbers can be sorted by applying
a sequence of predetermined comparison and swap operations to them [18]. This is accomplished by a
network of so-called comparator cells. A comparator cell, such as the one shown in Figure 14a, has two
inputs (a and b) and two outputs, where one output generates the maximum of the inputs while the other
one generates the minimum. Hence, it basically compares the inputs and swaps them if they are in the
wrong order. In the binary case only the (single bit) numbers zero and one must be distinguished, which is
accomplished by an OR and an AND gate (Figure 14b).

J. Low Power Electron. Appl. 2019, 9, 16 19 of 41

a

b

max(a,b)

min(a,b)

(a) comparator

a

b

max(a,b)

min(a,b)

(b) binary comp.

x0 T 4
1

x1 T 4
2

x2 T 4
3

x3 T 4
4

(c) T4 SN

x0

x1

x2

x3

T 4
2

T 4
3

T 4
1

T 4
4

(d) binary T4 SN

Figure 14. Comparator cells and sorting networks.

Figure 14c shows how these comparators are connected to construct a larger network. We use the
notation Tn to denote a SN with n inputs x0 to xn−1. The outputs are labeled with Tn

1 to Tn
n . Figure 14c

shows the usual abstract representation of a SN, whereas Figure 14d shows the gate-level implementation
of a binary SN. The output Tn

k of a binary Tn SN is one if at least k inputs are one. The problem of designing
optimal SN for arbitrary number of inputs is still open. However, for a small number of inputs optimal
solutions are known. Table 7 lists the size (i.e., number of comparators S(n)) of the best-known SN with
minimal depth/delay(D(n)). For more information on this topic in general, refer to [18].

Table 7. SN implementation costs (minimal depth).

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S(n) 3 5 9 12 16 19 25 31 35 40 47 52 57 61
D(n) 3 3 5 5 6 6 7 7 8 8 9 9 9 9

5.1. m-of-n Codes (RZ)

The outputs Tn
1 to Tn

n of a binary SN can be viewed as the unary encoded Hamming weight of the
binary vector presented at its input. This provides exactly the required information to perform completion
detection for m-of-n codes. However, a bare binary SN, such as the one shown in Figure 14d, is not yet
a CD, as it lacks the hysteresis behavior. To construct an m-of-n CD, Piestrak [9] proposes to remove
all “unneeded” outputs (i.e., all outputs except Tn

m) of the SN as well as the gates driving them and
replace all AND gates with C gates. The Muller C-element (or short C gate), is a fundamental gate in
asynchronous logic. Its function is to output the logic level seen at its inputs when these match, and to
retain the last valid output state otherwise. It can hence also be viewed as an AND gate with hysteresis,
which is used to establish the required hysteresis behavior of the overall CD. Alternatively, a procedure is
provided that directly constructs a CD by using two SNs Tbn/2c and Tdn/2e and some appropriate merging
logic, which yields similar results. Figure 15a shows the resulting CD for a 2-of-4 code. Unfortunately,
this circuit contains orphan transitions. To better understand this issue, consider the case where the
input vector 1100 is applied to the circuit. The signals that make transitions to one are marked in the
figure. Notice that the topmost OR gate switches to one. However, since no part of the circuit observes
(i.e., waits for) this transition before producing an output transition, it constitutes an orphan transition.
Orphan transitions must generally be avoided in QDI circuits because they conflict with the unbounded
(but finite) delay model.

An alternative approach that does not suffer from this problem is to combine the outputs Tn
1 to Tn

m of
the Tn SN with an m-input C gate [10]. This has the secondary advantage that the AND gates in the SN do
not have to be replaced by C gates. The hysteresis is solely implemented by the final C gate. The unused
outputs Tn

m+1 to Tn as well as the gates driving them can still be removed from the circuit.

J. Low Power Electron. Appl. 2019, 9, 16 20 of 41

x0

x1

x2

x3

C

C

C done

T 2

T 2 Eorphan

(a) Original CD with orphans

x0
T 4

1

x1
T 4

2

x2
T 4

3

x3
T 4

4

T 4

C done

u
n
u
se
d

(b) Orphan-free alternative

Figure 15. 2-of-4 completion detectors.

This is the circuit variant we use as basis for our proposed solution that will offer further optimizations.
Notice that the T4 SN in the 2-of-4 CD basically maps every 2-of-4 input code word to the output pattern
1100. However, it is also guaranteed that every 1-of-4 input code word is mapped to 1000. The latter
behavior is actually not really required. Hence the specification of what the SN should do in the CD can be
relaxed to: Output the two largest input values at the outputs T4

1 and T4
2 in arbitrary order. This is exactly

what a selection network [19] does. Figure 16 shows the general construction for a selection network with
2m inputs. The set {yi | 0 ≤ i ≤ m− 1} contains the m largest values of the set {xi | 0 ≤ i ≤ 2m− 1}.
Please note that from here on we refer to the characteristic output stage of a selection network as Selection
Network Merging Logic (SNML). An SNML with 2m inputs z0 to z2m−1 contains m comparators which
conditionally swap the inputs zi and z2m−i−1 for 0 ≤ i < m− 1.

T m

T m

Selection Network Merging Logic

x0
z0

x2m-1
z2m-1

y0

y2m-1

x1
z1

x2m-2
z2m-2

y1

y2m-2

...

...

...
xm-1

zm-1

xm
zm

ym-1

ym

Figure 16. Selection network.

Using this method, we can already construct m-of-2m CDs in a quite efficient way, by connecting
an m-input C gate to the outputs y0 to ym−1. Again, the unused outputs could be removed from the
circuit (i.e., the AND gate of the SNML driving the outputs ym to y2m−1). The overhead is similar to the
original approach by Piestrak [9], because we also use two Tm SNs for a CD with 2m inputs. However,
the construction of the merging logic now ensures that there are no orphans in the circuit.

In the following we will generalize this approach for arbitrary m-of-n CDs. Given an m-of-n code,
a CD can be constructed by using two SNs Tq and Tr where q + r = n, some appropriate merging logic
and a single m-input C gate, which will be referred to as the output C gate. The inputs to the CD (x0 to
xn−1) are connected to the inputs of the SNs, where q inputs are connected to Tq and the remaining r are
connected to Tr (the particular assignment is not relevant).

The outputs of each of the two SNs can be classified into three categories based on their role in the
final CD. We define Tx

y as

(i) unused if y > m
(ii) certain if y ≤ x− (n−m)
(iii) indicating otherwise.

J. Low Power Electron. Appl. 2019, 9, 16 21 of 41

An unused output can never be asserted, because there are not enough ones in the input code word
to ever set this output. This means that it can be removed from the corresponding SN (again with all
gates driving it). Since of x inputs to Tx at most n−m can be zero, the rest (if existent) must be asserted
for every (valid) input code word. These (certain) outputs can consequently be directly connected to the
output C gate. The indicating outputs can, depending on the input code word, be zero or one. However,
for each of the networks they are guaranteed to be sorted binary vectors, i.e., vector encoded with a
thermometer code.

For the next steps we define functions to calculate the number of outputs which fall into one of the
respective categories. Let u(Tx), c(Tx) and i(Tx) denote the number of unused, certain and indicating
outputs of the SN Tx (Equations (22)–(24)).

u(Tx) =

{
x−m if x > m

0 otherwise
(22)

c(Tx) =

{
x− (n−m) if x > (n−m)

0 otherwise
(23)

i(Tx) = x− c(Tx)− u(Tx) (24)

In the following we will show that the number of indicating outputs is the same for both SNs (i.e.,
i(Tq) = i(Tr)). Moreover, we will show that this number also matches the total number of transitions
expected on all indicating outputs, denoted by I(Tq, Tr). This value can be calculated simply by subtracting
the number of certain transitions from the total number of input transitions m.

I(Tq, Tr) = m− c(Tq)− c(Tr) (25)

If we can show that i(Tq) = i(Tr) = I(Tq, Tr) always holds, then it is possible to use the indicating
outputs to build a selection network-like structure that outputs the I(Tq, Tr) largest (binary) values of the
total i(Tq) + i(Tr) indicating outputs with I(Tq, Tr) comparator cells. This is achieved by merging the
indicating outputs of both SNs using the SNML structure shown in Figure 16. However, since we are only
interested in the I(Tq, Tr) outputs of the merging network that are actually asserted for valid code words,
only the OR gates of the comparators are needed.

Without loss of generality we assume that q ≥ r. The following cases can be distinguished.

(i) m ≤ r:
c(Tr) = 0, u(Tr) = r−m⇒ i(Tr) = r− (r−m) = m
c(Tq) = 0, u(Tq) = q−m⇒ i(Tq) = q− (q−m) = m
⇒ I(Tq, Tr) = m

(ii) r < m ≤ q (where r < q):
u(Tr) = 0, c(Tr) = 0⇒ i(Tr) = r
u(Tq) = q−m, c(Tq) = m− r⇒ i(Tq) = r
⇒ I(Tq, Tr) = m− c(Tq) = r

(iii) m > q:
u(Tr) = 0, c(Tr) = r− (n−m)⇒ i(Tr) = n−m
u(Tq) = 0, c(Tq) = q− (n−m)⇒ i(Tq) = n−m
⇒ I(Tq, Tr) = n−m

This gives evidence that in all three possible cases we have i(Tq) = i(Tr) = I(Tq, Tr), which is exactly
what we wanted to prove.

J. Low Power Electron. Appl. 2019, 9, 16 22 of 41

Figure 17 shows the general overview of the proposed CD, where the SN Tq has certain, indicating,
and unused outputs. Please note that according to the provided proof, for every valid code word and
every intermediate input pattern (with less than m ones), there can only be one of the inputs of each OR
gate in the SNML set to one. This means that the proposed circuit is free from orphan transitions.

T q

T r

T q
1x0

T q
c(T q)

T q
c(T q)+1

T q
q-u(T q)

T q
q-u(T q)+1

T q
qxq-1

T r
1xq

T r
rxn-1

C done

ce
rt
a
in

in
d
ic
a
ti
n
g

u
n
u
se
d

in
d
ic
a
ti
n
g

Selection Network
Merging Logic

output C gate

Figure 17. Proposed m-of-n completion detector.

The proposed construction approach ensures that the resulting circuits can always be separated into
a block composed solely of binary comparator cells, which we refer to as the Comparator Network (CN)
and a block that implements the hysteresis behavior, called the Hysteresis Generator (HG). The HG takes
some outputs of the CN and generates the done output. The other outputs of the HG can be pruned (i.e.,
the gates driving them can be removed). While this observation seems trivial for the case of m-of-n CDs,
we will see this holds true for every other CD presented in this work. Moreover, it enables us to present
CDs in an abstract unified form (see Figure 18a for an example). This also allows for the implementation
of a single algorithm that finds the optimal gate-level circuit of a particular CN, automating the CD
generation process.

To optimize for a low transistor count and delay the CN should be implemented predominantly with
NAND and NOR gates. In our analysis we observed that SNs with an even number of inputs can often be
implemented more efficiently, because of their symmetrical structure no additional inverters inside the
network are required. Hence, if n

2 is an odd integer, it is beneficial to use a SN partition with q = n
2 + 1

and r = n
2 − 1. On top of that it is also often the case that the costs for two identical SNs of some particular

uneven size m are higher (in terms of comparators) than the combination two SNs of sizes m + 1 and m− 1.
To illustrate that consider the example of a CD for the 5-of-10 code. Two T5 SNs require 18 comparator
cells. However, a T4 combined with a T6 only need 16. Furthermore, we know the T6

1 is a certain output
and is hence directly connected to the HG, which simplifies the SNML.

Figure 18b shows another example CD for the 3-of-6 code. Here the partition q = 4 and r = 2 was
chosen. Notice that the circuit does not contain any explicit inverters.

J. Low Power Electron. Appl. 2019, 9, 16 23 of 41

x0

x1

x2

x3

x4

x5

T 2

T 4

SNML

C done

useless
(can be pruned)

Comparator Network Hysteresis Generator

(a) Abstract representation.

x0

x1

x2

x3

x4

x5

C

unused

certain

done

T 4
1

T 4
2

T 4
3

T 4
4

T 2
1

T 2
2

indicating

T 2

T 4

Selection Network
Merging Logic

output C gate

(b) Optimized gate-level implementation

Figure 18. 3-of-6 completion detector (q = 4, r = 2).

5.2. Berger Codes (RZ)

Piestrak also proposed a SN-based completion detector for Berger codes, which is shown in Figure 19.
The basic idea behind this circuit is that a SN is used to determine the Hamming weight of the data part d
of the code word, while the Unate Product Generator (UPG) sets the signals w1, ..., wb according to the
value of the parity bits p. For this purpose the signal wi is generated by a conjunction over those rails
of p, which are set if p carries the binary representation of i (e.g., w5 is generated by a C gate over the
inputs p0 and p2). Please note that for every Tb

h(d) asserted by the SN for a certain Hamming weight of
d, a corresponding wb−h(d) will eventually be asserted by the UPG. The C gates are used to detect these
conditions. Their outputs are connected to an output OR gate generating the done signal. For the two
special cases Tb

b and wb, there is no corresponding signal from the respective other block. Hence these
signals are directly connected to the OR gate.

C

C

d0

db-1

p0

pk-1

done

UPG

T b

T b
1

T b
b-1

T b
b

w1

wb-1
wb

Eorphans

Figure 19. Completion detector for Berger codes by Piestrak [9].

However, as with the m-of-n CD discussed in the previous section, there is a similar problem with
orphans in this circuit. Notice that if the data part of a code word has a certain Hamming weight h, none of
the outputs Tm

x |x<h of the SN is observed by any part of the circuit. Hence transitions occurring on them
constitute orphan transitions. A similar problem arises in the UPG, but we will not go into further detail
on that because our proposed CD does not use this component. Figure 19 shows the extreme case where
the CD processes a code word, whose data part only contains ones.

An overview of our proposed completion detection architecture is depicted in Figure 20. It uses the
same basic idea as discussed in the previous section. The data part d is processed by the Tb SN at the top
that fulfills the same purpose as in Piestrak’s design, giving us a unary encoding of the Hamming weight
of d. The bottom block BUC2k−1, referred to as the binary to unary converter (BUC), is connected to the
parity bits p and yields a unary representation of the binary value carried by p. For now assume that the

J. Low Power Electron. Appl. 2019, 9, 16 24 of 41

BUC is itself implemented as a SN with 2k − 1 inputs where each rail pi is connected to the exact number
of inputs of this SN that represents its binary value 2i (i.e., pi is connected to 2i inputs).

From the definition of the Berger code we know that the sum of the Hamming weight of d and the
binary value represented by p must be b. Hence, we again have the situation that there are two sorted
binary vectors (i.e., unary encoded values) of length b where exactly b bits must be one for valid code
words. This means that to generate the final output of the CD a SNML is connected to the b outputs of
the SN and the BUC. The outputs of the resulting CN are then fed into a b-input C gate representing the
HG. We thus need b comparator cells between the signals Tb

i and T2k−1
b+i−1 for 1 ≤ x ≤ b, from which only

the OR gates remain after pruning. Again, it is important to stress that for every valid code word and
every intermediate input pattern only one of the inputs to each of these OR gate can be one. Every internal
transition is observed by this circuit; thus, it is free from orphans.

T b

BUC2k-1

d0

db-1

T b
1

T b
b

p0
p1

pk-1

T 2k-1
1

T 2k-1
b

C done

Selection Network
Merging Logic

Figure 20. Orphan-free completion detector for Berger codes.

From a functional point of view this CD design works. However, the implementation of the BUC is
highly inefficient and needs to be improved. Consider the following inductive definition of a BUC using a
CN. Converting a single bit number x0 to unary is trivial. Assume we have a BUC with the inputs x0 to
xn (where xn is the MSB) and the outputs y1 to y2n . To extend this circuit to also process the input signal
xn+1, we need to add 2n+1 − 1 comparators as illustrated in Figure 21a. We denote the new outputs of
the resulting circuit with z1 to z2n+1 . To generate the outputs zi and z2n−i+2 we need the maximum and
minimum output of the comparator connected to yi and x2n+1

for 1 ≤ i ≤ 2n. The output z2n+1 is generated
directly from the input x2n+1

. Please note that the newly added layer of comparators basically performs a
unary addition of the unary vector y and the newly created unary vector which can only hold the values 0
or 2n+1. Figure 21b shows an example 4-bit CN-based BUC.

x0

xn

BUC2n-1

z1

z2n

y1

y2n

z2n+1
z2n+2

z2n+1

xn+1

(a) Inductive BUC construction

p0
p1

p2

p3

z1

z15

(b) 4-bit BUC example

Figure 21. Binary to unary converter using a comparator network.

Figure 22 shows three CNs for Berger CDs that have been constructed with the proposed approach.

J. Low Power Electron. Appl. 2019, 9, 16 25 of 41

d0
d1
d2
p0

p1

HG
pr

un
ed

(a) b = 3

d0
d1
d2
d3
d4
p0

p1

p2

HG

pr
un

ed

(b) b = 5

d0
d1
d2
d3
d4
d5
d6
p0

p1

p2

HG

pr
un

ed

(c) b = 7

Figure 22. Berger completion detectors.

5.3. Hybrid Protocols

Now, to extend the CDs proposed in the two previous sections to also cope with the hybrid protocols,
we need to be able to detect the second spacer (or set thereof). We will first show how this works for m-of-n
codes and then generalize the approach to Berger codes.

Again, consider the circuit in Figure 17 with a valid m-of-n code word at its input. In this case,
all certain outputs of the SNs Tq and Tr are one and exactly one input of every OR gate in the SNML is
asserted. Now we assume that the input transitions to the special spacer. Hence, by the construction of the
circuit, for every additional one that appears at the input one of two things can happen:

(i) An additional indicating output goes high
(ii) An unused output on one of the SNs goes high

Finally, if all bits of the input vector were set to one (as would be the case for the all-one spacer) all
the outputs of the two SNs Tq and Tr are set to one. Hence, every (previously) unused output and every
OR gate input is asserted.

Please note that case (i) implies that the additional one causes both inputs to exactly one of the OR
gates in the SNML to be asserted at the same time. This condition can easily be detected if we do not prune
the AND gates of the SNML.

Hence for detecting k ≤ (n−m) additional ones in the input pattern we propose to use a second-level
CD connected to the AND gates of the SNML and the previously unused outputs (if present). For that the
following cases must be distinguished:

(i) In the simplest case no SN has unused outputs. Then we basically only must connect another k-of-i
CD to the outputs of the i AND gates of the SNML that would otherwise have been pruned from
the circuit.

(ii) In the second case, namely when Tq is the only SN with unused outputs, we can simply use a k-of-j
CD to which we connect the i AND gates as before, plus up to k of the u(Tq) originally unused
outputs of Tq, i.e., j = i + min(k, u(Tq)).

(iii) Finally, if both Tq and Tr have unused outputs, care must be taken because some of the unused
outputs might only be asserted in a mutually exclusive way. These can be merged by an OR gate
(i.e., a comparator) before being connected to the second-level CD. Consider the case of a CD for the
2-of-7 code with q = 4 and r = 3. Hence T4

3 , T4
4 and T3

3 are unused. If this CD is extended to an SDS
CD with d = 1, the outputs T4

3 and T3
3 could never be asserted at the same time and can consequently

be merged.

J. Low Power Electron. Appl. 2019, 9, 16 26 of 41

We use done2 to refer to the output of the second-level CD, which is again generated by a C gate.
This signal needs to be merged with the output of the original CD, which we now refer to as done1 into the
final done output of the hybrid protocol CD. Here we need to distinguish three cases.

(i) all-zero spacer: done1 is low (which implies done2 is low as well); done must be zero
(ii) special spacer: done1 and done2 are both high; done must be zero
(iii) valid data: done1 is high and done2 low; done must be one

This behavior can be implemented using a simple AND gate with the done2 input inverted. Please note
that the case where done2 is high and done1 is low can never occur.

Figure 23 shows two example CDs for the SDS protocol. Please note that it is again possible to make
a clean distinction between the CN and the HG. The 3-of-6 CD constitutes a special case, where no second
C gate is required. Since here d = 1 the second-level CD only needs to detect a 1-of-3 code, which can be
implemented by a three input OR gate. Another special case is CDs for the DS protocol, where only the
all-one spacer needs to be detected. Hence, it is sufficient to connect the second C gate to all unused outputs
of the SNs as well as all AND gates of the SNML to generate the done2 signal, because this essentially
creates an (n−m)-of-(n−m) CD.

x0
x1
x2
x3
x4
x5

C done1

done2
pruned

done

Comparator Network Hysteresis Generator

1-of-3 CD

(a) 3-of-6, d = 1

x0
x1
x2
x3
x4
x5
x6
x7

C

C

done1

done2

done

pruned

Comparator Network Hysteresis Generator

2-of-4 CD

(b) 4-of-8, d = 2

Figure 23. CD examples for the SDS protocol.

For Berger codes a very similar approach can be used. Let us first consider the DS protocol. Instead of
pruning the respective base CN (see Figure 22), we use a 2k− 1-input C gate to combine all these previously
pruned outputs signals into the signal done2. Please note that it is not possible to prune any of the outputs
in this case, because it must be possible to detect the case where all bits in the parity part p are set to one.
If we would e.g., only use the AND gate outputs of the SNML, orphan transitions would be introduced.

For the UBS protocol a second-level d-of-x CD is added to the AND gate outputs of the SNML and
some of the outputs of the (previously) unused and pruned outputs of the BUC. The variable x is given
by the maximal numerical value the parity part of all possible spacers for a given code can take (i.e.,
x = maxds :ps∈Sb,d

(JpsK)), while d again denotes the chosen imbalance between the code words and the
unbalanced spacer. Please note that outputs of the BUC that were previously unused, must be directly
connected to the second-level CD, since a one at these outputs directly contributes to the spacer balance.
Figure 24 shows two example CDs for the UBS protocol.

J. Low Power Electron. Appl. 2019, 9, 16 27 of 41

d0
d1
d2
d3
p0

p1

p2 pr
un

ed

C done1

done2

done

1-of-5 CD

(a) b = 4, d = 1

d0
d1
d2
d3
d4
d5
d6
p0

p1

p2

pr
un

ed

C

C

done1

done2

done

2-of-7 CD
(b) b = 7, d = 2

Figure 24. CD examples for the UBS protocol.

6. Case Study

This section briefly discusses how the proposed protocols impact the transmitter, receiver and repeater
design of a (pipelined) DI link. As already stated, for this purpose we assume that the protocols must be
converted to and from 4-phase BD channels. Please note that we do not claim that these circuits are in any
way optimal, we just want to (i) show that the protocols can actually be implemented and (ii) have some
basis for the area estimations, we conduct in Section 7. For that we try to take similar design decisions for
all the circuits.

6.1. Pipeline Design

The first point we want to address is the actual pipeline design (for intermediate stages). Since the
hybrid protocols do not use a single spacer, it is no longer possible to use 4-phase pipeline approaches
such as the weak-conditioned half buffer (WCHB) [20]. What is actually needed is a circuit capable of
transporting 2-phase protocols. Here a Mousetrap-style [21] pipeline, which has also been used for the
2-phase LETS code [13], can be used. Instead of C gates as in the WCHB this approach uses D latches,
whose enable input is controlled by an XNOR gate (see Figure 25). Initially the latches are transparent,
but are disabled as soon as data (or a spacer) arrives. To re-enable the latches the subsequent pipeline stage
must acknowledge the received data (or spacer), by toggling the ack wire. This behavior implies a small
timing assumption, because it must be ensured that the latches of a stage are closed before the preceding
stage can invalidate the latch inputs. Notice that these two actions are triggered by the same signal,
namely the output of the CD. For the remainder of the paper we refer to this circuit as the Mousetrap-style
delay-insensitive (MTDI) pipeline.

en
D

en
D

CD

en
D

en
D

CD

en
D

en
D

CD

out0

outn-1

ackin

in0

inn-1

ackout

Figure 25. Pipeline implementation for proposed protocols (three stages).

6.2. RZ Link

We start with the “base-line” design for the RZ protocol. Figure 26 shows a possible
transmitter/receiver pair. Consider the circuit in the reset state, i.e., all reqin and ackout signals and

J. Low Power Electron. Appl. 2019, 9, 16 28 of 41

the output register Rout contains the (all-zero) spacer. A rising transition on the transmitter’s reqin signal
will thus set the C gate. This event is used to produce the acknowledgment for the BD input channel as well
as to trigger the output register Rout, which will thus be loaded with the data produced by the DI encoder.
Eventually this data gets acknowledged (rising transition on ackDI), which, if reqin has already been
de-asserted by the BD channel, in turn triggers the reset of the register (through the pulse generator formed
by the delay δp and the AND gate). This essentially produces the all-zero spacer on the DI bus, which will
again be acknowledged by a falling transition on ackDI . After the C gate is reset the BD ackout signal will be
de-asserted and the whole process may start over. The receiver works in a quite similar fashion. When the
CD detects a valid DI code word on the DI bus, the receiver’s C gate is set to one (assuming ackin is zero).
This transition is used to capture the DI data into the input register Rin, produce the acknowledgment
for the DI link as well as to generate the reqout signal for the BD channel. The C gate will be reset again
if the CD detects the spacer and if the BD side acknowledges the (decoded) output data (ackin = 1).
This produces the falling transitions on ackDI and reqout, which in turn leads to the de-assertion of ackin on
the BD side. The delay elements δenc and δdec ensure that the request signal is sufficiently delayed such
that there is enough time for the data to pass through the encoder and decoder, respectively.

Encoder Rout

rs
t

δp

C

δencreqin

ackout

data

In
te
rm

id
ia
te

S
ta
g
es

Rin Decoder
CD

C

data

δdec reqout

ackin

DI data

ackDI

Figure 26. RZ transmitter and receiver.

Please note that if the link uses a Berger code no actual decoder is required. Furthermore, there is no
need for the receiver to capture the parity bits into its input register, further simplifying the circuit.

6.3. SDS/UBS/SDDS Link

The transmitter for the SDS and the UBS protocol is a little trickier to implement than the RZ
transmitter. Figure 27a shows a high-level overview of a possible transmitter circuit. The behavior of the
controller is defined by the signal transition graph (STG) in Figure 27b. STGs offer a convenient way to
specify asynchronous state machines and can be automatically translated into actual circuits using tools
such as Workcraft [22].

Let us first disregard the reset controller (i.e., the signal r is low) and assume that the circuit and
controller are in a state where a valid code word is in the output register Rout. Hence ackDI will eventually
be asserted by the environment (this state is indicated by the initial marking in the STG). Now the controller
waits for the next input data, i.e., a rising edge on the req signal. As soon as this edge is received the
controller sets the trg output to one, which switches the multiplexer to the spacer path. The delay element
δenc ensures that trg reaches the pulse generator (formed by the XOR gate and the delay element δp) only
after data passed through the encoder, the spacer generator and the multiplexer and a valid SD spacer
(if one could be generated for the two code words) is stable at the input of Rout. If no spacer could be
generated the spacer generator asserts its z output, in this case the actual value of the spacer output does
not matter. Depending on the value of the signal z, the pulse that is generated at the output of the XOR
gate is either relayed to the clock or the reset input of the output register. A pulse on the clock input
transfers the SD spacer to the output of Rout while a reset pulse effectively generates the all-zero spacer.
The spacer at the output DI data will cause the environment to eventually de-assert ackDI , which in turn

J. Low Power Electron. Appl. 2019, 9, 16 29 of 41

causes the controller to respond by also resetting trg. This causes the multiplexer to switch to the next code
word (i.e., the output of the encoder). The zero value on the control input of the demultiplexer ensures
that the generated pulse will clock the output register, which results in the next code word appearing
at DI data. After completing the input handshake (ack+ → req− → ack−) this process can start over.
To optimize the cycle time of this circuit the delay element δenc can be implemented in an asymmetrical
way, since for falling transitions on trg only the delay of the multiplexer must be compensated for.

The thing that complicates the circuit is the reset controller which ensures correct start-up of the
protocol. As can be seen from the STG the controller expects that initially the circuit is in a state where
a code word is present in Rout and ackDI is high. However, on reset we do not yet have a code word and
hence ackDI is also low. Furthermore, the first task the controller will execute is to reset Rout to generate
“another” (all-zero) spacer. The reset controller is thus used to “emulate” the circuit state expected by the
controller and uses an OR gate to force ackDI to a high level. Furthermore, it is ensured that the first pulse
that will be generated is relayed to the reset input of Rout. After the first pulse the signal r is permanently
set to low. This leads to ackDI going low, fulfilling the STG specification, and completing the start-up phase.

An interesting observation is that the receiver for the SDS/UBS protocol is not affected by the more
complex protocol. The event that triggers the consumption of the received data is still the rising edge
of the CD’s output, the spacers themselves do not carry any data information and can hence be ignored
completely behind the CD.

The transmitter for the SDDS protocol is quite similar. The main difference is that that the spacer
generator only has the z output and hence the multiplexer is not required. Furthermore, the output register
now also needs an asynchronous set input (to generate the all-one spacer). The signal z is then used to
decide, whether to generate a set or reset pulse for the output register (similar the DS transmitter presented
in the next section).

Controller

Encoder

Spacer
Generator 1

0

rs
t

1

0

z

r

δp

trg δencreq

ack

DI datadata

ackDI

Reset Controllerr

R
ou

t

z

ack′DI

(a) Circuit

req+ ack−

trg+ ack′DI+ req−

ack′DI− trg− ack+

(b) Controller STG

Figure 27. SDS/UBS transmitter.

6.4. DS Link

A possible transmitter/receiver pair for the DS protocol is shown in Figure 28a. The transmitter circuit
is simpler than for the SDS protocol because here the spacer does not depend on the next code word being
transmitted. The different spacers are generated by using an output register (Rout) with asynchronous set
and reset inputs that are activated based on the value of bs. One thing to point out is that the bit bs needs
to be captured with the same clock signal that is used to trigger the output register. This is because after
the assertion of ackin, the BD input channel is allowed to invalidate the input data. To control the sequence
of events in the circuit a simple C gate suffices. Its rising output edge clocks Rout, while the falling one is
used to generate a pulse that is either applied to the set or reset input of Rout.

The receiver uses the done output of the CD to trigger its input register Rin. The controller specified
by the STG in Figure 28b acknowledges the data phase and waits for the spacer. When the spacer arrives

J. Low Power Electron. Appl. 2019, 9, 16 30 of 41

the output handshake (reqout+→ ackin+→ reqout− → ackin−) is initiated. As soon as the preceding logic
asserts ackin the spacer can be acknowledged (de-assertion of ackDI) and the whole process can start over.
Please note that we have omitted the delay elements on the BD channels for both transmitter and receiver
for the sake of clarity of the figure.

Encoder

Rout

se
t

rs
t

1

0

δp

C

ackout

reqin

data

D Q
bs

In
te
rm

id
ia
te

S
ta
g
es

Rin Decoder

Controller

CD

done

data

reqout

ackin

DI data

bs

ackDI

(a) Circuit

done+ ackDI−

ackDI+ ackin−

done− reqout−

reqout+ ackin+

(b) Controller STG

Figure 28. DS transmitter and receiver.

6.5. NRZ Link

Finally, Figure 29a shows a possible NRZ link. The transmitter controller STG in Figure 29b basically
performs a 4-phase/2-phase conversion between the BD input channel and the ackDI signal. Please note
that the encoder needs the last state of the DI data, because information is only encoded in the transitions.
Internally the encoder essentially uses an RZ encoder and an array of XOR gates for the transition encoding.
The receiver on the other side very closely resembles that of the RZ protocol. The only difference is the
2-phase/4-phase conversion (D latches and XORs) in front of the 4-phase CD (see Figure 13). The T flip-flop
again converts the 4-phase done signal of the (4-phase) CD to the 2-phase ackDI of the link. Note that the
input register already captures a 4-phase code word. Thus, the decoder is the same as for the RZ protocol.

Encoder
Routdata

Controller

ackout

reqin

DI data

In
te
rm

id
ia
te

S
ta
g
es

Rin

en
D

CT

Decoder
CD

data

reqout

ackin

ackDI

(a) Circuit

reqin+ ackout− reqin−

ackDI−

ackout+ ackout+

ackDI+

reqin− ackout− reqin+

(b) Controller STG

Figure 29. NRZ transmitter and receiver.

7. Results

There is no single, globally optimum solution for a DI protocol and encoding. Each choice has its
specific place within the parameter space spanned by coding efficiency, power metric, area overhead,
and data throughput. Ultimately, the application needs determine the most desirable region within
this space. In the previous sections we have already investigated coding efficiency and power metric.
While that was possible on a purely abstract level, area overhead and data throughput will be studied in
this section, based on implementation examples.

7.1. Area Analysis

The synthesis results and area estimations in this section are generated using the NanGate 45 nm
Open Cell Library. However, to abstract away from the library details, we use the gate equivalents (GE)
metric, which relates the actual area to the one of a single 2-input NAND gate. Encoders and decoders have

J. Low Power Electron. Appl. 2019, 9, 16 31 of 41

been synthesized from VHDL descriptions with the Synopsys Design Compiler, with high effort on area
optimization (we only consider the pre-layout results for our analysis). The CDs are already generated on
the gate level by our CD construction approach, hence no logic synthesis is required to estimate their area
overhead. Since the library does not contain C gates, we assumed an area overhead of 3 GE (12 transistors)
for a 2-input version of this gate [23]. For multi-input C gates, we further assume an implementation
using a single 2-input C gate (as state-holding element) which is set and reset with two carefully routed
AND/OR networks.

Table 8 lists the hardware costs for the encoders and decoders for all codes (and protocols) analyzed
in this paper. Recall that the decoders are always the same regardless of the protocol, hence the table only
contains one column for their overhead. Table 9 provides the accompanying information for the respective
CDs. The numbers in parentheses in the Berger code rows denote the number of data bits b and parity bits
k, respectively. All values given use the GE/bit metric, because this makes it easier to compare code with
different bit widths.

Let us first concentrate on the encoders and decoders. For the RZ and the NRZ protocols, it can be
seen that the encoders for the PSCWCs are always more expensive than for a Berger code with the same
bit width. Furthermore, since Berger codes are systematic no decoders are required. However, the table
also shows that the PSCWCs codes generally have a better coding efficiency R (except for the 5-of-10 and
7-bit Berger code) and as can be seen in Table 9 also have smaller CDs. The decoders for the PSCWCs are
also considerably simpler than their respective encoders.

The values for the SDS, UBS, and SDDS protocols also include the logic for the spacer generation.
The encoder costs for the SDS and UBS protocol require very similar hardware efforts for codes with a
certain bit width. This also holds true for different values of the parameter d. It is obvious that these
protocols require a very large amount of additional logic when compared to (simple) RZ or even NRZ
encoders. However, their CD costs are still below that of NRZ protocol. Another interesting fact is that the
encoders for the SDDS protocol are only marginally more expensive than the ones for the RZ protocol.

Please note that we did not include the encoding costs for the DS protocol. Recall that this protocol
basically uses the exact same encoder as the RZ protocol but can encode one additional bit via the use of a
special output register. Since this table does not include the costs for the output register, we did not include
the values for the DS protocol because they would give a skewed picture of the actual costs. Note that to
some extent this argument also applies to the SDDS protocol, since it also requires a special output register.

Table 8. Hardware overhead for encoders and decoders.

Code # Rails # Bits R
Encoder Overhead [GE/bit]

Decoder
Overhead [GE/bit]RZ SDS/UBS (d) SDDS NRZ1 2 3

PS 3-of-6 6 4 0.67 3.67 14.67 – – – 7.33 1.67
PS 4-of-8 8 6 0.75 6.61 16.44 18.94 – – 9.28 4.89

PS 5-of-10 10 7 0.70 5.33 16.14 18.67 20.52 – 8.52 1.71
PS 6-of-12 12 9 0.75 6.63 16.33 18.78 20.48 – 10.33 4.63

Berger (3,2) 5 3 0.60 2.22 12.33 – – 2.56 5.67 0.00
Berger (4,3) 7 4 0.57 2.75 16.33 19.58 – 3.42 6.50 0.00
Berger (5,3) 8 5 0.62 2.87 15.40 17.93 – 3.33 6.47 0.00
Berger (6,3) 9 6 0.67 3.39 16.06 19.67 – 3.56 7.11 0.00
Berger (7,3) 10 7 0.70 3.33 16.05 18.90 – 3.86 7.00 0.00
Berger (8,4) 12 8 0.67 4.04 17.04 19.62 20.88 5.25 7.25 0.00
Berger (9,4) 13 9 0.69 3.67 16.30 18.63 20.85 4.41 6.85 0.00

J. Low Power Electron. Appl. 2019, 9, 16 32 of 41

The CD implementation costs in Table 9 always list two values per entry. The first one corresponds to
the combinational costs, i.e., mainly the CNs and the XORs for the NRZ CDs, while the second includes
the costs for the C gates and the latches in case of the NRZ CDs. It is immediately apparent that the NRZ
CDs require the most logic, since the 2-phase/4-phase wrapper circuit basically adds an additional D latch
and XOR gate for every input rail. Also notice the entries for the DS and SDDS protocols. These protocols
use the exact same CD. However, the values for the DS protocol are smaller because one additional bit of
data can be transported.

Table 9. Hardware overhead [GE/bit] for completion detectors (combinational/sequential costs).

Code RZ SDS/UBS (d) SDDS DS NRZ1 2 3

PS 3-of-6 3.25/1.50 4.67/1.50 – – – 3.53/2.40 6.25/6.50
PS 4-of-8 4.11/1.56 5.39/1.56 6.17/2.06 – – 4.43/2.67 6.78/6.00

PS 5-of-10 5.43/1.43 6.90/1.43 7.76/1.86 7.95/2.29 – 5.71/2.50 8.29/6.19
PS 6-of-12 6.07/1.33 7.44/1.33 8.37/1.67 8.44/2.00 – 6.30/2.40 8.74/5.78

Berger (3,2) 4.00/2.00 6.00/2.00 – – 5.67/4.00 4.25/3.00 7.33/7.56
Berger (4,3) 5.42/2.33 7.92/2.33 10.58/3.08 – 8.25/5.50 6.60/4.40 8.92/8.17
Berger (5,3) 6.53/2.00 8.53/2.00 11.53/2.60 – 8.73/4.53 7.28/3.78 9.73/7.33
Berger (6,3) 6.72/2.00 8.83/2.00 10.78/2.50 – 8.44/4.11 7.24/3.52 9.72/7.00
Berger (7,3) 7.33/1.81 9.19/1.81 10.86/2.24 – 8.76/3.62 7.67/3.17 10.19/6.57
Berger (8,4) 8.38/1.67 10.42/1.67 12.96/2.04 14.42/2.42 11.08/4.71 9.85/4.19 11.38/6.67
Berger (9,4) 9.22/1.56 11.04/1.56 13.81/1.89 14.63/2.22 11.63/4.26 10.47/3.83 12.11/6.37

With the link architecture established in Section 6 we now want to calculate the total combined link
costs for each protocol and code. This not only includes the encoder, decoder, and CD costs but also the
overhead for input and output registers and pipeline stages. However, in this analysis we do not include
the static costs for the control logic of the links (i.e., controllers, delay-lines, etc.), since these costs are very
similar for all the presented links. We are only interested in the dynamic cost that are directly impacted by
the choice of a certain protocol and code. Figure 30 shows the results of this analysis.

The base bar of each bar stack corresponds to the combined costs of a transmitter receiver pair.
Hence this bar includes the encoder, decoder, input, and output register as well as one CD. Each additional
section represents the costs for one intermediate pipeline stage, which includes the pipeline D latches (or
C gates in the case of the RZ protocol because of the simple WCHB design) and one CD.

It can be seen that for all codes the hop costs for the NRZ protocol are the most expensive. However,
with greater initial costs the cheaper CDs of the SDS and UBS protocols often only pay off after a certain
amount of pipeline stages. The DS protocol performs quite well, as it only requires a little more hardware
investment than the RZ protocol and still improves the power metric quite significantly (see bars on the
right-hand side), especially for codes with a small bit width. When the PSCWCs are compared to the
Berger codes it can be seen that the higher initial costs for encoding and decoding pay off after just a few
hops, regardless of the protocol.

J. Low Power Electron. Appl. 2019, 9, 16 33 of 41

0 20 40 60 80 100 120 01

RZ
DS
SDDS
UBS, d=1

NRZB
er

ge
r(

3,
2)

RZ
DS
SDS, d=1

NRZPS
3-

of
-6

RZ
DS
SDDS
UBS, d=1
UBS, d=2

NRZB
er

ge
r(

4,
3)

RZ
DS
SDS, d=1
SDS, d=2

NRZPS
4-

of
-8

RZ
DS
SDDS
UBS, d=1
UBS, d=2

NRZB
er

ge
r(

6,
3)

RZ
DS
SDS, d=1
SDS, d=2
SDS, d=3

NRZ

PS
5-

of
-1

0

RZ
DS
SDDS
UBS, d=1
UBS, d=2

NRZB
er

ge
r(

7,
3)

RZ
DS
SDS, d=1
SDS, d=2
SDS, d=3

NRZ

PS
6-

of
-1

2

RZ
DS
SDDS
UBS, d=1
UBS, d=2
UBS, d=3

NRZ

B
er

ge
r(

9,
4)

Area [GE/Bit] P [T/Bit]

Figure 30. Hardware overhead for different link lengths, codes and protocols (left) and the associated
power metric (right).

J. Low Power Electron. Appl. 2019, 9, 16 34 of 41

7.2. Performance/Delay Analysis

This section discusses how the hybrid protocols impact the data transmission performance, i.e.,
the throughput, of a DI link. We start out by comparing the “classical” RZ and NRZ protocol. For this
purpose, we analyze the WCHB as well as the MTDI pipeline style (see Section 6.1) by creating a model for
their dynamic behavior. After that we show how the hybrid protocols change the attainable performance
when compared to the RZ protocol.

To quantify the pipeline performance, we use the local cycle time metric [20]. The local cycle time
corresponds to the minimal time required for a single pipeline stage to complete one handshake cycle with
its neighbors. This hence gives a lower bound for the system cycle time, which is basically the inverse of a
pipeline’s throughput.

For this analysis we consider DI links as homogeneous linear pipelines, i.e., every pipeline stage
is implemented identically and hence has similar delays. Because handshaking protocols involve the
communication of a pipeline stage with the next and the previous stage the local cycle time is usually a
function of the delays of three neighboring blocks. This is reflected by the model circuits we use in this
analysis shown in Figures 31 and 32. The environments shown in these figures are assumed to be ideal,
i.e., they generate immediate responses to the inputs they are presented with. Hence they are no limiting
factor for the cycle time.

Let us first consider a classical 4-phase WCHB pipeline as shown in Figure 31. The delay ∆wire models
the wire delay on the data bus Di connecting two pipeline stages. In this paper, we focus on data transport,
so we do not account for computations performed on the data and the associated delay. Adding ∆wire and
∆C (i.e., the delay through the C gates comprising the buffer) thus yields the forward latency of a pipeline
stage. The delay ∆ack corresponds to the delay of the acknowledgment signal measured from the output of
the CD to the C gates of the previous pipeline stage. To simplify the analysis, we assume equal delays for
rising and falling transitions.

E
n
vi
ro
n
m
en

t

E
n
vi
ro
n
m
en

t

WCHB

WCHB

WCHB

CD CD CD

D1 D2 D3

cd1
cd2

cd3

D0

cd4

C

C

∆CD

∆ack

∆wire

∆C

Figure 31. WCHB pipeline circuit model with delays (three stages).

E
n
vi
ro
n
m
en

t

E
n
vi
ro
n
m
en

t

CD

en1

CD

en2

CD

en3

D1 D2 D3

cd1
cd2

cd3

en
D

en
D

D0

cd4

∆CD∆XNOR

∆ack

∆wire

∆L

Figure 32. Mousetrap-style DI pipeline circuit with delays (three stages).

J. Low Power Electron. Appl. 2019, 9, 16 35 of 41

To extract an analytical expression for the cycle time of this circuit, its dynamic behavior can be
modeled by a marked graph (perti-net) as discussed in more detail in [20]. For the WCHB pipeline this
yields the graph shown in Figure 33. This type of graph can be interpreted in a similar way as an STG.
However, here the nodes do not (always) correspond to transitions of single signal wires but model
more abstract events, such as the transition of the data bus from the spacer (i.e., null) phase to the data
phase (Ddata

i) or vice versa (Dnull
i). This allows to capture the behavior of the pipeline in a compact way,

independent of the actual data traversing it. The dashed lines in the graph indicate transitions performed
by the environment.

Ddata
0 Ddata

1 Ddata
2 Ddata

3

cd1+ cd2+ cd3+ cd4+

cd1− cd2− cd3− cd4−

Dnull
0 Dnull

1 Dnull
2 Dnull

3

Figure 33. Petri-net model for the WCHB pipeline (three stages).

Every node (event) of the graph is associated with a certain delay/latency: The nodes cdi+ and cdi−
add the delay ∆CD, and each node Dx

i adds ∆C. Note, however that some of the arcs also cause a delay
(e.g., cdi+ → Dnull

i−1 , which adds ∆ack or Ddata
i → Ddata

i+1 , which adds ∆wire). These particular delays are
marked with dashed lines in Figure 31.

The local cycle time is now obtained by analyzing the longest cycle in this graph, which is marked by
the orange arrows in the figure. Equation (26) shows the resulting expression for the local cycle time of the
WCHB pipeline, which corresponds to the time it takes for one code word and one spacer to pass though
one pipeline stage.

TWCHB = 4∆C + 2∆CD + 2∆wire + 2∆ack (26)

The graph model, associated with the MTDI pipeline of Figure 32, is shown in Figure 34. Since this
pipeline works with both RZ and NRZ protocols we refer to the data events as Dϕ1

i and Dϕ2
i .

Dϕ1
0 Dϕ1

1 Dϕ1
2 Dϕ1

3

cd1+ cd2+ cd3+ cd4+

en1− en1+ en2− en2+ en3− en3+

en1− en1+ en2− en2+ en3− en3+

cd1− cd2− cd3− cd4−

Dϕ2
0 Dϕ2

1 Dϕ2
2 Dϕ2

3

Figure 34. Petri-net model for the Mousetrap-style DI pipeline (three stages).

J. Low Power Electron. Appl. 2019, 9, 16 36 of 41

Again, the longest cycle is marked orange and the resulting cycle time expression is shown in
Equation (27).

TMTDI = 4∆L + 2∆wire + 2∆CD + 2∆XNOR + 2∆ack (27)

This expression yields the time it takes one pipeline stage to go through the two phases ϕ1 and ϕ2.
In NRZ protocols both of these phases transmit actual data, while in RZ protocols ϕ2 corresponds to the
spacer phase. Hence to make the protocols comparable this fact must be taken into account. We do this by
introducing a factor of 1

2 for the actual cycle time of the NRZ protocol. Equations (28) and (29) show the
resulting expressions.

TRZ
MTDI = 4∆L + 2∆wire + 2∆RZ

CD + 2∆XNOR + 2∆ack (28)

TNRZ
MTDI =

1
2
(4∆L + 2∆wire + 2∆NRZ

CD + 2∆XNOR + 2∆ack) = 2∆L + ∆wire + ∆NRZ
CD + ∆XNOR + ∆ack (29)

When Equation (28) is compared to the cycle time of the WCHB pipeline (Equation (26)), it can be
seen that the expressions are very similar. The only difference is the delay for the additional XNOR gate
(assuming ∆L ≈ ∆C). This reveals a fist small downside of the hybrid protocols because they must use the
MTDI pipeline.

Notice that in Equations (28) and (29) ∆CD has been replaced by variables denoting the actual delays
of CDs for the specific protocol. Section 5 discussed how an NRZ CD can be implemented using an RZ CD
and an appropriate wrapper circuit consisting of shadow latches and XOR gates to detect input transitions.
From the circuit in Figure 13 we can thus derive the following equation for the delay of NRZ CDs:

∆NRZ
CD = ∆TFF + ∆L + 2(∆XOR + ∆RZ

CD) (30)

Plugging this into Equation (29) yields:

TNRZ
MT = 3∆L + ∆wire + ∆TFF + 2(∆XOR + ∆RZ

CD) + ∆XNOR + ∆ack (31)

When this expression is now compared to Equation (28) (or Equation (26)), it can be seen that the
main difference is that the terms ∆wire and ∆ack appear without the factor 2. Depending on how large
these values are (compared to the sum of the other delays of the expression) this can of course have a large
impact on the overall performance gains that can be achieved using the NRZ protocol.

For a very detailed picture of the NRZ protocol one might also investigate the impact of the protocol
on the delay ∆wire. Even if the signal wires between two pipeline stages have the same geometrical
dimensions and the same driver strength is used, it makes a difference whether an RZ or NRZ protocol is
used. If neighboring wires of a bus switch in opposite directions capacitive crosstalk effects [24] can have a
negative impact on the delay. For the RZ and hybrid protocols such a situation can never occur since in
one protocol phase all transitioning wires must switch to the same value.

To calculate the cycle time of the hybrid protocols, we can basically take Equation (27) and plug in the
correct value for ∆CD. Hence in the following we will examine which factors contribute to the CD delay
and how to estimate it. We start off with the analysis of the CDs for constant-weight codes and then briefly
discuss Berger CDs as well.

From the general structure of the RZ CDs (see Figure 18) we can deduce that the delay ∆cw|RZ
CD can be

divided into the delay ∆Cm of the HG (i.e., the m-input C gate at the output) and the delay of the purely
combinational CN ∆CN . The latter delay is bounded by the depth of the of the CN, denoted by DCN (i.e.,

J. Low Power Electron. Appl. 2019, 9, 16 37 of 41

the maximum number of comparator cells an input signal has to pass through in order to reach the HG),
multiplied by the delay of a single comparator cell ∆CC, which amounts to roughly one gate delay.

∆cw|RZ
CD = DCN ∗ ∆CC + ∆Cm (32)

Table 10 lists the CN depths for the PSCWCs investigated in this paper. Note, however that for
asymmetrical CDs (like the one for the 3-of-6 code) the actual value of ∆CN is data dependent. Hence,
the actual selection of the code word set also plays a role. This is because for certain input vectors there are
paths through the CN that are shorter than its (worst-case) depth. For the PS 3-of-6 code an exhaustive
analysis of every critical path for every code word reveals that the average number of comparator cells an
input vector must pass through is actually only 3.5 comparators instead of 4. However, for simplicity’s
sake we only consider the worst-case path in our analysis.

For CDs for the SDS protocol the data dependency is an even bigger issue, because depending
on whether the all-zero or the special spacer is used two different paths through the CD are relevant.
Equation (33) shows how the average CD delay can be calculated. Recall that the variable p denotes the
percentage of cases in which the special spacer is used, which can either be estimated using Equation (18)
or be calculated exactly by considering the actual code word set. For the cases where the input of the CD
transitions from the all-zero spacer to a code word (or vice versa) the normal depth DCN must be used.
When the input of the CD switches from a code word to the SD spacer or vice versa, the second-level CD
must be considered, which increases the depth of the CN to DCN2 . However, in this case only the delay of
the d-input C gate in the HG is relevant. Finally, the delay ∆AND of the output AND gate of the HG must
be added, to arrive at the following equation:

∆cw|SDS
CD = (1− p) ∗ (DCN ∗ ∆CC + ∆Cm) + p ∗ (DCN2 ∗ ∆CC + ∆Cd) + ∆AND (33)

Table 10 shows the parameters for p and DCN2 extracted from our CD circuits. Please note that for
the case where d = 1, there is no second C gate in the HG (hence ∆C1 = 0). Furthermore, the second-level
CD only consists of an m-input OR gate for which we estimated 1 (for m = 3) and 2 (for 3 < m < 10)
comparator delays, respectively.

Table 10. Parameters for the delay estimations of m-of-n CDs for the RZ and SDS protocols.

Code DCN
DCN2 /p (d)

1 2 3

PS 3-of-6 4 5/0.50 – –
PS 4-of-8 4 6/0.24 6/0.76 –
PS 5-of-10 6 8/0.12 9/0.5 9/0.88
PS 6-of-12 6 8/0.05 10/0.29 10/0.71

Generally it can be concluded that ∆m-of-2m|SDS
CD |d=1 will only be marginally larger than ∆m-of-2m|RZ

CD ,
since the delay of an m-input OR gate (for the second-level 1-of-m CD) will certainly not exceed the
delay of an m-input C gate. If the delay of the OR gate is significantly lower it can even compensate for
∆AND. For higher values of d it strongly depends on whether the smaller C gate in the SD spacer path is
sufficiently faster than the m-input C gate in the regular path to make up for the increased CN delay DCN2 .

J. Low Power Electron. Appl. 2019, 9, 16 38 of 41

Because of a similar reason ∆m-of-2m|DS
CD is only marginally larger than ∆m-of-2m|RZ

CD . Both possible paths
to the output AND gate contain the same circuit elements, i.e., a CN with the same depth and an m-input
C gate. Hence the only difference in terms of delay is the output AND gate itself.

∆m-of-2m|DS
CD = ∆m-of-2m|RZ

CD + ∆AND (34)

The CDs for Berger code-based protocols are by their nature very asymmetric, which again hints on
some data dependent delay behavior. However, in most cases the overall depth of their CN is dominated
by the depth of the SN Tb used to determine the Hamming weight of the data part of the code words.
Equation (35) shows the CD delay for the RZ protocol. Table 11 lists the CN depths for the Berger codes
with 3 ≤ b ≤ 9 data bits.

∆B|RZ
CD = DCN ∗ ∆CC + ∆Cb (35)

Similar to ∆cw|SDS
CD , ∆B|UBS

CD can be defined as:

∆B|UBS
CD = (1− p) ∗ (DCN ∗ ∆CC + ∆Cb) + p ∗ (DCN2 ∗ ∆CC + ∆Cd) + ∆AND (36)

The variable p again denotes the percentage of cases where the unbalanced spacer can be used, and the
second-level CD is activated. The parameters DCN2 and p are listed in Table 11. Again, an argument can

be made that for d = 1 the delay of the CD is only marginally increased compared to ∆B|RZ
CD .

Table 11. Parameters for the delay estimations of Berger CDs for the RZ and UBS protocols.

Code DCN
DCN2 /p (d)

1 2 3

Berger (3,2) 4 5/0.50 – –
Berger (4,3) 4 6/0.38 8/0.65 –
Berger (5,3) 6 8/0.27 10/0.53 –
Berger (6,3) 6 8/0.18 10/0.44 –
Berger (7,3) 7 9/0.12 11/0.36 –
Berger (8,4) 7 9/0.07 12/0.29 13/0.48
Berger (9,4) 8 10/0.05 13/0.22 14/0.45

Recall that for the CD for the DS (and SDDS) protocol, the same CN as for the RZ CD is used.
The only difference is that the 2k − 1 outputs that would be pruned from the network in case of an RZ
CD, are merged using a C gate with 2k − 1 inputs. Depending on the spacer either this C gate or the usual
b-input C gate of the base circuit contributes to the critical path. Assuming equally distributed spacer-types
(all-zero and all-one) we arrive at the following equation.

∆B|DS
CD = DCN ∗ ∆CC +

∆Cb + ∆C2k−1

2
+ ∆AND (37)

Notice that in the case where b = 2k− 1 (i.e., in the case where Berger codes offer the best coding efficiency),
both C gates have the same number of inputs. In this case, the only difference to ∆B|RZ

CD is the delay of the
output AND gate. In all other cases we have that ∆Cb < ∆C2k−1

, which (depending on b) can significantly
worsen the delay of the CD.

J. Low Power Electron. Appl. 2019, 9, 16 39 of 41

Overall we can conclude from our analysis that the more (power) efficient encodings and protocols
do incur a performance penalty. We have, however, also seen that with a careful selection of the protocol
parameters this penalty can be made negligible

8. Conclusions

In this paper, we have tried to supply the designer of a DI communication channel with a systematic
approach for finding the most efficient solution for a given purpose. To this end we have made
contributions along several lines:

Observing that traditional DI codes are either very efficient with respect to completion detection
(like the constant-weight codes) or with respect to decoding (like systematic codes), but not both at the
same time, we have tried to approach a global optimization by careful composition of the DI code as a
constant-weight code that includes several systematic bits. More specifically, we have elaborated a method
for systematically deciding upon the number of systematic bits plus the generation of the non-systematic
bits required to make the code constant-weight. The degrees of freedom we use for optimization are the
mapping between data words and code words, as well as the selection of unused code words present in our
incomplete coding approach. We have presented guidelines for codes up to the 6-of-12 code, which covers
the practically relevant range.

We have proposed the use of multiple spacers in the 4-phase protocol, either to obtain a higher energy
efficiency (by saving transitions when going to the spacer and onward to the next data phase), or to encode
additional information through the specific choice of the spacer. The latter can be viewed as a blend of the
4-phase protocol with its relatively low implementation overhead and the 2-phase protocol with its high
coding and energy efficiency.

For the completion detection we have presented construction guidelines based on CNs. Our solution
not only surpasses related approaches in terms of area efficiency, it also avoids pitfalls with orphan
transitions sometimes found. Apart from CDs for constant-weight codes, which are immediately useful
for the presented PS codes, we also elaborate optimized solutions for Berger codes. Furthermore,
our completion detection approach also works for all the newly proposed protocols.

Building on all these contributions, we have explored the code space relevant for typical DI
communication channels and have identified the respective efforts for the diverse options and devised
highly optimized solutions with respect to code construction and implementation of encoders, decoders,
and CDs. Our comprehensive analysis results allow the designer of a DI channel to quickly check the
available options for a given problem and immediately compare the efforts implied by different alternatives,
as well as the attainable data throughput.

Error detection and error correction have not been covered in this paper. If these properties are an
issue, the concepts presented in [25,26] can be consulted additionally. In this context, it should also be
mentioned that the extra bit encoded by the DS protocol is very robust, which might be advantageous for
transmitting specifically sensitive information; for details see [8].

Considering that DI channels are very convenient for inter- and intra-chip communication between
function blocks, our hope is that this paper can thus provide the designer a useful reference for selecting
the appropriate coding scheme along with implementation for encoder, decoder, and CD, to ultimately
produce an efficient overall solution.

Author Contributions: Conceptualization, F.H.; methodology, F.H. and A.S.; validation, F.H. and A.S.; formal analysis,
F.H.; writing—original draft preparation, F.H. and A.S.; supervision, A.S.

Funding: The work presented in this paper is supported by the Austrian Science Fund (FWF) under project
number I3485-N31.

Conflicts of Interest: The authors declare no conflict of interest.

J. Low Power Electron. Appl. 2019, 9, 16 40 of 41

References

1. Chapiro, D.M. Globally-Asynchronous Locally-Synchronous Systems. Ph.D. Thesis, Stanford University,
Stanford, CA, USA, 1984.

2. Navaridas, J.; Furber, S.; Garside, J.; Jin, X.; Khan, M.; Lester, D.; Luján, M.; Miguel-Alonso, J.; Painkras, E.;
Patterson, C.; et al. SpiNNaker: Fault tolerance in a power- and area-constrained large-scale neuromimetic
architecture. Parallel Comput. 2013, 39, 693–708. [CrossRef]

3. Shi, Y.; Furber, S.; Garside, J.; Plana, L. Fault Tolerant Delay Insensitive Inter-chip Communication. In Proceedings
of the 15th IEEE Symposium on Asynchronous Circuits and Systems, Chapel Hill, NC, USA, 17–20 May 2009;
pp. 77–84.

4. Bainbridge, J.; Furber, S. Chain: A delay-insensitive chip area interconnect. IEEE Micro 2002, 22, 16–23. [CrossRef]
5. Verhoeff, T. Delay-insensitive codes—An overview. Distrib. Comput. 1988, 3, 1–8. [CrossRef]
6. Bainbridge, W.; Toms, W.B.; Edwards, D.; Furber, S. Delay-insensitive, point-to-point interconnect using m-of-n

codes. In Proceedings of the Ninth International Symposium on Asynchronous Circuits and Systems, Vancouver,
BC, Canada, 12–15 May 2003; pp. 132–140.

7. Huemer, F.; Steininger, A. Partially Systematic Constant-Weight Codes for Delay-Insensitive Communication.
In Proceedings of the 24th IEEE International Symposium on Asynchronous Circuits and Systems (ASYNC),
Vienna, Austria, 13–16 May 2018; pp. 17–25.

8. Huemer, F.; Steininger, A. Advanced Delay-Insensitive 4-Phase Protocols. In Proceedings of the Austrochip
Workshop on Microelectronics (Austrochip), Graz, Austria, 27 September 2018; pp. 50–55.

9. Piestrak, S.J. Membership test logic for delay-insensitive codes. In Proceedings of the Fourth
International Symposium on Advanced Research in Asynchronous Circuits and Systems, San Deigo, CA,
USA, 30 March–2 April 1998; pp. 194–204.

10. Huemer, F.; Schütz, M.; Steininger, A. Revisiting Sorting Network Based Completion Detection for 4 Phase
Delay Insensitive Codes. In Proceedings of the Austrian Workshop on Microelectronics, Graz, Vienna,
28 September 2015; pp. 3–8.

11. Cannizzaro, M.; Jiang, W.; Nowick, S. Practical completion detection for 2-of-N delay-insensitive codes.
In Proceedings of the IEEE International Conference on Computer Design (ICCD), Amsterdam, The Netherlands,
3–6 October 2010; pp. 151–158.

12. Sparsø, J. Asynchronous circuit design—A tutorial. In Principles of Asynchronous Circuit Design—A Systems
Perspective’; Kluwer Academic Publishers: Boston, MA, USA, 2001; Chapters 1–8, pp. 1–152.

13. McGee, P.; Agyekum, M.; Mohamed, M.; Nowick, S. A Level-Encoded Transition Signaling Protocol for
High-Throughput Asynchronous Global Communication. In Proceedings of the 14th IEEE International
Symposium on Asynchronous Circuits and Systems, Newcastle upon Tyne, UK, 7–10 April 2008; pp. 116–127.

14. Berger, J. A Note on Error Detection Codes for Asymmetric Channels. Inf. Control 1961, 4, 68–73. [CrossRef]
15. Knuth, D.E. Efficient Balanced Codes. IEEE Trans. Inf. Theor. 1986, 32, 51–53. [CrossRef]
16. Immink, K.A.S.; Weber, J.H. Very Efficient Balanced Codes. IEEE J. Sel. Areas Commun. 2010, 28, 188–192.

[CrossRef]
17. Manohar, R.; Moses, Y. Analyzing Isochronic Forks with Potential Causality. In Proceedings of the 2015 21st

IEEE International Symposium on Asynchronous Circuits and Systems, Mountain View, CA, USA, 4–6 May 2015;
pp. 69–76.

18. Knuth, D.E. The Art of Computer Programming, 2nd ed.; Volume 3: Sorting and Searching; Addison Wesley
Longman Publishing Co., Inc.: Redwood City, CA, USA, 1998.

19. Alekseev, V.E. Sorting algorithms with minimum memory. Cybernetics 1969, 5, 642–648. [CrossRef]
20. Beerel, P.A.; Ozdag, R.O.; Ferretti, M. A Designer’s Guide to Asynchronous VLSI; Cambridge University Press:

Cambridge, MA, USA, 2010.
21. Singh, M.; Nowick, S.M. MOUSETRAP: High-Speed Transition-Signaling Asynchronous Pipelines. IEEE Trans.

Very Large Scale Integr. Syst. 2007, 15, 684–698. [CrossRef]
22. Workcraft Homepage. Available online: http://www.workcraft.org (accessed on 6 April 2019).

http://dx.doi.org/10.1016/j.parco.2013.09.001
http://dx.doi.org/10.1109/MM.2002.1044296
http://dx.doi.org/10.1007/BF01788562
http://dx.doi.org/10.1016/S0019-9958(61)80037-5
http://dx.doi.org/10.1109/TIT.1986.1057136
http://dx.doi.org/10.1109/JSAC.2010.100207
http://dx.doi.org/10.1007/BF01267888
http://dx.doi.org/10.1109/TVLSI.2007.898732
http://www.workcraft.org

J. Low Power Electron. Appl. 2019, 9, 16 41 of 41

23. Shams, M.; Ebergen, J.C.; Elmasry, M.I. Modeling and comparing CMOS implementations of the C-element.
IEEE Trans. Very Large Scale Integr. Syst. 1998, 6, 563–567. [CrossRef]

24. Pasricha, S.; Dutt, N. On-Chip Communication Architectures: System on Chip Interconnect; Morgan Kaufmann
Publishers Inc.: San Francisco, CA, USA, 2008.

25. Lechner, J.; Steininger, A.; Huemer, F. Methods for Analysing and Improving the Fault Resilience of
Delay-Insensitive Codes. In Proceedings of the 33rd IEEE International Conference on Computer Design
(ICCD), New York, NY, USA, 18–21 October 2015; pp. 519–526.

26. Huemer, F.; Lechner, J.; Steininger, A. A new Coding Scheme for Fault-Tolerant 4-phase Delay-Insensitive Codes.
In Proceedings of the IEEE 34th International Conference on Computer Design (ICCD), Scottsdale, AZ, USA,
2–5 October 2016; pp. 392–395.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution (CC
BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/92.736128
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Asynchronous Delay-Insensitive Communication
	Delay-Insensitive Protocols
	Delay-Insensitive Codes

	Partially Systematic Constant-Weight Codes
	Formal Definition
	Encoding and Decoding

	Hybrid Protocols
	Data Spacer Protocol
	Short Distance Spacer Protocol (m-of-n Codes)
	Short Distance Dual Spacer Protocol (Berger Codes)
	Unbalanced Spacer Protocol (Berger Codes)

	Completion Detection
	m-of-n Codes (RZ)
	Berger Codes (RZ)
	Hybrid Protocols

	Case Study
	Pipeline Design
	RZ Link
	SDS/UBS/SDDS Link
	DS Link
	NRZ Link

	Results
	Area Analysis
	Performance/Delay Analysis

	Conclusions
	References

