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Abstract: The global mining industry generates several billion tons of waste every year. Much of it is
stored in liquid form, known as tailings, in large impoundments. Recent dam failures at tailing ponds
with catastrophic outcomes have raised public concern, such that industry initiatives and investors are
beginning to address the problem. So far, a lack of publicly available data makes an independent and
comprehensive risk assessment challenging. We introduce a simple and transparent hazard indicator
built from environmental proxy variables and screen a global sample of 112 copper mines for natural
hazards regarding tailings dams. In a second step, material footprints of copper for the European
Union and five major economies are estimated and compared using a Multi-Regional Input–Output
model, shedding light on the regions of origin. Finally, hazard scores are linked to regional copper
footprints to identify hotspots in supply chains of final consumption. The most hazardous mines are
located in Chile and Peru including some of the world’s largest copper producers. China and the US
have the largest copper ore footprints and per capita values in the US were 25 times larger than in
India. The United States’ and European footprints are satisfied by domestic extraction to about 66
and 40 percent respectively. Copper from Poland contributes around 19 and 28 percent to supply
chains of German and European final demand respectively and, as a consequence, Poland constitutes
the main hazard hotspot for Europe’s copper supply chain.

Keywords: MRIO modelling; tailings dam failures; hazard score; copper supply chain modelling;
material footprint; shared responsibility models

1. Introduction
1.1. The Ambiguous Role of Mining in Modern Societies

Global extraction and processing of natural resources has more than tripled in the
past fifty years, accounting for around 50 percent of greenhouse gas emissions as well
as 90 percent of water stress and biodiversity loss [1]. As part of this global trend of
increased resource use, metal ore extraction has doubled over the past two decades [1,2].
Future demand scenarios project continuous growth of mineral and metal extraction,
mainly caused by urbanization and the transition towards renewable energy systems [1,3].
However, metal mining has severe impacts on ecosystems especially with regard to land
use, waste production, water quality and species richness. In 2019, 80% of global metal
extraction occurred in the world’s most species-rich biomes while 90% of mining sites were
in areas of relative water scarcity [2]. In addition, mining produces ever-growing quantities
of waste as average ore grades continue to decline globally, resulting in greater ore turnover
per ton of metal [4–7].

Many mining processes require large amounts of water to separate the minerals from
the rock. Together with fine-grained solid residues, they form a toxic slurry known as
tailings, which are stored behind embankment dams built from loose material [8,9]. Dam
failures at such tailings storage facilities (TSFs) constitute the biggest environmental thread
related to mining [9], often resulting in serious disasters like the Mount Polley spill in
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Canada in 2014 or the Brumadinho dam breach of 2019, where a mudflow claimed more
than 259 lives [10]. Dam failures are usually not single-cause events, but rather caused
by a complex array of factors including poor risk management, lack of regulation and
environmental hazards such as heavy rainfall and earthquakes [8,11,12].

1.2. Assessing, Managing, and Governing Mining-Related Risks

Communities and ecosystems downstream of TSFs are the ultimate risk-takers of a
mining project as numerous spills have shown. Despite industry initiatives to improve
tailings management [13–15] these risks are so far neither adequately managed nor transpar-
ently disclosed to the public by a majority of mining companies, leaving host communities
with a gaping lack of agency [16]. Mitigating tailings risks to the degree of zero catastrophic
incidents is considered pivotal, achievable but expensive [9,13,17]. Future increases in
demand and price rises of metals are likely to incentivize mining of previously uneconomic
ore bodies at the cost of dealing with increasingly complex risks [7,18]. Therefore, mine
operators can hardly be trusted to effectively mitigate all risks linked to their projects on
a voluntary basis. Further, some economies such as Chile heavily rely on metal exports,
making more stringent and potentially prohibitive legislation less likely. For these reasons,
a holistic governance scheme is needed.

The World Resource Institute developed a framework for mapping the environmental
and social risks of mining [19]. It captures waste management, water quantity and quality
as well as habitat destruction as the key environmental challenges. ESG—an acronym
for environmental, social and governance—is a concept typically used by investors to
evaluate corporate behavior beyond generic financial performance measures. While mining
companies have already integrated ESG assessment into investment decisions concerning
the feasibility of new projects, the concept has only recently gained traction in the evaluation
of existing tailings storage facilities [16,20,21]. So far, risk assessment of TSFs has widely
been regarded as a standalone engineering problem, directly related to the geotechnical
stability of dams [16]. To broaden this view, Owen et al. [16] proposed a set of ESG
indicators across eight categories to identify TSFs with high ESG risk. Table A4 provides
a literature overview of other recent contributions to quantitative ESG risk assessment
of TSFs.

1.3. Geopolitical Dimension of Mining-Related Risks

The theory of ecologically unequal exchange posits that industrialized nations appro-
priate natural resources and generate monetary surplus through asymmetric international
trade [22]. The largest profits are generally yielded in high-income countries, at later stages
of the value chain where actors rely on the availability of cheap metals and metal prod-
ucts [23]. Simultaneously, the financial impacts on ecosystem services caused by mining
are estimated at 5.4 billion USD per year [24]. These environmental costs occurring at
early stages of the supply chain are usually externalized, obscuring them to profiteers
and consumers.

Environmental footprints attribute impacts on the environment to economic activities.
Quantifying these impacts on the level of countries, industries, processes, materials, and
consumer products can help to inform and communicate decisions about eco-efficient
and socially responsible production and consumption [25,26]. First applied to carbon
emissions, the idea has been expanded to other impact categories such as water, resource
and land use [27]. Traditionally, production-based footprints account for impacts within
geographic boundaries while consumption-based models account for international trade,
allocating burdens to the final demand in that country where a product or service is
consumed [28]. This widens the system boundaries to include all upstream impacts in the
global industrial network.

It is well-established that consumption patterns in industrialized societies are a major
driver of climate change and the overall degradation of the biosphere. Improvements in
spatial resolution of footprints and transparency in supply chains can arguably trigger the
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adaption of higher social and environmental standards in producing regions [29,30]. To
this end, Moran and Kanemoto [31] and Green et al. [32] connect biodiversity threats to
final consumption using Multi-Regional Input–Output (MRIO) modelling and biodiversity
hotspot maps. In the area of metals, Tisserant and Pauliuk [33] use a hybrid MRIO model
to trace cobalt through global supply chains and assess its criticality under future demand
scenarios. Moran et al. [34] combine MRIO with Life Cycle Assessment to quantify the
social impact of coltan using consumption-based footprints.

Likewise, visualizing tailings risk by means of consumption footprints can support
arguments for shared producer and consumer responsibility. Ultimately, this could add
a new angle to the discussion about liability for tailings pond disasters and the risks
associated with mining in general. Quick action and fair distribution of mitigation costs
would therefore not only respect the lives and livelihoods of host communities but possibly
even facilitate a more efficient handling of resources in the industrialized world through
price signals.

1.4. Research Gap, Goal and Scope

Tailings governance with the tools introduced above requires a scientific risk as-
sessment as a quantitative basis. Risk is commonly defined as “the combination of the
probability of an event and its negative consequences” [35]. The term “hazard”, on the
other hand, is mostly used to describe a potential for harm [36].

Actuarial risk assessment of TSFs requires mine-specific information, which is cur-
rently not disclosed to the public. While certainly useful for initial screening, global-scale,
multi-dimensional risk indicators may lose relevance when eventually replaced with pre-
cise, project-specific data. Therefore, this study focusses on natural hazards, as they can
be measured more robustly than governance or vulnerability indicators. We aim to pro-
vide environmental baseline data which are relevant for risk assessments but usually
poorly incorporated.

The focus of this work was placed on tailings hazard from copper mines for two main
reasons: copper mining generates 46 percent of the global volume of tailings, followed
by gold (21%) and iron (9%) [37]. Demand for copper continues to grow globally and,
while resource endowment is abundant, environmental, social and economic factors will
determine future supply [6,7,18].

Although well established in other fields, a consumer perspective is so far missing
from tailings risk analysis. No research that estimates risk or hazard footprints for copper
sourced from mines with tailings storage facilities is known to the authors. Thus, adding a
footprint perspective to the existing tailings risk literature could provide a scientific basis
for a discussion about sharing the liability and financial burden of risk mitigation that goes
beyond the sphere of operators, investors, and regulators. However, detailed footprints
with a spatial resolution at the level of individual mines require fine-grained, sub-national
economic data including production, trade, customs and transportation [29]. Here, spatially
coarse but readily available Multi-Regional Input-Output data were statistically related
to mine-level production volumes as a first approach. In summary, our methodology was
designed to answer the following research questions:

RQ1: How can natural hazards related to tailings dam failures be quantified in a robust
and transparent manner using publicly available, global datasets?
RQ2: How can these hazards be integrated into a single mine-specific indicator?
RQ3: Where in the world are copper-related tailings hazards located, both at the mine and
at the regional level?
RQ4: Where are the hazard hotspots for copper ore entering major supply chains of final
consumption?
RQ5: How can this knowledge facilitate sound tailings management as well as fair distri-
bution of risk mitigation costs?
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2. Methods and Data

Section 2.1 describes which environmental variables characterizing natural hazards
were used (RQ1). Their selection was based on a literature survey of tailings dam failure
causes [11,12,38] and previous work concerning quantitative ESG assessment [16,18,39].
Mining data and processing thereof are described in Section 2.2. A composite hazard
score was built, aggregated and mapped to answer RQ2 and RQ3. Natural hazards were
allocated to copper production and spatially overlaid with TSF coordinates (Section 2.3).
Then, consumption-based copper ore footprints were estimated using an MRIO model
and supply chain hotspots were identified by weighting ore extraction with regionally
aggregated hazard scores (RQ4, Section 2.4). Finally, the effects of different modelling
choices and regional differences were examined (Section 2.5). RQ5 was approached in the
discussion part. Figure 1 gives an overview of the workflow and data sources.

Figure 1. Methodological framework and workflow including data sources [40–49], processing steps
and (intermediate) results. EE MRIO data is shorthand for Environmentally Extended Multi Regional
Input-Output data.

2.1. Environmental Variables and Composite Indicator Design

Lèbre et al. [39] mapped tailings hazards using a composite score containing seismic
activity, terrain ruggedness, precipitation, wind speed and cyclone intensity, all of which
have been acknowledged as external factors contributing to tailings dam failures [11,12,50].
Their work served as a basis for this study. Unusual rainfall causing overtopping of TSFs has
been identified as the most relevant environmental cause of tailings dam failures [11,12].
Maximum precipitation values from a global time series between the years 2000 and
2018 [46,47] were extracted and used as a proxy.

Seismic activity has been recognized as the second most important environmental
cause of tailings dam failures [12]. Here, peak ground acceleration (PGA) values from the
global seismic hazard potential map [44] were used. They denote the anticipated maximum
ground motion during an earthquake, based on the assessment of previous earthquakes.

High topographic variation contributes to slope instability, erosion and difficult foun-
dation conditions, posing a challenge to tailings dam design [16]. Amatulli et al. [45] used
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remote sensing data to develop a Terrain Ruggedness Index (TRI), denoting the absolute
differences in elevation between a focal cell and its eight surrounding cells. The TRI is
provided as summary statistics for spatial grains between 1 km and 100 km. Median values
for 10 km grains were chosen.

Tropical cyclones have also contributed to tailings dam failures in the past [39]. Thus,
average annual sums of wind speed, based on measurements from official cyclone warning
centers and local meteorological agencies [48] entered our model.

Repeated freeze-thaw cycles were experimentally observed to decay the mechanical
strength of tailings dams [51] and they have repeatedly been reported as actual causes of
tailings dam failures in cold areas [12,52]. Kim et al. [49] used satellite remote sensing to
infer information on the earth’s surface freeze-thaw state dynamics. We used their data
between the years 2000 and 2017 at a daily resolution for counting the number of transitions
between frozen and thawed states. The raw freeze-thaw indicator is the sum of transitions
for every grid cell.

TSF size entered the composite indicator as the only man-made hazard. For lack
of data on storage volumes, surface area was used as a proxy. Storage volume is well
correlated with tailings outflow–runout, on average, amounts to one fifth of the stored
tailings volume [11,53]. Concerning likelihood, failures were found to predominantly
occur in small to medium-sized TSFs [11,12,38], which suggests that the probability of
this hazard to materialize decreases with the size of a TSF. This relationship between
probability and hazard was modelled in a first approximation by log-transforming TSF
area, which also conforms with the approach used by Kovacs et al. [54]. This way, small
TSFs have a relatively high influence compared to large TSFs while maintaining a monotonic
relationship between size and hazard.

Prior to aggregation, all hazard variables were normalized to a common scale between
zero and one, by replacing each value with its percentile rank. Normalized variables are
non-dimensional quantities and are henceforth called ‘sub-indicators’. Applying a generic
formula for additive aggregation returns the weighted sum of the six sub-indicators v̂ as a
measure of mining hazard MH:

MH = ∑6
j=1 wj v̂j v̂, w ∈ [0, 1] (1)

Bearing in mind the purpose of the indicator as a baseline model, equal weights w
were assumed. More sophisticated methods such as participatory weighting require public
opinion polls or involvement of experts. Thus, judgement about the relative importance
of sub-indicators at a given TSF location was outside the scope of this study and seemed
more useful at a later stage of risk assessment.

2.2. Mining Data Selection and Processing

Open data were generally preferred over commercial data for reasons of transparency
and reproducibility. To this end, supporting data from recent academic literature on
tailings and copper were screened. Werner et al. [40] list coordinates, TSF surface areas,
and commodity type as well as main- and by-product volumes for several commodities
including 109 entries for copper mines from 23 countries. Their dataset fulfilled all relevant
selection criteria and was used as a basis for our analysis.

Data gaps for ore production were filled with figures from Mining Data Online [41]
where possible. The remaining gaps were closed using company reports for the year 2015
for consistency with the original data. In twelve cases, where production volumes were not
directly reported, they were estimated using ore head grades and recovery rates, nominal
production capacities or by extrapolating data from previous years.

Each country’s copper output was compared to the summary figures reported by
U.S. Geological Survey [42] and World Mining Data [55]. This was done to ensure that an
adequate share of national copper production was covered in the dataset. For countries
where only a small fraction of total output was represented, further mines were added after
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searching the internet and company reports for relevant projects. Tables A3 and A4 show
the outputs of countries and regions that were covered in the dataset after completing this
process. Data for China were scarce, covering only six percent of national production, while
data for mines in Russia could not be found at all. Both countries were therefore omitted
despite being major copper producers. The above treatment yielded a final dataset with
n = 112 mines.

Data gaps for TSF surface area were filled by visual inspection and delineation using
Google Earth’s measurement tool on images from August 2021 (Figure A3).

2.3. Spatial Overlay and Allocation Model

All environmental variables were obtained as raster data with different granularity.
Spatial reference was provided as geographic coordinates in the World Geodetic System
84 (WGS84), where each point denoted the center of a grid cell. For spatial overlay with
TSF locations, they were rounded to the first decimal place, resulting duplicate values were
averaged and datasets were merged on their coordinates. An accuracy of one decimal
place corresponds to a spatial resolution of 11.1 km for both latitude and longitude at
the equator [56]. The resolution in longitude is multiplied with the cosine of latitude and
hence increases for higher latitudes. Heavy rainfall and earthquakes tend to act on scales
of several kilometers while grid cells measured 1 km for rainfall and 10 km for seismicity.
Therefore, this accuracy was considered sufficient, bearing in mind both data granularity
and the nature of the examined phenomena.

Many copper deposits contain significant amounts of gold, silver, zinc, molybdenum
and other by-products [41]. Gold processing, for example, also generates wet tailings
which were assumed to equally contribute to TSF size as a hazard component. To avoid
a systematic misattribution of hazard to copper supply chains, an allocation model was
used. Physical by-product volumes are often several orders of magnitude smaller than
those of copper, while their economic value can be four orders of magnitude greater in
the case of gold. For this reason, economic allocation was chosen over physical allocation.
However, revenues from copper and by-products were found to be mostly reported as
summary data for entire company portfolios, unlike physical production volumes, which
were often reported on the mine level. Therefore, annual production of copper and by-
products was translated into monetary units using global average commodity prices from
2015 [42]. Hazard scores were then attributed to copper according to its share in a mine’s
approximated total revenue Ri:

MHCu,i =
(

∑6
j=1 wjv̂j

)
RCu,i

Ri

i = 1, . . . , N
v̂ ∈ [0, 1]

w1 = w2 = . . . = 1

(2)

where RCu is the estimated revenue generated from copper production. The approximated
revenue of a mine Ri is the sum of known copper and relevant by-product output Pc (in-
cluding gold, silver, molybdenum, cobalt, nickel and zinc) multiplied with their respective
average prices pc as stated in U.S. Geological Survey [42]:

Ri = ∑7
c=1 Pc pc i = 1, . . . , N (3)

2.4. Copper Ore Footprints and Supply Chain Hotspots

An Input-Output framework is well suited and often used for large scale environmen-
tal footprints [25,26]. It describes the distribution of products in an industry as a set of
linear equations which can be used to calculate the entire industrial output needed to satisfy
a given final demand. In a multi-regional Input-Output (MRIO) table, national inventories
are complemented with bilateral trade data, so it contains an aggregated description of the
global economy [25]. The underlying Leontief inverse, also known as the total requirements
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matrix, is derived from a series expansion of the direct requirements matrix containing the
technological coefficients or ‘recipes’ of production:

L = (I−A)−1 = I + A + A2 + A3 + . . . (4)

where I is the identity matrix and A is the direct requirements matrix so every power of A
represents one tier in the supply chain. L has the dimensions industry by region × product by
region. This can be thought of as a multi-index, with each entry denoting an industry or
product in a specific region, for example the mining industry in the United States.

Environmental extensions link so-called stressors to the industrial output of a certain
industry in a specific region. A well-known environmental stressor is the emission of carbon
dioxide into the air. Another such stressor is the domestic extraction of copper ores. Sector-
specific, consumption-based, direct and indirect emissions are generally computed as:

b = SL̂y (5)

where S is the matrix of stressor coefficients with the dimensions environmental stressor
× industry by region, L is the Leontief inverse and y the final demand vector of a given
region of consumption. The hat symbolizes diagonalization of the product of L and y which
is needed to suppress summation over the industry by region dimension of S and L. This
way, ore extraction occurring anywhere in the world, driven by direct and indirect copper
imports in a given country, was calculated. By linking regional extraction volumes with the
respective hazard scores, RQ4, which asks how much tailings-related hazards propagate
through a country’s supply chains, could be addressed. An MRIO model does not allow
tracing of copper ores back to individual mines, only to the resolution of countries or
regions. Still, the chance that copper ore from a specific region was extracted in a particular
mine is directly proportional to this mine’s share in the region’s total copper output under
the assumption that ore grades and recovery rates are similar within a region. A mine’s
hazard score was therefore weighted with its share in copper output upon aggregating
hazard to the regional level:

RHCu =
n

∑
i=1

MHCu,i
PCu,i

∑n
i=1 PCu,i

(6)

where PCu,i stands for the physical production of copper in mine i, n is the number of mines
in a given region and MH, RH ∈ [0,6]. The index ‘Cu’ denotes the share of a mine’s total
hazard which can be allocated to copper production, as outlined in Section 2.3.

EXIOBASE version 3.8.1 [43] was chosen as an MRIO database for its detailed data on
resource extraction, featuring 200 industrial sectors and product groups from 49 regions.
Sectors and regions were aggregated into seven summary sectors and eleven regions to
facilitate computation as well as meaningful interpretation and visualization of results.
Sector and regional aggregation are documented in the Supplementary Materials.

The domestic extraction of copper ores by region was then calculated according to
Equation (5), first for the European Union’s final demand, then for the final demand of
China, the US, Japan, Germany and India as the world’s five largest economies. The
resulting consumption-based copper ore footprints include all copper ores embodied in
their supply chains. Finally, hazard hotspots were calculated by weighting the copper ore
footprint in each region of ore extraction with its respective regional hazard score:

HFPCu,i =
OFPi

∑m
i=1 OFPi

RHCu,i (7)

where HFP is the hazard-weighted footprint of a specific region, i.e., a hotspot or ‘coldspot’
in a supply chain, i is the region of ore extraction, m the number of regions of ore extraction
in the supply chain of a country, OFP is the demand driven copper ore footprint and RH
the regional hazard score.
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2.5. Robustness and Uncertainty

Aggregation of sub-indicators can be carried out using additive, geometric or non-
compensatory aggregation methods [57,58]. For additive and geometric aggregation,
sub-indicators need to fulfil two necessary criteria: first, they are treated as mutually
preferentially independent, meaning that they contribute linearly to the composite indicator
without interdependencies. Correlation analysis was done in order to check this assumption.
Second, aggregation weights are substitution rates rather than coefficients of importance,
which means that low scores in one sub-indicator can be at least partially offset by high
scores from another [57]. Here, different natural hazards for an individual mine were
assumed to both accumulate linearly and substitute for each other. They were added with
equal weights in accordance with similar work [54,57,59].

Three different normalization techniques and their effects on both regional scores
and relative influence of sub-indicators were compared. Min–Max normalization does not
change the shape of the original distribution but it is sensitive to outliers, unlike ranking,
which is unaffected by outliers but changes the shape of the original distribution and
relative distances between values [58]. In this study, environmental variables could be
ranked in two different ways: before and after spatial overlay with TSF data. The first
variant computes percentile ranks on the full environmental dataset and then assigns
these values to TSF locations. This way, statements about the relative position of a value
within the absolute range of all measured values on earth can be made. The second
method computes percentile ranks on a subset of the full data, after spatial overlay with
TSF locations. Thus, it makes a statement about natural hazards relative to all other TSF
locations in the dataset. While neither method allows ad-hoc conclusions about whether a
mine is objectively hazardous, pre-overlay ranking contains information about the actual
magnitude of a value while post-overlay ranking merely allows for sorting of values within
the dataset.

Figure A2 shows histograms of all variables under different ranking and normalization
schemes.

3. Results
3.1. Mine-Level Hazard Scores

Hazard scores for the twenty most hazardous mines in the dataset and corresponding
raw values of environmental variables are shown in Table 1. Mines from Peru and Chile
scored highest in overall hazard: seventeen of the twenty worst-scoring projects are located
either in Peru (10) or in Chile (7).

In the full dataset (Table A2), eight mines had a TRI value greater than 45, which is
the high-risk threshold defined by Owen et al. [16] while seventeen mines passed their
threshold of 3.2 m

s2 for PGA and six mines reached both. Some of the most productive
mines were also among the most hazardous, including Escondida, El Teniente, Los Bronces,
Collahuasi, Los Pelambres and Las Bambas.

3.2. Regional Hazard Scores

Mine-level results from the previous section were aggregated and output-weighted
according to Equation (6). The resulting hazard scores varied between regions (Figure 2).
South America and Mexico had the highest average hazard, followed by the United States.
Copper mines in Australia scored distinctly lower. The Rest of Asia and Pacific region
also scored comparatively low, but data coverage was poor with six mines, covering only
40 percent of the region’s total output (Table A4). Canada, the EU, the Rest of Africa region
and India all scored mid-table between 2.23 and 2.39.
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Table 1. Twenty most hazardous mines in terms of overall hazard scores, as well as their copper-
related hazard, annual copper production, and raw values for all environmental variables used. Peak
ground acceleration (PGA) values are in m

s2 , maximum precipitation (PRE) is in mm, cyclone wind
speed (CYC) in km

h and TSF area in km2. Terrain Ruggedness Index (TRI), the number of freeze-thaw
cycles (FT) and hazard scores are dimensionless quantities. The full analysis with n = 112 mines is
displayed in Table A2.

Mine Country Region Copper
Production [kt]

Overall
Hazard

Copper-
Related
Hazard

PGA TRI PRE CYC FT TSF
Area

El Teniente Chile RoAm 471.16 4.73 4.41 3.47 47.69 499.81 0.00 2076.0 17.0
Toromocho Peru RoAm 182.29 4.31 4.31 3.85 49.06 1700.15 0.00 2164.0 2.3
Antamina Peru RoAm 107.70 4.29 3.25 3.23 42.81 699.67 0.00 1359.6 5.1
Las Bambas Peru RoAm 453.75 4.19 3.78 2.24 40.75 412.31 0.00 2848.5 2.6
Padcal Philippines RoAP 17.24 4.16 4.16 3.15 71.75 807.06 329.00 0.0 1.6
Bingham Canyon USA US 92.02 4.16 2.65 1.90 34.31 133.70 0.00 1643.1 31.8
Constancia Peru RoAm 105.90 4.15 3.81 2.17 30.59 439.26 0.00 3396.0 2.5
Yauli Peru RoAm 2.50 4.15 0.12 3.68 45.69 1686.55 0.00 2260.0 1.1
Andina Chile RoAm 224.26 4.12 3.85 4.26 4.25 298.15 0.00 1537.8 19.2
Marcapunta Norte Peru RoAm 32.06 4.02 3.50 3.34 5.75 1166.21 0.00 2347.7 2.7
El Soldado Chile RoAm 36.00 3.97 3.97 4.67 65.88 284.73 0.00 1537.8 1.8
Tintaya/Antapaccay Peru RoAm 202.10 3.96 3.45 2.14 13.88 379.20 0.00 3350.0 2.3
Morococha Peru RoAm 8.16 3.88 1.59 3.76 41.19 1637.93 0.00 2164.0 0.1
Los Bronces Chile RoAm 401.70 3.88 3.88 3.71 90.31 231.41 0.00 2228.0 1.0
Toquepala Peru RoAm 143.00 3.83 3.83 2.92 40.75 225.44 0.00 516.5 14.5
Cerro Corona Peru RoAm 30.04 3.82 1.76 3.32 39.75 545.71 0.00 1022.0 1.0
Escondida Chile RoAm 1226.50 3.70 3.61 3.00 12.13 5.82 0.00 2594.4 50.7
Los Pelambres Chile RoAm 363.20 3.67 3.33 3.66 57.19 179.92 0.00 2093.2 0.5
Collahuasi Chile RoAm 433.10 3.67 3.52 2.44 25.56 95.06 0.00 1508.7 14.4
Highland Valley Canada CA 151.40 3.57 3.31 0.85 15.61 90.13 0.00 1211.0 21.6

Figure 2. Regional hazard scores RHCu calculated according to Equation (6) and aggregated to the
EXIOBASE regional classification. A theoretical maximum score of 6 would be possible if all mines
in a region had scored the maximum value of 1 in all six sub-indicators while not producing any
by-products. Note that a production perspective based on mining output, not on consumption
footprints, is depicted here.

3.3. EU Footprint and Supply Chain Hotspots

The European Union’s copper ore footprint was computed according to Equation (5) and
amounts to 151 Mt or 164 Mt depending on the aggregation scheme used (c.f. Discussion);
38.5 percent of embodied copper ores are sourced domestically and another 39.6 percent
come from Chile, Peru, the US or the Rest of Asia and Pacific Region (Figure 3).
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Figure 3. Consumption-based copper ore footprint of the EU27 by region of ore extraction. The
total amount was between 151 Mt and 164 Mt in 2015. Values here are purely mass-based and not
hazard-weighted. Contributions of less than one percent are not shown for better readability. ISO
ALPHA-2 country codes and EXIOBASE acronyms: RoAm (Rest of America), US (United States),
RoAP (Rest of Asia and Pacific), BR (Brazil), RoAf (Rest of Africa), CN (China), CA (Canada), AU
(Australia), ID (India), RU (Russia).

Weighting the ore footprint with regional hazard scores according to Equation (7),
reveals hotspots of tailings-related hazard in Europe’s supply chain (Figure 4). Here, a
different picture to the one presented in Figure 2 emerges: copper-related hazard is mainly
‘imported’ from within the EU. Other relevant hotspots are South America and the United
States, while almost no copper from Mexico, a high-hazard region, is embodied in European
supply chains.

Figure 4. Copper hazard hotspots in the supply chains of European consumption according to
Equation (7). A theoretical maximum value of six would be reached if all copper embodied in
Europe’s supply chain came from one or multiple high-hazard regions with RH = 6. Individual
hazard hotspots add up to a total of 2.28.

3.4. Footprint Disaggregation and Comparison

For comparison with the European Union, copper ore footprints for the world’s five
largest economies were calculated by inserting the respective final demand vectors into
Equation (5). Here, the resolution of the MRIO table was set to EU country level to get
a more detailed picture (c.f. aggregation table in Supplementary Materials). From this
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resulted a new table with 25 regions and 16 product groups. The consumption-based
footprints are depicted in Figure A1. In 2015, nearly two thirds of copper in US supply
chains were supplied by domestic extraction, while India and Japan have little or no
national copper resources to extract.

Chile and Peru (RoAm) have substantial shares in every supply chain, between
10.5 percent (US) and 37.2 percent (India). Copper extraction in Poland contributes more
than 28 percent to Europe’s supply chain and 18 percent to Germany’s. The Rest of Africa
region, including the Democratic Republic of Congo and Zambia as major copper produc-
ers, contributes little, usually around four percent, except to the supply chains of India
(9 percent).

Total global copper ore extraction in 2015 was around 1.5 Gt, 58 percent of which
is embodied in supply chains for the final demand of the world’s five largest economies
(China, USA, India, Japan and Germany) (Table 2).

Table 2. Consumption-based copper ore footprints as annual extraction [Mt] and per capita footprints
of the world’s five largest economies and the remaining EU27 states. The reference year is 2015.

Economy (Final Consumption) Copper Ore Footprint
Total [Mt] Per Capita [kg]

China 529.5 386
USA 254.9 795
India 41.9 32
Japan 32.6 256
Germany 28.3 346
Other EU27 122.7 338

Sum 1010
Mean 359

If the remaining EU27 countries are included, two thirds of the world’s copper extrac-
tion can be attributed to these six economic entities. To put this number in perspective,
these countries also represent nearly half of the world’s population. The annual per capita
copper ore footprint was highest in the US with 790 kg, more than twice the values of China
and Europe. India’s per capita footprint was around one order of magnitude lower than
any of the other national economies under comparison.

An example may illustrate how the findings presented in this chapter can be used to
approximately trace ores and hazard to individual mines with little additional information:
according to EXIOBASE, about 151 Mt of copper ores were extracted globally in 2015 to
satisfy final demand in the European Union, including 28.3 Mt for final demand in Germany
(Table 2). About 18.5 percent of the German and 28.4 percent of the remaining EU’s copper
ore footprint were sourced in Poland (Figure A1). This amounts to 5.2 Mt of ores for
German final demand and 34.7 Mt for the remaining EU. These ores are most likely mined
from the Legnica-Glogów copper belt in southwestern Poland where KGHM, Poland’s
biggest mining company, operates several large projects [60]. More precisely, 12.7 Mt of ore
at a grade of 1.7 percent were extracted at Rudna, 12.4 Mt at 1.7 percent from Polcowice-
Sieroszowice and 8.1 Mt at 0.9 percent from Lubin [60]. This yields a theoretical copper
output of 499 kt for all three mines, which is roughly in line with the total amount of 426 kt
reported by World Mining Data [55], considering recovery rates and losses. The remaining
6.8 Mt of Polish copper ores in Europe’s footprint could either be due to uncertainties in
the MRIO table or contributed by other mines if losses at Rudna, Lubin and Polcowice-
Sieroszowice were high. Satellite images from Google Earth show that waste from these
three facilities is stored at Zelazny Most, Europe’s largest tailings reservoir. Since Poland
contributes little to supply chains of other major economies (Figure A1), responsibility
for Zelazny Most can be attributed to European countries, both from a producer’s and
from a consumer’s perspective. Hazard scores for Zelazny Most were mainly driven by
freeze-thaw cycles (Table A1) which should be considered in on-site safety assessments.
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3.5. Robustness and Uncertainty

Sensitivity analysis was done for several model configurations prior to computing
the final results. The relative influences of different sub-indicators varied across regions
(Figure 5a). Precipitation had the highest influence in tropical regions such as Brazil, India
and the Rest of Africa. Freeze-thaw cycles contributed little or nothing to the scores of Brazil,
India, the Rest of Africa, South Africa and Australia while they had a stronger influence
in Canada, the US, Europe, and the Rest of America Region. Cyclones had little or no
influence across regions, except for Australia, Mexico and the Asia and Pacific region. Note
that especially values for South Africa, India and Brazil are by no means representative of
the climate and topography of the entire country since only few mines were contained in
the dataset (Table A3).

Figure 5. (a) Contributions of sub-indicators to overall hazard score by region. Here, scores are
neither weighted with copper revenue nor with a mine’s share in regional output as indicated by
Equations (2) and (6), so effects are not masked by varying shares of copper revenue or mine outputs.
(b) Spearman correlation between a subset of environmental variables used in this study (n = 112)
(c) Average overall hazard scores by region for different methods of normalizing environmental vari-
ables. Pre- and post-overlay refers to the computation of ranks on either global scale environmental
data or a subset (n = 112) of this data after spatial overlay with mining sites. Again, scores are neither
weighted with copper revenue nor with a mine’s share in regional for the same reason as above.
Instead, regional totals were divided by the number of mines per region. Note that South Africa is
represented by only a single mine. (d) Relative contributions of sub-indicators to overall hazard score
for different modelling choices. Again, overall hazard was computed as the sum of all mine hazards
MH in all regions, irrespective of copper revenue share and regional output share.

Correlation analysis was performed to validate the choice of environmental variables
used in the composite hazard score (Figure 5b). The values of around 0.5 for earthquakes,
terrain ruggedness and freeze-thaw cycles can be explained as follows: 55 mines, 49 percent
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of the data, are located in the American Cordillera, a chain of mountain ranges including
the Andes, the Rocky Mountains and the Sierra Madre in Mexico. They feature a rugged
topography (TRI) and high variations in temperature which can cause freeze-thaw events
(FT). The American Cordillera is part of the Circum-Pacific-Belt, also known as the Ring of
Fire, where the world’s highest seismic activity takes place [61]. An analysis conducted
by Lèbre et al. [39] on the full global dataset of TRI and PGA showed that both variables
are generally uncorrelated. Their correlations were therefore regarded as a geographic
property of the TSF dataset, not as a sign of inherent interdependency. Freeze-thaw cycles
may indeed be correlated with TRI for the reason explained above. However, they also
occur in flat deserts and generally in regions at high latitude, which is why both variables
were kept in the model.

Normalization methods were investigated during the model building process to
estimate their effect on final results. Pre-overlay ranking generated the highest scores
across all regions, followed by post-overlay ranking (Figure 5c). Min–Max normalization
produced distinctly lower scores, often around half the values of pre-overlay ranking. For
all three methods, India and Australia had the lowest hazard scores while mines in the
Rest of America region scored highest. Wherever a region scored lower than another with
one method, this was also true for other methods in most cases with some exceptions: for
Min–Max normalization, the Rest of Asia and Pacific region scored distinctly higher than
Mexico, Canada, and the US. For pre-overlay ranking, it scored slightly lower than the
other three regions and for post-overlay ranking it squared with Mexico but exceeded the
US and Canada. Brazil scored lower than the EU27 using pre-overlay ranking but reached
higher values for post-overlay ranking and Min–Max normalization.

Tropical cyclone windspeed has a small influence on overall score, irrespective of
the normalization method (Figure 5d). TSF size has a disproportionate share of roughly
40 percent when using Min–Max normalization. Pre-overlay ranking puts slightly more
emphasis on seismicity (PGA), precipitation (PRE) and terrain ruggedness (TRI) while
post-overlay ranking gives more weight to TSF size and cyclone wind speed (CYC). Thus,
the influences of sub-indicators are not only a result of their occurrence in the dataset–that
is, if more mines are exposed to, e.g., seismic hazard than heavy rainfall–but also of
the normalization method used. This is a direct consequence of their altered frequency
distributions after normalization (Figure A2).

Ranking was chosen over Min–Max normalization, so scores were not dispropor-
tionally influenced by TSF area. Pre-overlay ranking was considered more useful than
post-overlay ranking since it contains information about the relative magnitude of a vari-
able compared to all values in the global dataset, not only in relation to other known TSF
sites. Further, it allows slightly more influence for seismicity and precipitation, which are
the predominant natural causes of dam failures [12].

4. Discussion
4.1. Results

Our method quantified hazards for a global sample of 112 copper mines using five
indicators of natural hazards as well as TSF surface area. This way, around two thirds of
global copper production were covered and rated. While far from capturing all relevant
drivers of actuarial risk, our approach may help to prioritize on-site risk assessments
or complement existing efforts by mining companies. The latter are usually narrowly
focused on dam stability, so our hazard scores can provide additional context of what
Owen et al. [16] call ‘situated risk’. Their study also identified many projects with high
ESG risk in Chile, Peru and the USA as opposed to overall low ESG risks in Australia.

Other global-scale, quantitative and transparent risk or hazard assessments of individ-
ual mines could not be found in the literature, which was the motivation for constructing an
indicator in the first place. However, a dataset compiled by the Global Tailings Review [62]
contains qualitative TSF hazard ratings by mining companies, based on the consequences of
failure. For 16 of the 25 most hazardous mines identified in our study, additional company
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ratings were available. They are not directly comparable among each other since different
companies used different risk guidelines [62]. A comparison to our hazard score, however,
showed that many of the worst-scoring mines also had a high company hazard rating:
15 mines scored either significant, major, high, very high, or extreme. These mines are pre-
dominantly located in Chile and Peru including Escondida, Los Bronces, Las Bambas, Los
Pelambres, Constancia, Antapaccay, Antamina, and Cerro Verde. Together, they produced
around 3 Mt of copper in 2015, 15 percent of the global total. Although disaster prevention
should be an end in itself, the possibility of high-consequence failures at any of these mines
may also raise concerns about shortages in the global supply network.

MRIO modelling revealed how much copper ore was extracted from which regions to
satisfy final demand in the EU, China, India, Japan, Germany, and the USA. This includes
direct imports of copper, for example the coils and cables of consumer products as well
as embodied copper such the copper inside machinery used to harvest soybeans in Brazil,
which are later exported to the EU. However, it does not describe the origin of a particular
physical unit of copper. Instead, the likelihood that a unit comes from a particular mine
was assumed to be directly proportional to this mine’s share in the national or regional
copper output, establishing merely a statistical relation. Weighting the EU’s copper ore
footprint with the respective regional hazard scores thus helped to understand through
which supply chains tailings-related hazards propagate. Our method showed that Poland
is a major hazard hotspot in Europe’s supply chain. In terms of due diligence, this means
that European actors seeking to minimize tailings risk in their copper supply chain should
look no further than Zelazny Most for a start.

However, the exact origins of raw materials at the first step of supply chains remain
difficult to trace, making it impossible to attribute their environmental and social burdens
directly to consumers [34]. Gathering and managing the information on global copper
production necessary to that end will require substantial work. Our review of available
mining data confirms the urgent need for standardized, public and timely risk disclosures
which others have demanded already [16,38]. To ensure our material footprint and hotspot
approach can eventually be refined with local-scale data, tailings databases should also
include production volumes of main and by-products. Until such detailed and up-to-date
records are provided, an MRIO analysis disaggregating the copper ore footprint not only by
region, but also by product and industry would be a next step to learn more about specific
supply chains.

4.2. Model Strengths, Limitations and Uncertainties

Our indicator was designed to capture the most relevant hazards concerning tailings
dam failures and used to demonstrate how material footprints can help in tracing this
hazard through supply chains. Uncertainty analysis showed that the method employed
to normalize variables influences the relative importance of sub-indicators as well as the
magnitude of the composite score. Still, the relative positions on the spectrum between low
and high hazard remained largely the same between regions across methods. Therefore,
absolute scores have little practical use, while they help to compare hazards from different
mines and regions on a global scale. Condensing a complex phenomenon into a one-
dimensional number naturally bears the risk of oversimplification and misinterpretation.
However, a composite score including several dimensions of hazard was considered more
helpful for hotspot screening than using a highly disaggregated footprint for every sub-
indicator. We preserve and report the individual components of our composite hazard
score to allow for scientific scrutiny. Transparent and detailed data on individual hazards
are needed to enable different weighting schemes and to allow for an overlap with mine-
specific impact estimates, such as earthquake or rainfall simulations.

While Owen et al. [16] covered a broader set of ESG variables and risk dimensions,
they used conservative parameters such as project age and thresholds in a multi-level
selection process to narrow down their global sample of mines. This allowed proceeding to
local-scale GIS analysis for exposure and vulnerability assessment. Our approach, on the
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other hand, aimed to keep the sample as large, unbiased and transparent as possible as a
first step towards a back-end database containing raw data relevant for risk assessment. So
far, it fails to capture the intricate factors that determine the actual risk level of a project,
including exposure and vulnerability of people and the environment.

Dam failures constitute a major hazard in mining, yet a low failure risk must not
be mistaken for generally safe mining practices. There are many other concerns, such as
landslides, land grabbing or chronic pollution by seepage of toxic waste. A low ranking
on the tailings hazard score does not, therefore, imply that a mine is safe for workers, host
communities or the environment. Conversely, a high score does not allow the assertion that
a project is particularly risky, but merely suggests that a mine is located in an area featuring
potentially detrimental environmental factors concerning dam failure.

Some major copper producers are not represented in the dataset. Mines from China,
Russia and Indonesia are entirely missing, even though these countries produced 1710 kt,
732 kt and 587 kt of copper in 2015, respectively [42,55]. Kazakhstan produced around
468 kt of copper in 2015 [55], but only Orlovsky mine with a production of 254 kt was
included in the dataset. Consequently, hazard scores for copper from the Asia and Pacific
region in the current analysis are not useful. With the remaining data, tailings hazard
accompanying two thirds of the world’s copper production could be quantified. South
Africa, Mexico and the Rest of Africa region had the poorest coverage, while copper from
the USA, Australia, Canada and the Rest of America region was well captured, increasing
the robustness of the hazard estimates for these regions. Copper ore footprints, on the other
hand, were computed directly from the MRIO table (including entries for China, Russia
and Indonesia). They are robust within the uncertainty range of EXIOBASE 3.8, which will
be discussed below.

Our analysis depicts a snapshot of the years 2013 or 2015 for MRIO data and production
volumes of mines, respectively. Since then, the copper landscape has changed; Kazakhstan,
for example has increased its copper production by 20 to 30 percent [55,63] and the Dem.
Rep. Congo has recently started the high-grade Kamoa-Kakula project. With an estimated
average annual production of almost 1 Mt of concentrated copper, it would become the
world’s second largest copper mine [41].

Mines tend to be less efficient towards the end of their life cycle when high ore
grades have already been extracted. This often results in over-proportional growth of TSFs
which was not anticipated in the planning and approval process, so old mines can pose a
particularly high risk [38]. To reflect this in the footprints, a life cycle perspective on tailings
risk could be incorporated by linking MRIO time series with mining data and integrating
ore footprints and production volumes over time. Finally, climate models should be taken
into account when quantifying natural hazards with respect to the future, as demonstrated
in [64].

It is important to note the consequences of applying different aggregation schemes
to the MRIO table: using the original 11 regions × 7 products MRIO table, the EU’s copper
ore footprint was 164 Mt, while using the disaggregated 25 regions × 16 products table
yielded 151 Mt, a difference of eight percent. Koning et al. [65] quantified errors in the
material footprints of countries when resolving the product dimension of EXIOBASE from
200 to 60 products. They found percentage changes between −29 and +14 percent. The
same study showed that spatial aggregation from 48 countries to four regions changes the
results for material footprints by between −2.7 and +2.1 percent. Therefore, it is generally
advisable to calculate emissions with a disaggregated background MRIO table first and
then aggregate the results for meaningful interpretation and display [65,66].

Giljum et al. [67] investigate deviations between three different MRIO databases
(EXIOBASE, Eora, ICIO) and their effects on material footprints. They find the footprints
for China, USA, India and Germany to be insensitive to the MRIO table used, while Japan’s
material footprint was 12 t per capita when calculated with EXIOBASE, 19 t using ICIO
and 20 t when calculated with Eora. Therefore, Japan’s copper ore footprint is likely to be
underestimated in this study, explaining its distinctly lower value.
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Wiedmann et al. [68] also compare the overall material use of nations and find that
China has the largest footprint, followed by the USA, Japan and India. According to their
study, the United States’ per capita material footprint was around 28 t, whereas people
in India use on average 3.7 t of materials per year. This difference is bigger for copper,
where the USA’s footprint is 25 times larger than India’s, and can be explained by the
technology-intensive lifestyle in high-income countries.

Setting aside the case of Japan, the differences between countries seem realistic con-
sidering their GDP and average material standard of living. Still, a disaggregated, sector-
specific analysis would be interesting as well as a breakdown by production, imports, and
exports. Comparing footprints from other major economies would also help to see a more
complete picture.

4.3. Policy Relevance and Future Research

From a due diligence perspective, withdrawing from risk hotspots would be a poor
strategy for several reasons: first, there is currently no way of replacing major copper pro-
ducers such as Chile and Peru in the global supply network, not to mention the potentially
devastating effects on their economies. Copper deposits are immobile assets that cannot
be mined elsewhere, and mining projects are planned with long time horizons. Secondly,
withdrawal would not at all address the necessity of mitigating tailings risk from existing
or new tailing deposits.

Instead, the basis for a new tailings risk policy should be to close the knowledge
gaps with publicly available risk assessments including on-site dam inspections as well as
broader and transparent ESG considerations. From there, a prioritization scheme could be
set up, directing investments into risk mitigation to those mines and communities where
it is needed most urgently. Following the footprint logic, a share of these costs must be
ascribed to consumers.

To this end, a global fund could be installed into which countries and companies pay
according to their ore footprint or imported tailings risk. Investments from this fund would
be directed to support mine operators and regulators in establishing and enforcing best
practices for tailings management. Country-scale solutions would need to be based on
voluntary international agreements while industry behavior can be stirred with national
due diligence laws.

The general problem of assigning responsibility for environmental impacts is not new,
but is still actively discussed in the literature [23,28,69–71]. Traditionally, production-based
accounts as required by the United Nations Framework Convention on Climate Change
(UNFCCC) and reported by the IPCC quantify impacts within geographic boundaries.
Many have argued that this often results in unfair national emission inventories for coun-
tries with a low standard of living producing goods mostly intended for export [28,70,71].
Besides, asymmetrical policies between countries can cause leakage effects such as out-
sourcing of emission-intensive industries [72]. In the case of tailings risk, leakage should
be less relevant since raw material extraction is mainly determined by geological factors,
while fairness remains a central and unresolved issue.

Consumption-based models, on the other hand, account for international trade, allo-
cating environmental burden entirely to the final demand in that country where a product
or service is consumed [28]. It increases fairness compared to production-based accounts,
considering that consumption and wealth in the industrialized world are the main drivers
of environmental pressure [70].

On the downside, consumption-based accounting can mute incentives for cleaner
production in producing countries since the environmental ‘bill’ is assigned entirely to
consumers [71]. Besides, Peters [28] argues that production-based accounting is more likely
to be taken up by policy makers considering its lower uncertainty, established reporting
and consistency with political and local environmental boundaries.

Attempting to consolidate both approaches, Lenzen et al. [70], developed a concept
of shared responsibility assigning weights to national emission inventories derived from
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value added along the supply chain. Bastianoni et al. [71–74] propose a similar, hybrid
approach of dividing the supply chain into multiple producer–consumer tiers and assigning
responsibility based on the carbon emissions added. Piñero et al. [23] compare the value-
added approach to producer, consumer and income responsibility for material footprints.
They argue that a shared responsibility model could be perceived as fairer and thus receive
better support from actors strongly affected by either of the full allocation approaches. A
shared responsibility model mapping both value-added and economic externalities such as
tailings risk in material supply chains should be investigated in future work.

5. Conclusions

Our research adds a new angle to the discussion about tailings risk by estimating
copper ore footprints and tailings-related hazard hotspots for the European Union and five
major economies. A unique and transparent indicator of tailings hazard was developed
and applied to a global dataset of copper mines. The results are not definitive but rather
represent a step towards holistic tailings management. Building on our work and the find-
ings of others, researchers may soon make an educated guess about which tailings storage
facilities are most likely to fail next. Meanwhile, mining corporations must immediately
begin to increase transparency, encourage independent assessments and mitigate risks.
Eventually, this could lead to a change of perception of tailings disasters, shifting from the
occasional misfortune to a severe yet preventable systemic risk.

The strength of the footprint approach is to reveal and quantify the environmental
impacts associated with human consumption. We showed how, as in the case of Poland,
regionally coarse footprint data can be refined with readily available, mine-level production
data. This sheds light on the specific origins of copper embodied in Europe’s supply chain
with little additional information required. However, this heuristic approach will not be
applicable as easily for other regions where production is spread across a larger portfolio
of mines and whose copper is exported to a variety of countries.

There is currently no such thing as safe mining and raw materials are embodied in
virtually every supply chain. Therefore, withdrawal from certain risk hotspots alone will
neither work in practice nor acknowledge the existing legacy of tailings ponds. Instead,
joint efforts could help to direct financial means and expertise to where they are needed
most urgently for risk mitigation. New risk policies and mitigation strategies should
consider a shared responsibility approach, dividing the costs between both producers
and consumers.
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Appendix A

Figure A1. Consumption-based copper footprints of the world’s five largest economies and the EU27
by region of ore extraction for the year 2015. Countries and regions that contributed less than one
percent to the footprint were aggregated for better readability. Mass-based, not hazard-weighted.
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Figure A2. Frequency distributions of raw environmental variables, pre-overlay rank and Min–Max
scaled sub-indicators. Post-overlay ranking yields uniform distributions for all sub-indicators and is
therefore not shown.

Figure A3. (a) Cairn Hill mine, Australia: No TSF was visible on satellite imagery. Dry stacking
of tailings was assumed, and the mine was omitted from the dataset since only wet tailings were
considered relevant for dam failures. (b) Presumably shared TSF between Chuquicamata, Radomiro
Tomic and Ministro Hales mines in Chile. The measured surface area of 66.5 km2 was split according
to the relative copper output of each mine. Vice versa, in cases where multiple TSFs belonged to a
single mine, their surface areas were added. The image also illustrates how TSF boundaries could not
always be clearly distinguished. Areas which looked as if they had run dry (dark brown) were not
included. Differences to TSF areas from 2015 reported by Werner et al. [40] were found to be small
and therefore acceptable.; Images: Google, © 2022 Maxar Technologies, CNES/Ai.rbus.
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Table A1. Mine-level results. For an explanation of acronyms and variables refer to Table 1 in the
main part.

Mine Country Region
Copper
Production
[kt]

Overall
Hazard

Copper-
Related
Hazard

PGA TRI PRE CYC FT TSF
Area

El Teniente Chile RoAm 471.16 4.73 4.41 3.47 47.69 499.81 0.00 2076.0 17.0
Toromocho Peru RoAm 182.29 4.31 4.31 3.85 49.06 1700.15 0.00 2164.0 2.3
Antamina Peru RoAm 107.70 4.29 3.25 3.23 42.81 699.67 0.00 1359.6 5.1
Las Bambas Peru RoAm 453.75 4.19 3.78 2.24 40.75 412.31 0.00 2848.5 2.6
Padcal Philippines RoAP 17.24 4.16 4.16 3.15 71.75 807.06 329.00 0.0 1.6
Bingham Canyon USA US 92.02 4.16 2.65 1.90 34.31 133.70 0.00 1643.1 31.8
Constancia Peru RoAm 105.90 4.15 3.81 2.17 30.59 439.26 0.00 3396.0 2.5
Yauli Peru RoAm 2.50 4.15 0.12 3.68 45.69 1686.55 0.00 2260.0 1.1
Andina Chile RoAm 224.26 4.12 3.85 4.26 4.25 298.15 0.00 1537.8 19.2
Marcapunta Norte Peru RoAm 32.06 4.02 3.50 3.34 5.75 1166.21 0.00 2347.7 2.7
El Soldado Chile RoAm 36.00 3.97 3.97 4.67 65.88 284.73 0.00 1537.8 1.8
Tintaya/Antapaccay Peru RoAm 202.10 3.96 3.45 2.14 13.88 379.20 0.00 3350.0 2.3
Morococha Peru RoAm 8.16 3.88 1.59 3.76 41.19 1637.93 0.00 2164.0 0.1
Los Bronces Chile RoAm 401.70 3.88 3.88 3.71 90.31 231.41 0.00 2228.0 1.0
Toquepala Peru RoAm 143.00 3.83 3.83 2.92 40.75 225.44 0.00 516.5 14.5
Cerro Corona Peru RoAm 30.04 3.82 1.76 3.32 39.75 545.71 0.00 1022.0 1.0
Escondida Chile RoAm 1226.50 3.70 3.61 3.00 12.13 5.82 0.00 2594.4 50.7
Los Pelambres Chile RoAm 363.20 3.67 3.33 3.66 57.19 179.92 0.00 2093.2 0.5
Collahuasi Chile RoAm 433.10 3.67 3.52 2.44 25.56 95.06 0.00 1508.7 14.4
Highland Valley Canada CA 151.40 3.57 3.31 0.85 15.61 90.13 0.00 1211.0 21.6
Carmen de Andacollo Chile RoAm 68.30 3.53 3.07 4.26 28.38 108.87 0.00 1384.5 2.6
Toledo-Carmen/Lutopan Philippines RoAP 34.21 3.42 3.04 2.33 30.00 394.08 32.50 0.0 1.1
Boddington+Hedges Australia AU 37.99 3.38 0.62 1.00 8.13 238.89 1.00 201.9 16.4
Radomiro Tomic Chile RoAm 315.75 3.33 3.30 2.65 17.31 19.99 0.00 945.8 24.3
Cerro Verde Peru RoAm 199.36 3.32 3.32 3.41 28.56 73.79 0.00 1361.4 4.0
Chuquicamata Chile RoAm 308.63 3.32 2.80 2.65 17.31 19.99 0.00 945.8 23.8
Gibraltar Canada CA 63.96 3.30 3.30 0.62 12.94 106.46 0.00 1154.0 8.1
Ministro Hales Chile RoAm 238.31 3.30 2.96 2.65 17.31 19.99 0.00 945.8 18.4
Huckleberry Canada CA 19.63 3.28 3.07 0.45 26.63 234.34 0.00 1319.7 1.4
Phoenix (mill+heap leach) USA US 21.00 3.28 1.14 1.73 15.19 60.94 0.00 1818.0 3.0
Robinson USA US 57.00 3.28 2.49 0.87 14.81 63.42 0.00 1610.0 6.6
Buenavista (Cananea) Mexico MX 284.00 3.27 3.18 0.17 17.00 340.31 0.00 242.1 17.7
Copper Mountain
(Similkameen) Canada CA 35.38 3.27 2.77 1.15 29.38 136.79 0.00 1336.0 1.4

La Caridad Mexico MX 131.00 3.27 3.24 0.27 26.81 307.43 0.00 76.4 16.7
Mount Polley Canada CA 3.63 3.22 1.69 0.62 19.13 141.66 0.00 1285.3 2.2
Punitaqui Chile RoAm 8.16 3.20 3.20 4.44 37.13 135.72 0.00 1287.5 0.2
Cadia Group Australia AU 73.70 3.20 1.09 0.90 13.56 210.32 0.00 343.6 8.0
Bagdad USA US 95.25 3.18 3.18 0.71 27.38 125.43 0.00 647.9 7.4
Rudna Polkowice Ludin Poland EU27 499.60 3.14 2.57 0.23 4.19 170.23 0.00 972.9 12.5
Morenci USA US 480.81 3.12 3.12 0.63 16.94 113.58 0.00 778.3 7.8
Bolivar Mexico MX 9.98 3.10 3.10 0.73 51.97 402.92 2.83 280.0 0.1
Sudbury Canada CA 98.00 3.10 1.41 0.32 2.81 169.17 1.00 1343.4 7.8
Cuajone Peru RoAm 178.00 3.07 3.07 2.89 44.09 247.00 0.00 516.5 0.3
Kansanshi Zambia RoAf 226.67 3.05 2.71 0.75 5.88 431.01 0.00 0.0 12.8
Centinela (mill+heap leach) Chile RoAm 145.20 3.03 2.41 2.88 6.38 7.11 0.00 995.1 9.9
Lumwana Zambia RoAf 130.18 3.03 3.03 0.72 7.63 396.92 0.00 0.0 11.0
Duck Pond Canada CA 6.10 3.00 2.14 0.33 4.75 199.20 16.11 910.0 0.9
Pinto Valley USA US 60.33 2.99 2.94 0.68 30.44 167.49 0.00 158.5 4.8
Bajo de la Alumbrera-Bajo el
Durazno Argentina RoAm 61.80 2.99 1.83 1.79 20.25 81.96 0.00 536.0 5.4

Telfer Australia AU 23.12 2.99 0.52 1.02 1.75 243.77 68.13 0.0 5.0
Phu Kham Laos RoAP 71.16 2.98 2.45 0.88 41.94 786.00 0.00 0.0 1.6
Mount Milligan Canada CA 32.21 2.97 1.41 0.31 11.59 110.11 0.00 1196.7 3.3

Kamoto Group Dem. Rep.
Congo RoAf 147.77 2.94 1.95 0.52 5.25 340.67 0.00 0.0 17.5

Mount Carlton Australia AU 1.14 2.89 0.15 0.92 16.38 458.92 10.50 0.0 0.3
Nchanga Zambia RoAf 24.37 2.85 2.85 0.35 4.63 476.83 0.00 0.0 12.7
Sierra Gorda Chile RoAm 87.00 2.84 2.36 3.06 4.25 4.93 0.00 995.1 7.3
Aitik Sweden EU27 67.13 2.83 1.96 0.26 4.06 122.45 0.00 749.1 12.0
Continental USA US 31.75 2.83 2.83 0.55 32.25 169.19 0.00 774.7 0.4
Mopani (Nkana+ Mufulira) Zambia RoAf 92.00 2.81 2.81 0.22 4.63 486.79 0.00 0.0 14.5
Mission USA US 68.30 2.81 2.81 0.55 4.88 199.32 0.00 99.0 9.6
Sierrita USA US 85.73 2.80 2.80 0.52 4.06 193.71 0.00 161.5 11.2
Mount Isa Australia AU 86.61 2.79 0.74 0.37 4.94 434.58 0.00 0.0 10.1
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Table A1. Cont.

Mine Country Region
Copper
Production
[kt]

Overall
Hazard

Copper-
Related
Hazard

PGA TRI PRE CYC FT TSF
Area

Kidd Creek Canada CA 40.10 2.79 1.62 0.38 1.38 173.60 0.00 784.6 12.6
Afton+New Afton Canada CA 39.01 2.79 1.75 0.67 21.88 73.29 0.00 1367.5 0.8
Candelaria-Ojos del Soldado Chile RoAm 144.83 2.78 2.45 4.08 26.16 13.20 0.00 351.0 4.4
Zaldivar Chile RoAm 98.88 2.77 2.77 2.96 13.88 5.89 0.00 2594.4 0.2

Palabora South
Africa ZA 49.10 2.75 2.63 0.11 6.81 224.01 0.00 7.5 17.0

Trident-Sentinel Zambia RoAf 32.97 2.74 2.74 0.73 3.13 351.23 0.00 0.0 10.7
La Ronde Canada CA 4.94 2.74 0.21 0.49 4.25 162.25 0.00 835.5 2.1
Konkola Zambia RoAf 40.22 2.70 2.70 0.48 3.25 463.59 0.00 0.0 8.9
Cerro Colorado Chile RoAm 99.84 2.69 2.69 2.82 14.44 32.51 0.00 1841.5 0.1
El Chino USA US 142.43 2.67 2.67 0.53 2.88 126.61 0.00 774.7 5.2
Boliden Area Sweden EU27 3.85 2.67 0.19 0.23 4.00 128.63 0.00 798.5 5.0
Boss Mining Group
(Kakanda-Luita-
Lubumbashi)

Dem. Rep.
Congo RoAf 75.50 2.67 2.67 0.76 12.19 371.56 0.00 0.0 1.9

Tenke Fungurume Dem. Rep.
Congo RoAf 203.96 2.67 1.90 0.70 11.63 368.70 0.00 0.0 2.1

Ray USA US 75.00 2.65 2.65 0.66 18.25 111.05 0.00 158.5 4.1
Voisey’s bay Canada CA 32.00 2.64 0.58 0.31 6.66 122.53 0.00 771.9 2.9

Mutanda Dem. Rep.
Congo RoAf 216.00 2.63 1.90 0.68 5.50 349.21 0.00 0.0 3.5

Sepon Laos RoAP 89.25 2.60 2.60 0.38 14.86 744.62 1.00 0.0 0.6
El Salvador Chile RoAm 48.58 2.56 2.56 3.62 14.38 8.36 0.00 1615.0 0.1
Sossego Brazil BR 104.00 2.55 2.20 0.01 18.31 444.58 0.00 0.0 7.9
Neves Corvo Portugal EU27 55.83 2.51 1.70 1.19 4.56 261.77 0.00 4.4 1.8
Oyu Tolgoi Mongolia RoAP 202.20 2.44 0.10 0.69 1.81 51.19 0.00 1135.8 4.2
Minto Canada CA 16.52 2.43 2.00 0.55 17.00 90.58 0.00 840.0 0.2
Malanjkhand India IN 26.20 2.43 2.43 0.14 4.63 742.71 0.00 0.0 3.0
Salobo Brazil BR 155.00 2.36 1.71 0.01 20.22 385.54 0.00 0.0 4.1

Frontier Dem. Rep.
Congo RoAf 65.88 2.36 2.36 0.23 3.13 467.34 0.00 0.0 3.7

Manitoba Canada CA 41.38 2.34 1.00 0.00 4.13 150.51 0.00 785.8 4.7
Chapada Brazil BR 59.42 2.33 1.67 0.01 6.25 397.00 0.00 0.0 8.8
Las Cruces Spain EU27 70.03 2.32 2.32 0.95 5.44 257.19 0.00 24.7 0.3
Cozamin Mexico MX 15.65 2.30 1.66 0.46 8.19 179.91 1.01 77.0 0.3
Mantos Blancos Chile RoAm 53.50 2.26 2.26 3.57 9.88 0.00 0.00 195.5 1.5
Northparkes Australia AU 49.96 2.21 1.87 0.81 1.63 137.51 0.00 332.1 3.0
Silver Bell USA US 19.00 2.17 2.17 0.56 4.88 115.88 0.00 17.7 2.4
Kanmantoo Australia AU 17.31 2.13 1.94 0.90 9.13 111.50 0.00 89.4 0.4

Ruashi Dem. Rep.
Congo RoAf 35.06 2.13 1.33 0.72 2.63 420.27 0.00 0.0 0.8

Pyhäsalmi Finland EU27 12.05 2.09 1.29 0.19 2.50 137.78 0.00 646.4 1.4

Etoile Dem. Rep.
Congo RoAf 25.00 2.06 1.46 0.72 2.63 420.27 0.00 0.0 0.3

Kinsevere Dem. Rep.
Congo RoAf 80.17 2.04 2.04 0.76 2.00 411.11 0.00 0.0 0.7

Khetri Group India IN 2.33 2.04 2.04 0.65 1.38 313.54 0.00 4.0 1.4
Ernest Henry Australia AU 70.73 1.99 1.57 0.27 0.63 437.96 0.00 0.0 3.9
Chibuluma South Zambia RoAf 12.73 1.95 1.95 0.26 3.50 489.32 0.00 0.0 0.3
Olympic Dam Australia AU 124.50 1.92 1.61 0.90 1.38 77.47 0.00 3.0 6.6
Golden Grove Australia AU 25.60 1.83 0.89 1.01 1.88 101.90 2.00 1.6 0.5
Osborne Australia AU 19.30 1.83 1.44 0.34 1.50 246.91 0.00 3.0 1.3
Orlovsky Kazakhstan RoAP 254.00 1.77 1.66 0.34 1.00 106.33 0.00 614.1 1.6
Tritton Australia AU 30.25 1.75 1.75 0.51 1.88 122.89 0.00 27.4 1.4
Cobar-CSA Australia AU 48.66 1.67 1.62 0.39 2.00 106.07 0.00 3.9 2.0
Prominent Hill Australia AU 130.31 1.62 1.35 0.64 1.38 77.30 0.00 4.0 2.4
Peak Australia AU 6.35 1.57 0.39 0.41 2.00 103.33 0.00 38.7 0.9
De Grussa Australia AU 70.02 1.42 1.13 0.58 0.75 153.95 1.00 0.0 0.3
Guelb Moghrein Mauritania RoAf 45.00 1.07 0.83 0.15 0.88 66.94 0.00 0.0 2.1
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Table A2. Literature survey of previous work on quantitative ESG risk assessment in the context of mining. The table is not exhaustive but aims to capture recent
and relevant contributions on which this study was built.

Publication ESG Dimensions Risk Dimensions Indicators Scale Tailings Specific 1 Resource Focus

Miranda et al. (2003) E, S, G 2 Natural hazard, Vulnerability 3

Protected areas, areas of high conservation value, intactness of
ecosystems, (ground)water availability, seismic hazard, chemical
weathering, Capacity for informed decision making, construction
standards for mine structures, Voice and accountability, corruption,
political stability, government effectiveness, rule of law, type of
operation, waste disposal method

Coarse,
Global & local
(US, Papua New Guinea,
Phillipines)

no Hardrock mining (metals
and precious gemstones)

Kovacs and Lehunova
(2020) E, S Natural and man-made

hazards, exposure

Tailings capacity, tailings toxicity, seismic hazard, flood hazard,
activity status/management conditions, dam factor of safety,
human population exposure, potentially exposed waterways

Regional (Danube river basin),
national yes unspecific

Owen et al. (2019) E, S, G Natural hazards, vulnerability,
exposure

Seismic hazard, terrain ruggedness
index, aqueduct water risk, key biodiversity areas
World Database on protected areas, Human Footprint, Indigenous
Peoples Land, Fragile State Index, Resource Governance
Index, Policy Perception Index, Ease of Doing Business Index

Global→ local yes Gold, copper, iron, bauxite

Newland Bowker (2021) G Man-made hazards
Host country failure history (%worldwide failures/%world
mineral production), tailings capacity, activity status/management
conditions, facility age, design type

global yes unspecific

Luckeneder et al. (2021) E Vulnerability, exposure Species richness, protected areas, available water remaining index
(AWaRe), Global, fine grained no

bauxite, copper, gold, iron,
lead, manganese, nickel,
silver and zinc

Lebre et al. (2019) E, S, G Natural hazards, vulnerability,
exposure Same as Owen et al. (2019) global no Iron, copper, aluminium

Lebre et al. (2020) E, S, G Natural hazards, vulnerability,
exposure

Seismic risk, average wind speed, terrain ruggedness, cyclone risk,
maximum annual precipitation, baseline water stress, inter-annual
water variability, Key Biodiversity areas, Biodiversity Hotspots
maps, Total Species Richness maps, Global human settlement,
population density in 100km radius, indigenous peoples map,
global farmland and pastures map, forest extent map, Human
Development index, Gini coefficient, Total dependency ratio,
Worlwide Governance Indicators (World Bank)

global no

Energy transition metals,
including iron, copper,
aluminium, nickel, lithium,
cobalt, platinum, silver,
rare earths

Northey et al. (2017) E Natural hazards (water risk),
vulnerability

Water criticality (CRIT), supply risk (SR), vulnerability to supply
restrictions (VSR), environmental implications (EI) of water use,
watershed or sub-basin scale data for blue water scarcity (BWS),
water stress index (WSI), available water remaining (AWaRe),
basin internal evaporation, recycling (BIER) ratios, water depletion
index (WDI)

global no Copper, lead-zinc, nickle

1 Indicates whether the study was particularly concerned with tailings risks as opposed to a broader view incorporating other risks and detriments associated with mining, such as
freshwater depletion or habitat fragmentation by mining infrastructure. 2 The authors acknowledge limitations due to lack of data and fuzziness of concepts especially in the governance
dimension, which results in different subsets of indicators for different countries, limiting their comparability. 3 Here defined as: the likelihood of destruction or degradation arising from
a natural or environmental hazard, such as destruction of an intact ecosystem or damages to an aquatic system from water pollution.
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Table A3. Cumulative copper production for the year 2015, by country in thousand metric tons.
Percentages of national production were derived from values reported by World Mining Data (2021)
and USGS (2017). Peru’s portfolio was extended by the Las Bambas project, which started production
in late 2015, with data from 2017 (453 kt) to obtain a more realistic representation of the country’s
situation. A coverage of 100 percent was hardly possible since only copper mines producing wet
tailings were considered. This way, copper produced by solvent extraction and electrowinning as
well as by-product copper was excluded.

Country Total
Production

Dataset
n Mines Production Percent of Total

Chile 5760 19 4773 82.9
China 1710 3 112.9 6.6
Peru 1700 (+453) 12 1644.9 76.4
USA 1380 12 1228.6 89
Dem. Rep.
Congo 1020 8 849.3 83.2

Australia 971 16 815.5 84
Russia 732 0 0 0
Zambia 712 7 559.1 78.5
Canada 697 14 584.3 83.8
Mexico 594 4 440.6 74.2
South Africa 77 1 49.1 63.8
Brazil 351 3 318 90.6
India 34 2 28.5 83.3
Poland 426 1 499 1 117.2
Argentina 62 1 62 100
Finland 42 1 12 28.5
Spain 130 1 70 53.8
Laos 168 2 160.4 95.5
Mauritania 45 1 45 100
Mongolia 336 1 202 60.1
Philippines 84 2 51.4 61.1
Portugal 83 1 55.8 67.2
Kazakhstan 468 1 254 54.2
Other 1818

World 19100 (+453) 115(−3) 12,775 65.3
1 Number estimated using ore grades and ore volume as reported in KGHM (2015), excluding losses.
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Table A4. Copper production by region for the year 2015 in thousands of metric tons. Data resolution
in EXIOBASE 3.8 differs between world regions: while each country in the European Union represents
an entity of its own, South America is divided into Brazil and all other countries. In contrast, the
mining dataset contained only six mines from five countries within the European Union but 19 mines
from Chile and 12 from Peru. To account for this imbalance, regional aggregation was done using
the following scheme: countries remained a unique entity when sufficient copper data as well as
Input–Output data were available. This applied to Australia, Canada, USA, Mexico, Brazil, India and
South Africa. Whenever copper data were available while Input–Output data were not, countries
were aggregated into regions. This was the case for Chile, Peru, Argentina, Dem. Rep. Congo,
Zambia, Laos, Philippines, Kazakhstan, Mauritania, and Mongolia. They were aggregated into Rest
of South America, Rest of Africa and Rest of Asia and Pacific respectively. Since no copper data were
available for most European countries, all EU27 countries were initially regarded as an economic
entity and aggregated as EU27. Later, European copper producers were disaggregated from the EU27
region to further refine the picture. Percentages of regional production were derived from the values
reported by World Mining Data [55] and U.S. Geological Survey [42]. A coverage of 100 percent was
hardly possible since only copper mines producing wet tailings were considered. This way, copper
produced by solvent extraction and electrowinning as well as by-product copper was excluded.

EXIOBASE Region Total Production
Dataset

n Mines Production Percent

Rest of America 7556.9 32 6480 85.7
Rest of Africa 1945.2 16 1453 74.7
Australia 971 16 815.5 83.9
Canada 697 14 584.3 83.8
USA 1380 12 1229 89.1
EU27 878.2 6 708.5 80.7
Rest of Asia & Pacific 1652 6 668 40.4
Mexico 594 4 440.6 74.2
Brazil 351 3 318.4 90.7
India 34.2 2 28.5 83.3
South Africa 77 1 49.1 63.8
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