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Abstract: Within this study, aluminum oxide granules with 0.25%vol. of graphene oxide were
prepared by a spray-drying method to make an adsorbent for the 2,4-Dichlorophenoxyacetic acid
(2,4-D) herbicide removal from aqueous solutions. The obtained adsorbent was studied using infrared
spectroscopy, scanning electron microscopy and Raman spectroscopy. The presence of graphene
in the spray-dried powder was confirmed. The adsorption removal of 2,4-D using the obtained
material was performed at an ambient temperature by varying the process parameters such as pH
and adsorption time. The adsorption of 2,4-D was a monolayer chemisorption according to the
Langmuir isotherm pattern and a pseudo-second-order kinetic model. The maximum Langmuir
adsorption capacity of the monolayer was 35.181 mg/g. The results show that the Al2O3-0.25%vol.
GO powder obtained by spray drying is suitable for the production of adsorbents for toxic herbicides.

Keywords: 2,4-D adsorption; herbicide adsorption; alumina adsorbent; graphene oxide; spray dry

1. Introduction

Today, natural water reservoirs contain large amounts of pollutants as a result of
human economic activities. Xenobiotic substances including pesticides and herbicides
used in agriculture, e.g., 2,4-dichlorophenoxyacetic acid (2,4-D), contribute the most to that
pollution. Being widespread and highly soluble, 2,4-D and its transformation products
have polluted natural water and soil resources [1]. Moreover, 2,4-D was reported to stand
behind the cancer-disease development in mammals, as well as endocrine and central
nervous system disorders [2–4].

The method of adsorption extraction for pollutants from aqueous solutions is widely
used for wastewater treatment thanks to the ease of the adsorber design, low cost, mild
process conditions and the absence of harmful secondary products [5]. A large list of
sorbents was already studied for the 2,4-D removal from aqueous solutions, including
magnetically activated carbons [6], a metal-organic framework [7], polymer compounds [8]
and graphene oxide aerogel [9].

Sorbents based on aluminum oxide (Al2O3) have been widely used in various fields
of industry and medicine for a long time due to their beneficial properties [10]. The
Al2O3 compound combines high mechanical strength, hardness, a developed surface and
chemical resistance, while its cost is reasonably low [11,12]. Currently, special attention is
paid to adsorbents with alumina, which exhibit very good adsorption properties towards
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heavy metals [13,14]. In addition, being water-resistant, aluminum oxide is often used
as an adsorbent for drying and processing media containing condensed moisture, while
the possibility of repeated temperature regeneration by burning ensures the long-term
operation of the adsorbent [15].

In recent years, much attention has been paid in the literature to graphene oxide (GO)
as a promising adsorbent for organic pollutants due to the presence of oxygen-containing
functional groups on its surface, which can act as adsorption centers [16]. However, two-
dimensional GO has poor structural stability in aqueous environments, making it difficult
to recover and reuse [9,17].

Adsorbents containing a single component often require a functionalization of their
surface, such as, for example, increasing the specific surface area, creating additional micro
and mesopores, and applying functional groups to improve the adsorption capacity in
relation to target pollutants. Such functionalization can be achieved through the additional
activation of the raw material, doping the sorbent with various substances [18], and also
creating composites.

To enhance aluminum oxide, it was suggested to combine it with graphene oxide
by spray drying to obtain a granulated Al2O3-0.25%vol. GO adsorbent. The technique
provides a spherical shape to the particles that contributes to the adsorption process. Spray
drying makes it possible to obtain granules ranging in size from several to tens of microns
from highly dispersed and ultra-disperse ceramic powders from solutions or suspensions
by drying [19]. Compared to other methods for obtaining carbon nanomaterials such as
milling, sintering and crushing, the spray granulation method avoids the agglomeration of
GO nanosheets and reduces damage to their structure [20].

Thus, the purpose of this work was to obtain a new sorbent from aluminum oxide
with the addition of 0.25% vol of GO and to study its adsorption ability for 2,4-D from
aqueous solutions.

2. Materials and Methods
2.1. Materials

For the research, the following raw materials were obtained: 2,4-Dichlorophenoxyacetic
acid (Merck, Darmstadt, Germany), NaOH (≥99%), NaCl (≥99%), HCl (37%) (Khimprom,
Kemerovo, Russia), α-Al2O3 powder with purity 98.9–99.9% and average particle size of
500 nm (Plasmotherm Ltd., Moscow, Russia), polyvinyl alcohol (Ruskhim Ltd., Moscow,
Russia) and aqueous suspension of GO with a concentration of 50 mg/mL (Graphenox,
Moscow, Russia).

2.2. Adsorbent Preparation

The Al2O3-0.25GO sorbent was produced by spray drying from a prepared suspension
for granulation. To obtain a suspension, at the first stage, graphene oxide was dispersed in
distilled water with a concentration of 0.6 mg/L by the IKA T-18 (IKA-Werke GmbH & Co.
KG, Staufen, Germany) ultrasound homogenizer. Next, aluminum oxide and a dispersant
(0.01 wt.% Al2O3) were added to the suspension to prevent the sticking of Al2O3 particles
and the formation of large agglomerates. Then, the suspension was placed on a MR Hei-Tec
(Heidolph Instruments GmbH & Co. KG, Schwabach, Germany) magnetic stirrer, and a
solution of polyvinyl alcohol (0.2% wt.) was added as a binder. The composition was mixed
for 6 h at a speed of 400 rpm/min. To demonstrate the effect of graphene oxide on the
adsorption properties of the composite, aluminum oxide powder was obtained in a similar
way without the addition of graphene oxide (Al2O3-0GO).

2.3. Characterization of Adsorbent

Microstructural analysis was performed using scanning electron microscope Vega
3 LMH (SEM, Tescan, Brno, Czech Republic). In order to avoid electron charging and
improved imaging, samples were coated by electrically conductive thin gold film using
Q150T Emscope (Quorum Technologies Ltd., Newhaven, UK) sputter coater. Raman
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spectroscopy of the produced samples was carried out using DXR TM2 microscope (Thermo
Fisher Scientific, Waltham, MA, USA) equipped with a 780 nm laser with a power of 15 mW.
The laser beam was to pass through 50× optical zoom lens projecting into 0.8 µm spot
on the examined area with an integration time of about 6 s for each spectrum. Fourier
transform infrared spectroscopy (FTIR) spectra were recorded using Vertex 70 (Bruker
Optik GmbH, Ettlingen, Germany) spectrometer. To calculate the specific surface area
SBET, m2/g for the Al2O3-0.25GO specimen, a Brunauer–Emmett–Teller (BET) analysis was
performed using Autosorb iQ Station 2 gas sorption analyzer (Quantachrome Instruments,
Boynton Beach, FL, USA). The point of zero charge (pHzpc) of the adsorbent resulted from
the pH drift method, described in [21], using S 210 pH meter (Mettler-Toledo, Columbus,
OH, USA).

2.4. Adsorption

The adsorption of 2,4-D from aqueous solutions onto Al2O3-0.25GO and Al2O3 was
carried out in thermostatic cells at a temperature of 25 ◦C with continuous mixing. To study
the kinetics of adsorption, equal portions of the adsorbent weighing 25 mg were added
to 100 mL of 2,4-D solution with concentrations of 10–200 mg/L. During the experiment,
samples were taken from prepared adsorbate solutions with added adsorbent at specified
time intervals. Adsorbate concentration in samples was determined using UV spectroscopy
at 283 nm on a Hitachi U-1900 instrument (Tokyo, Japan). The number of ions of 2,4-D
adsorbed per 1 g of the adsorbent (mg/g) was calculated according to Equation (1) below:

qe =
(C0 − Ce)·V

m
, (1)

where C0 and Ce—initial and equilibrium concentration of each adsorbate ion, respectively;
mg/L; V—volume of the solution, l; m—the mass of the adsorbent, g.

Preliminary experiments showed an insignificant adsorption ability of Al2O3-0GO.
Thus, the calculation of the isotherms and kinetics of the adsorption process on aluminum
oxide powder without the addition of graphene oxide was not considered in this work.
All adsorption experiments were performed in triplicate, with the average values used
for calculations.

3. Results and Discussion
3.1. Characterization of the Adsorbent

The calculated specific surface area of the sorbent was 6.852 m2/g, the total pore
volume—0.043 cm3/g and the average pore diameter—25.32 nm. The microstructure of the
sorbent is shown in Figure 1. The particles were almost spherical, with sizes ranging from
1 µm to 20 µm (Figure 1A). A microporous structure and a developed surface were also
observed (Figure 1B).

Since the low content of GO in granules makes it hard to detect using SEM, it was
identified using Raman spectroscopy. The Raman spectrum of the sorbent is given in
Figure 2.

The results show that the spectrum has pronounced peaks of D and G bands with
wave numbers of 1312 cm−1 and 1592 cm−1, respectively, which is typical for GO. This
pattern is also common for carbon-containing materials. The G band is attributed to a
perfect graphite structure while the D band shows defects in the microstructure. Therefore,
after the spray drying, the sorbent retained the GO structure, which is consistent with the
literature [22–24].
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Figure 2. Raman spectrum of the Al2O3-0.25GO sorbent granules.

Figure 3 shows the FTIR spectra of the Al2O3-0GO and the Al2O3-0.25GO specimens.
Strong absorption bands at 600 cm−1 and 447 cm−1 can be attributed to stretching vibrations
of the Al-O bond [25]. The Al2O3-0.25GO specimen demonstrates characteristic bands
1215 cm−1 and 1280 cm−1, confirming the presence of C-O-C bonds and the C-O stretching
of an epoxy group [26]. The 1660 cm−1 peak can be identified as the in-plane vibrations of
the skeletal C=C band of the hexagonal aromatic ring from the graphene sheet [25]. The
peak at 3406 cm−1 is connected to the OH stretching of carboxylic groups. The characteristic
band at 1760 cm−1 can be associated with the C-O stretching of the carboxylic group [26].

3.2. Adsorption Studies
3.2.1. Effect of pH

The pH of the solution is one of the most important parameters influencing the process
of interaction of the adsorbate with the adsorbent. When the pH changed in the range
from 2 to 10, the interaction between 2,4-D and the adsorbent also changed. The pHPZC
value was determined to characterize the surface charge of the adsorbent. It describes
the electrically neutral environment of the sorbent surface at a certain pH of the solution.
For an adsorbent, pHPZC was found to be 7.6, which means that the total surface charge
of the adsorbent will be positive at pH > 7.6 and negative at pH < 7.6. 2,4-D is a weak
acid and is present in solution mostly in its anionic form. Based on pHPZC data and the
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resulting dependence presented in Figure 4, it is shown that the pH region most effective
for adsorption is in the range of values from 2 to 4.
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The obtained correlation and the pHPZC concept suggest that electrostatic interactions
are one of the main adsorption mechanisms of 2,4-D on that sorbent. However, a small
adsorption capacity of Al2O3-0.25GO to 2,4-D was observed in an environment with a pH
higher than the pHPZC value, which may be due to interactions such as π-π stacking be-
tween the aromatic rings of 2,4-D and GO or hydrogen interactions with oxygen-containing
groups on the surface of the sorbent.

3.2.2. Adsorption Kinetics

Adsorption kinetics were evaluated by applying nonlinear pseudo-first-order (PFO) [27],
pseudo-second-order (PSO) [28] and Elovich [29] kinetic models. The models are usually
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taken to evaluate rate constants and adsorption rates. The kinetic parameters of the nonlin-
ear PFO and PSO models were calculated using Equations (2) and (3), respectively:

qt = qe·
(

1 − exp−k1·t
)

, (2)

qt =
q2

e ·k2·t
1 + q2

e ·k2·t
, (3)

where k1(min−1) and k2 (g/(mg·min)) are the rate constants for PFO and PSO, respectively,
and qe and qt (mg/g) are the number of adsorbed ions of 2,4-D at equilibrium and at time
t, respectively.

The Elovich model is b is expressed in the following way (4):

qt =
1
β

ln(αβt + 1), (4)

where α (mg/g min)—initial adsorption rate; β (g/mg)—desorption constant during
each experiment.

Figure 5 shows the results of the nonlinear models of a pseudo-first-order, pseudo-
second-order and the Elovich kinetic model for the adsorption of 2,4-D on Al2O3-0.25GO,
and Table 1 contains the variables of the kinetic models.

Table 1. Kinetic models for the removal of 2,4-D.

C0, mg/L
Pseudo-First-Order Pseudo-Second-Order Elovich

k1 qe1, mg/g R2 k2 qe2, mg/g R2 α,
mg/(g·min) β, g/mg R2

25 0.023 25.19 0.989 0.001 28.914 0.998 1.84 0.15 0.988

50 0.026 28.189 0.993 0.001 32.173 0.999 2.393 0.15 0.982

75 0.027 30.092 0.993 0.001 34.21 0.999 2.787 0.15 0.982

100 0.036 30.622 0.984 0.002 33.888 0.999 6.89 0.18 0.988

The best fit to the kinetic model of 2,4-D adsorption on Al2O3-0.25GO was shown
using the PSO model (R2 > 0.99). This indicates that the adsorption-limiting step involves
inter- and intramolecular interactions between 2,4-D and the adsorbent. In this case, the
rate of filling the adsorption centers on the Al2O3-0.25GO surface is proportional to the
number of unoccupied centers [30]. Although the Elovich kinetic model correlated less
with experimental 2,4-D adsorption data, the β variable could be used to confirm the
occurrence of inter or intramolecular interactions between the adsorbate and the adsorbent.
The Elovich model assumes that real solid surfaces are energetically inhomogeneous,
while the desorption process and the interaction between the adsorbed particles do not
have a significant effect on the adsorption kinetics at low surface coverage. The α and
β coefficients of the model represent the initial adsorption rate (mg/(g·min)) and the
desorption coefficient (g/mg), respectively. The α coefficient was >1 mg/(g·min) over
the entire concentration range, while the β coefficient varied from 0.15 to 0.18 g/mg.
This indicates a low desorption rate due to the effective interaction of 2,4-D and Al2O3-
0.25GO [31].
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3.2.3. Adsorption Isotherms

The three widely used models of Langmuir [32], Freundlich [33] and Temkin [34] were
used to describe the adsorption isotherms of 2,4-D on Al2O3-0.25GO. The simulation of
adsorption isotherms provides insight into the interaction of the solute with the adsorbent
and the nature of the adsorption process. These models show the dispersion behavior of the
adsorbed fragments in the aqueous and solid phases when adsorption reaches equilibrium.

The nonlinear form of the Langmuir isotherm could be represented by Formula (5):

qe= qmblce/(1 + bLce), (5)

where qm—maximum capacity of the monolayer (mg/g), and bl—the adsorption coefficient
(L/g). The Langmuir model assumes a single-layer coating of 2,4-D on the surface of
the adsorbent.

According to Freundlich’s theory, at a constant temperature, the amount of adsorbed
solute per unit mass of the adsorbent is proportional to the equilibrium concentration of
the substance adsorbed from the solution, raised to a certain power that is less than their
unity. Mathematically, the Freundlich isotherm can be presented as in Equation (6):

qe = KFce
1/n, (6)

where KF—the coefficient of distribution or adsorption coefficient (L/g).
The Temkin isotherm model takes into account the adsorbate–adsorbent interaction

and assumes that the heat of the adsorption of all the molecules in the layer will decrease
linearly as adsorbed molecules accumulate on the surface of the adsorbent [35]. The
isotherm was calculated according to Equation (7).

qe = (RT/bT) ln(Ace), (7)

where bT—the adsorption coefficient (J/mole); R—the universal gas constant of 8.314 J/(mol·K);
A—the constant, L/g; T—the absolute temperature (K).

Figure 6 shows the results of applying the isotherm models to the experimental data
of the adsorption 2,4-D on Al2O3-0.25GO.
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Comparing the obtained R2 values of the applied models, the Langmuir and Fre-
undlich equations describe the experimental data the best. This indicates that during the
adsorption of 2,4-D, both chemical and physical interaction processes occur between the
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adsorbate and the adsorbent [35]. It is clear that the Langmuir isotherm fits the isotherm
data best, with the highest R2 value of 0.996. Thus, based on the data presented in Table 2,
it can be concluded that the adsorption of 2,4-D on the Al2O3-GO sample followed the
Langmuir isotherm and was monolayered.

Table 2. Isotherm parameters for 2,4-D.

Model Parameters Calculated Values

Langmuir
qm, mg/g 35.181

bl, L/g 0.109
R2 0.996

Freundlich
KF, L/g 10.467

1/n 0.256
R2 0.891

Temkin
bT, J/mol 373.848

A, L/g 1.601
R2 0.984

Table 3 shows comparative data on adsorption capacity, specific surface area and time
to establish the adsorption equilibrium with respect to 2,4-D for different sorbents described
in the literature. It shows that the suggested Al2O3-0.25GO composite demonstrates a
satisfactory adsorption capacity for the target component.

Table 3. Comparison of capacity values for 2,4-D ions absorbed by different adsorbents.

Adsorbent qe, mg/g Equilibrium
Time, Min Ref.

[Co–Al–Cl] layered double hydroxide 20.51 60 [36]

Glutaraldehyde-crosslinked chitosan 252.55 - [37]

Reduced graphene oxide 270.1 1440 [38]

Modified tiger-nut residue 90.2 120 [39]

Organophilic clay 6.45 6 [40]

Al2O3-0.25GO 35.18 250 This work

4. Conclusions

In the present study, graphene oxide alumina granules were shown to have good
adsorption capacity towards the pollutant herbicide 2,4-D. Experimental adsorption data
were consistent with the Langmuir isotherm and the PSO model. Solution pH played
a key role in adsorption efficiency, which may imply the predominance of electrostatic
interactions in the adsorption process. 2,4-D was adsorbed most effectively at pH 2 to 4.
However, adsorption was also observed at higher pH values, which may indicate that
several mechanisms are involved in adsorption, such as, for example, π-π stacking or
hydrogen bonds.
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