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Abstract: This research aims to analyze the relationships between causal factors likely to
affect future CO2 emissions from the Thai transportation sector by developing the Structural
Equation Modeling-Vector Autoregressive Error Correction Mechanism Model (SEM-VECM Model).
This model was created to fill information gaps of older models. In addition, the model provides
the unique feature of viable model application for different sectors in various contexts. The model
revealed all exogenous variables that have direct and indirect influences over changes in CO2

emissions. The variables show a direct effect at a confidence interval of 99%, including per capita
GDP (∆ln(GDP)t−1), labor growth (∆ln(L)t−1), urbanization rate factor (∆ln(URT)t−1), industrial
structure (∆ln(IS)t−1), energy consumption (∆ln(EC)t−1), foreign direct investment (∆ln(FDI)t−1),
oil price (∆ln(OP)t−1), and net exports (∆ln(X− E)t−1). In addition, it was found that every variable
in the SEM-VECM model has an indirect effect on changes in CO2 emissions at a confidence interval
of 99%. The SEM-VECM model has the ability to adjust to the equilibrium equivalent to 39%.
However, it also helps to identify the degree of direct effect that each causal factor has on the
others. Specifically, labor growth (∆ln(L)t−1) had a direct effect on per capita GDP (∆ln(GDP)t−1)
and energy consumption (∆ln(EC)t−1) at a confidence interval of 99%, while urbanization rate
(∆ln(URT)t−1) had a direct effect on per capita GDP (∆ln(GDP)t−1), labor growth (∆ln(L)t−1), and
net exports (∆ln(X− E)t−1) at a confidence interval of 99%. Furthermore, industrial structure
(∆ln(IS)t−1) had a direct effect on per capita GDP (∆ln(GDP)t−1) at a confidence interval of 99%,
whereas energy consumption (∆ln(EC)t−1) had a direct effect on per capita GDP (∆ln(GDP)t−1)
at a confidence interval of 99%. Foreign direct investment (∆ln(FDI)t−1) had a direct effect on
per capita GDP (∆ln(GDP)t−1) at a confidence interval of 99%, while oil price (∆ln(OP)t−1) had a
direct effect on industrial structure (∆ln(IS)t−1), energy consumption (∆ln(EC)t−1), and net exports
(∆ln(X− E)t−1) at a confidence interval of 99%. Lastly, net exports (∆ln(X− E)t−1) had a direct
effect on per capita GDP (∆ln(GDP)t−1) at a confidence interval of 99%. The model eliminates the
problem of heteroskedasticity, multicollinearity, and autocorrelation. In addition, it was found that
the model is white noise. When the SEM-VECM Model was used for 30-year forecasting (2018–2047),
it projected that CO2 emissions would increase steadily by 67.04% (2047/2018) or 123.90 Mt CO2 Eq.
by 2047. The performance of the SEM-VECM Model was assessed and produced a mean absolute
percentage error (MAPE) of 1.21% and root mean square error (RMSE) of 1.02%. When comparing the
performance value with the values of other, older models, the SEM-VECM Model was found to be
more effective and useful for future research and policy planning for Thailand’s sustainability goals.
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1. Introduction

In recent years, Thailand has been experiencing steady economic growth as evidenced by the Gross
Domestic Product (GDP) growth from 1997 to present [1]. Much of the revenue growth contributing
to Thailand’s economy can be attributed to government policies promoting foreign investments in
Thailand, supporting exports in all sectors, supporting the tourism industry, reducing reliance on
imports, encouraging domestic investment in SMEs, and raising the minimum wage [2]. Such policies
have helped Thailand to develop its economy while boosting living standards at the same time
(2000–present) [1,2]. However, this has also led to an increase in energy consumption (1997–present),
as well as a steady rise in CO2 emissions.

Considering all sectors, transportation is ranked amongst the highest in energy consumption [3]
and CO2 emissions. As a result, it produced 75 Mt CO2 Eq. of greenhouse gasses in 2017 with a
growth rate of 17.1% compared to 2016 [4]. The sector was found to produce up to 91.2 percent of all
greenhouse gases in 2017, a percentage that has increased steadily since 1997 [3–5].

As a result of the increase in the transportation sector’s greenhouse gas emissions, a new CO2

forecasting model that is accurate, efficient, and effective is required to guide the formulation of
policy and planning. To this end, the SEM-VECM Model was developed from existing models to
be made available for national planning purposes, as well as for future application in other fields.
The researchers reviewed a number of relevant studies focusing on two important components,
namely relationship factors and forecasting models, to serve as guidance in the research process.
A streamlined review of studies was conducted for the relational investigation. Hu et al. [6] investigated
the relationship between energy consumption and economic growth in industrial sectors in China
by using first-and-second-generation panel unit root tests, panel co-integration tests, and a system
generalized moment method. The study found that, in the short term, there was a unidirectional
causal relationship between economic growth and energy consumption. Furthermore, in the long term,
a unidirectional causality was found between energy consumption and economic growth. Zhao et al. [7]
produced a comparative study investigating the equilibrium relationships and causal relationships
between economic growth, electricity consumption, labor force, and capital input in northern China by
applying a panel data analysis method based on the Cobb-Douglas production function. Their findings
showed all variables to be long-term co-integrated. In addition, bidirectional causal relationships were
found between electricity consumption and economic growth in six of these provinces, excluding the
Hebei province. The same study also showed a bidirectional relationships between capital input and
economic growth, as well as between labor force and economic growth, except for in the Beijing and
Hebei province. Armeanu et al. [8] attempted to explore the influence and causal relation between
renewable energy and sustainable economic growth in the 28 countries of the European Union (EU)
during 2003–2014 by using a multivariate panel data. In their study, they noted that biomass energy
had the highest influence on economic growth, while there was an indication of a unidirectional
causal relationship in the short and long term between sustainable economic growth and renewable
energies. Bandalos [9] examined the preciseness and utility of overall error and error estimators in
the structural equation models by using a method of Monte Carlo. In the study, it has shown that the
rescaled non-centrality parameter and EFO produced a highly precise estimate of the approximation
error and overall error amount. Gómez et al. [10] investigated the linear and nonlinear causality
relationship between energy consumption and economic growth in Mexico from 1965 to 2014 by
employing unit root with structural breaks, co-integration analysis, and linear and nonlinear causality
tests. They concluded that there were long-term linkages among production, capital, labor, and energy.
In terms of linear causal links, they extended from total and disaggregated energy consumption to
economic growth. Nonlinear causality went from energy consumption, transportation, capital, and
labor to output. This result affirmed the importance of input factors in economic activity, and that
energy conservation policies would have an impact on economic growth in Mexico.

Arango-Miranda et al. [11] produced a comparative empirical study to explore the links between
carbon dioxide emissions, energy consumption and economic growth in certain developed and
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developing countries. The study employed the hypothesis deigned for the Environmental Kuznets
Curve (EKC). The study’s findings did not support the hypothesis, yet it claimed that the exergy
intensity is useful for future research. Chang [12] initiated an investigation of correlations between
carbon dioxide emissions, energy consumption and economic growth in China by adapting a
multivariate causality test. He claimed that a long-term carbon dioxide reduction policy would
negatively affect the economy due to a closed-form relationship among the variables, and additionally,
that economic growth would raise energy consumption and CO2 emissions, worsening global climate
change. In six sub-Saharan African nations, Kivyiro and Arminen [13] analyzed the casual relationships
between carbon dioxide emissions, energy consumption, economic growth, and foreign direct
investment by implementing an autoregressive distributed lag model and co-integration. The results
indicated that all variables are co-integrated in the long term among all countries, and in certain
countries, foreign direct investment (FDI) was found to have a greater potential to raise CO2 emissions.
In general, unidirectional Granger causality links were observed regarding the relation between the
other variables and CO2 emissions. In other studies, the same areas of relational investigation have been
explored. Wesseh and Zoumara [14] examined the causal independence between energy consumption
and economic growth in Liberia by investigating evidence of a non-parametric bootstrapped causality
test. The study contributed to the existence of distinct bidirectional Granger causality between the
variables. Additionally, it examined how employment in Liberia influences economic growth, while
suggesting the appropriateness of the bootstrap technique. Yoo and Ku [15] investigated the causal
relationship between nuclear energy consumption and economic growth in six countries, namely
Pakistan, Switzerland, Argentina, Korea, France, and Germany, by using time-series techniques of unit
roots, co-integration, and Granger-causality. In this study, it was found that the relationships between
the variables among the countries were not uniform. Two types of relationships were observed,
presenting both bidirectional causality between nuclear energy consumption and economic growth in
Switzerland, and unidirectional causality between economic growth and nuclear energy in the case of
France and Pakistan. Moreover, the same causality was found in Korea leading from nuclear energy to
economic growth. While two other countries, Argentina and Germany, did not display any of those
relationships. Chang et al. [16] examined G6 countries, analyzing the causal relationship between
nuclear energy consumption and economic growth in those countries by optimizing the panel Granger
causality tests. The findings of the study showed a unidirectional causality from economic growth to
nuclear energy consumption across the countries, however, the UK was found to have a bidirectional
causality from nuclear energy consumption to economic growth.

In addition to the above studies, Nasreen and Anwar [17] explored the causal relationships
between trade openness, economic growth and energy consumption in Asian countries by applying
panel co-integration and causality approaches. The study concluded that all variables are co-integrated
and bidirectional causality is present between them. It also concluded that trade openness has a
positive impact on energy consumption. With regards to China, Zhixin and Xin [18] studied the
causal relationships between energy consumption and economic growth in the Shandong province
by utilizing statistical data from 1980 to 2008 with an adaptation of unit root, co-integration, and the
Granger causality test. The study indicated a long-term relationship and two-way causality between
the two factors, while also showing a positive relationship between them within the province and that
economic growth is strongly dependent on energy consumption. Yu et al. [19] focused on studying and
projecting urban energy consumption and CO2 emissions in Beijing from 2005–2011 and 2012–2030
by developing the Long-range Energy Alternatives Planning System (LEAP)-BJ model. The results of
the study showed how incremental changes in energy consumption led to fluctuations in total CO2

emissions during 2005–2011. It was estimated that Beijing would reduce total energy consumption by
21.36% and CO2 emissions by 35.37% from 2012 and 2030 if the proposed policies were implemented
in full under the POL scenario. Mudarissov and Lee [20] examined the casual relationship between
energy consumption and economic growth in Kazakhstan by adapting various methods, including
Granger causality, the Vector Error Correction Model, an augmented Dickey–Fuller and Phillips–Perron
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unit root tests, and a co-integration test. Their findings indicate long-term unidirectional causalities
leading from energy consumption (EC) to economic growth, yet also reflect short-term unidirectional
causalities leading from economic growth to energy consumption. This indicates the significance of
national energy production in boosting the economic growth.

A number of studies have employed various models for forecasting purposes. In Shandong,
China, Li and Li [21] forecasted energy consumption using the autoregressive integrated moving
average (ARIMA) Model, Gray Model (GM (1,1)), and the ARIMA-GM Model. The study concluded
that energy consumption during the forecasted years would increase at an average annual rate of
3.9 per cent, and that by 2020, the province’s energy demand would climb about 20 per cent compared
to that of 2015. Ozturk and Ozturk [22] forecasted Turkey’s energy consumption for a 25 year period
using the ARIMA Model. By using this model, they were able to demonstrate that Turkey’s energy
consumption could be expected to rise continuously until 2040, with the consumption of coal, oil,
natural gas, renewable energy, and total energy growing at an annual average percentage of 4.87,
3.92, 4.39, 1.64, and 4.20, respectively. In recent years, numerous countries have instituted policies to
increase industrial production, generally requiring higher energy consumption, to boost economic
growth. Hence, forecasting increases in energy consumption in a more accurate way would help
facilitate governments in determining the most appropriate policies to achieve their goals. Sun et
al. [23] sought to improve the accuracy of fossil fuel energy consumption predictions with regards to
China’s power generation. They established a novel hybrid quantum harmony search algorithm-based
LSSVM (QHSA-LSSVM) Model. Yuan et al. [24] presented a comparative study on primary energy
consumption forecasting in China from 2014 until 2020 with an application of the ARIMA Model
and GM (1,1) Model. Their study concluded that the growth rate of the primary energy use in China
during the forecasted years would increase, yet at a slower rate than the first decade of the new era.
Sen et al. [25] produced a study predicting energy consumption and Greenhouse Gas (GHG) emissions
for a pig iron manufacturing organization in India. Their study applied the ARIMA Model and the
validity of the model indicated that it was the best-fitted model for estimating the energy consumption.
Fan et al. [26] conducted a study forecasting natural gas demand in China from 2011 to 2017 by
implementing a combined forecasting model called the Grey Model and Self-Adapting Intelligent Grey
Model with Genetic Algorithm and Annual Share Changes (GM-S-SIGM-GA). The study indicated that
the combined model outperforms any other single forecasting model, while reflecting the following
values; mean absolute percentage error (MAPE; 4.48%), root mean square error (RMSE; 11.59), and
mean absolute error (MAE; 8.41), respectively.

In order to determine other associations for energy consumption prediction, Barak and Sadegh [27]
proposed an ensemble ARIMA–adaptive neuro-fuzzy inference system (ANFIS) hybrid algorithm for
predicting Iran’s energy consumption. The results indicated that the models could be used to enhance
the accuracy of a single ARIMA or ANFIS in the prediction of energy consumption. Okumus and
Dinler [28] attempted to combine the ANFIS with an artificial neural network (ANN) for wind-speed
forecasting and wind power generation. The prediction results provided a MAPE of 2.2598%, 3.3530%,
and 3.8589% at three different locations for daily average wind speeds. Zeng et al. [29] constructed a
forecasting model called the Homologous Grey Prediction Model which was used to forecast energy
consumption in China’s manufacturing sector for the years 2018 to 2024. The final prediction result
reflected a significant downward trend in the total energy consumption during the forecasted years.
Dai et al. [30] proposed a new forecasting model embracing various approaches named the Ensemble
Empirical Mode Decomposition and Least Squares Support Vector Machine Optimized by Improved
Shuffled Frog Leaping Algorithm (EEMD-ISFLA-LSSVM) to accurately predict energy consumption
in China from 2018 to 2022. Their study showed that there would be significant growth potential in
China’s energy consumption during the estimated duration. Additionally, Liu et al. [31] proposed
a forecasting model by optimizing the techniques of Multi-Variable Linear Regression (MLR) and
Support Vector Regression (SVR) along with a Gated Recurrent Unit (GRU) Artificial Neural Network
in order to predict the Chinese primary energy consumption from 2015 to 2012. Their prediction was a
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drop in energy consumption from 2954.04 Mtoe to 5618.67 Mtoe by 2021. Ma et al. [32] utilized linear
(Metabolic Grey Model), nonlinear (Non-linear Grey Model), and combined models (Metabolic Grey
Model-Autoregressive Integrated Moving Average Model) to predict the coal consumption in South
Africa from 2017 to 2030. The final result indicated a downward trend in future coal consumption
during the forecasted period, decreasing by 1.9 per cent per year. Ma et al. [33] attempted to forecast
renewable energy consumption by applying a machine learning forecasting algorithm devoid of
massive independent variables and assumptions. They concluded that the said technique produces an
enormous improvement of up to ~138.26-fold on REC-BMs and ~24.67-fold on HE-EC. At the same
time, they estimated that the technique would be able to save the USA ~2692.62 PJ petajoules (PJ) on
HE-EC and ~9695.09 PJ on REC-BMs for the eight-year forecast period.

By reviewing the relevant literature, we were able to determine that a number of studies have
been conducted on the same research area as ours, yet using different approaches. Furthermore, we
discovered that there were no studies modeling CO2 emissions based on the SEM-VECM Model.
Thus, we developed a model to use in sustainable development planning for Thailand in order to
maximize useful data outcomes. We used the time series data from 1990 to 2017 in Thailand to do
a forecast of CO2 emissions for the next 30 years (2018–2047). The projected results are to be used
in the policy planning of Thailand based on the next 30 years’ (2018–2047) sustainable development
strategy. The selection of independent variables was based on the framework of the above management
strategy. Hence, this research will be deemed useful and beneficial to national management and future
applications. The research process was as follows:

1. Identify a variable framework according to Structure Equation Modeling [34], where exogenous
variables and endogenous variables are extracted to be latent variables and observed variables.

2. Analyze the long-term relationships of the causal factors based on the theory of Augmented
Dickey-Fuller [35,36] optimized with the concept of Johansen and Juselius [37,38].

3. Choose variables that have a co-integration at the same level to construct a SEM-VECM Model
where the relationship of causal factors is both in the short and long term, indicating the direct
effect, indirect effect, and total effect of the relationship.

4. Examine the developed model regarding its heteroscedasticity, multicollinearity, and autocorrelation.
5. Compare the effectiveness of the SEM-VECM Model with other existing models, including

Multiple Linear Regression, Gray Model (GM (1,1)), GM-ARIMA Model, Artificial Neural Natural
Model (ANN), back propagation neural network (BP Model), and ARIMA Model, through the
performance measures of MAPE and RMSE.

6. Analyze the relationship and direction parameter estimates of the SEM-VECM Model.
7. Forecast CO2 emissions for the next 30 years (2018–2047) using the SEM-VECM Model.

The flowchart of the SEM-VECM Model is shown in Figure 1 below.
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Figure 1. The flowchart of the Structural Equation Modeling-Vector Autoregressive Error Correction
Mechanism (SEM-VECM) model.

2. The Forecasting Model

2.1. Structure Estimation Modeling-Vector Error Correction Mechanism Model (SEM-VECM Model)

The SEM-VECM Model is adapted from the theory of Structure Estimation Modeling (SEM) [34]
with an optimization of the Vector Error Correction Mechanism Model (VECM) [39]. The model is
illustrated in Figure 2.

When we align all relationships in Figure 2, it can be seen that there are independent variable
(ξ), dependent variable (η), observed independent variable (X), observed dependent variable (Y),
variance of estimated dependent variable (ζ), variance of observed variable X (δ), variance of observed
variable Y (ε), correlation coefficient between independent variables (φ), correlation coefficient between
independent variable and dependent variable (γ), and correlation coefficients between dependent
variables (β).

Where
ξ = independent variable (exogenous construct)
η = dependent variable (endogenous construct)
X = observed variable of ξ

Y = observed variable of η

λX = correlation coefficient between independent variable and observed variable
λY = correlation coefficient between dependent variable and observed variable
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δ = variance of estimated variable X
ε = variance of estimated variable Y
φ = correlation coefficient between independent variables
β = correlation coefficients between dependent variables
γ = correlation coefficient between independent variable and dependent variable
ζ = variance of estimated dependent variable
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Figure 2. Relationships of all variables in the model.

However, the SEM model incorporates certain variables that fall under causal factors, yet are
stationary as conceptualized by Dickey and Fuller [35]. When all causal factors are found to be
stationary, an analysis of co-integration test based on Johansen and Juselius [36] has to be put in place.
Then, the outcome was used to form the SEM-VECM model to estimate the size of parameter, as well
as construct a forecasting model as shown in the following.

In this section, there are certain areas we must explore before analyzing the data. Here, the
stochastic or deterministic data has the potential to make the model spurious. The spurious model
is found when the estimated value is well-correlated, yet it does not reflect a true magnitude of
influence. This is due to the data that were used in the modeling being non-stationary. Dickey and
Fuller [35] introduced a theory to tackle the issue by undertaking a unit root test called the Augmented
Dickey-Fuller test for non-stationary data, the results of which can be compared with MacKinnon
Critical Values [36] as illustrated below:

Xt = ρXt−1 + εt (1)

We take Equation (1) to perform the unit root test. If the output gives |ρ| < 1, the data is stationary.
In contrast, if ρ = 1, Xt is non-stationary. From the same equation, if the random walk with drift joins
in the equation, the output will be as follows:

∆Xt = α + ρXt−1 + εt (2)

In Equation (2), if the random walk with drift and linear time trend are considered in the equation,
the above equation will be as follows:

∆Xt = α + βt + δXt−1 + εt (3)
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where t = time, and ρ = (1 + δ). If δ is negative, Xt exists at the integration of order zero.
Hence, Equations (1)–(3) were put forth for the co-integration test of at least two variables. Here,

we used Xt and Yt. If Xt and Yt are integrated of order d, it can be written as I(d), and it must have a
linear combination as αXt + βYt is integrated of order (d–b), given that d > b > 0.

Therefore, implementing the co-integration test based on Augment Dickey-Fuller can reflect a
serial correlation as shown below:

∆êt = γêt−1 +
p

∑
i=1

φi∆êt−1 + vt (4)

For Equation (4), if −2 < γ < 0, the residual is stationary, and the above equation has a
co-integration. Since there is the existence of co-integration, we had to take the above equation for an
Error correction mechanism analysis as demonstrated below:

∆Yt = φ1 + φ2 êt−1 + φ3∆Xt +
p

∑
h=1

φ4h∆Xt−h+
p

∑
i

φ5i∆Yt−i+vt (5)

where êt is residual of the co-integrating regression equation and φ2 is a discrepancy between the
actual value of Yt and the long term value in the period that has been eliminated.

The SEM-VECM Model includes short-and long-term relationships indicating an equilibrum of
the VECM Model in the matrix as shown below:

∆Xt = ΠXt−1 + Γ1∆Xt−1 + Γ2∆Xt−2 + . . . + Γp−1∆Xt−(p−1) + ut (6)

where
Π = −(I − A1 − A2 − . . .− Ap) as n× n matrix
Γ1 = (A2 + A3 + A4 + . . . + Ap) as n× n matrix
Γ2 = (A3 + A4 + . . . + Ap) as n× n matrix
Γp−1 = −(Ap) as n× n matrix
Equation (6) can be drawn in the relation form between dependent variable and independent

variabls as follows:

∆Xt = αβ′Xt−1 + Γ1∆Xt−1 + Γ2∆Xt−2 + . . . + Γp−1∆Xt−(p−1) + ut (7)

where β′Xt−1 is a r× 1 vector at I(0) or written as β′Xt−1 ∼ I(0), row 1, row 2, and row r of β′Xt−1 shows
a long-term equilibrium relationship in form 1, form 2, . . . , form r of time series X1t, X2t, . . . , ∆Xnt,
respectively.

The number of the vector in the long-term equilibrium relationship is equal to r, where r < n.
This means such a number has to be lower than the time series in the model (VECM), simplifying that
the mentioned number should begin from having no vector in a long-term equilibrium relationship,
r = 0, to the vector of n− 1 as (r = n− 1) or written as r = 0, 1, 2, . . . , n− 1.

In the case where time series X1t, X2t, . . . , ∆Xnt have no long-term equilibrium relationship, r = 0,
the coefficient matrix Π becomes zero or written as Π = 0 where 0 is matrix zero. In this case, we shall
use the analysis model of VAR(p) in the first difference like below:

∆Xt = A1∆Xt−1 + A1∆Xt−2 + . . . + Ap∆Xt−p + ut (8)

In the case where time series X1t, X2t, . . . , ∆Xnt have a long-term equilibrium relationship, the
number of such relationship can be 1, . . . , n− 1 forms (or r = 1, . . . , n− 1). Here, it can be written as
Π = αβ′, where β is n× r matrix of such a relationship.

In the case where the division of matrix Π is a multiplied outcome of matrix α and β′, this can
result in another n × r matrix, which can be written as α∗ and β∗; later, such a matrix resulted in
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Π = α∗β∗. Hence, we can use β∗ to show a long-term equilibrium relationship as β. This can be proven
by using any n× n non-singular matrix. This kind of matrix is denoted as Q to multiply with matrix α

and β, while leaving the coefficient matrix Π as it is. This can be demonstrated as follows:

Π = α∗β∗′ (9)

where α = αQ′ and β∗ = βQ−1.
Consider the SEM-VECM model as follows:

∆Xt = αβ̃′X̃t−1 + Γ1∆Xt−1 + Γ2∆Xt−2 + . . . + Γp−1∆Xt−(p−1) + φDt + ut (10)

where β̃′ =
[

β′ β0 β1

]
is the r × (n + 2) matrix, β is the n× r matrix, β0 and β1 are the r × 1

vector, X̃t−1 =
[

Xt−1 1 t
]′

is the (n + 2)× 1 vector, α is the n× r matrix, and rank (α) = rank

(β̃) = r. Additionally, Dt is the matrix indicating a deterministic component.
The estimation of the parameter of the long-term co-integrating vector β̃ can be achieved with

the application of maximum likelihood by assuming vector ut ≈ Normal (0, ∑) 0 is zero, and ∑ is the
variant matrix of ut. Johansen [37] proved that the estimation of vector β̃n×r with this method would
result in an eigenvector in accordance with the eigenvalue from the minimum to maximum value. This
is achieved using the equation below:∣∣∣ λS11− S10S−1

00 S01

∣∣∣ = 0 (11)

Sij =
1
T

RitR′jt,i = 0, 1 and j = 0, 1 (12)

where T is the number of data used in the SEM-VECM Model. R0t is the n× T matrix of the residual
retrieved from a regression equation with a variable of ∆Xt, and the independent variable is ∆Xt−1,
∆Xt−2, . . . , ∆Xt−p+1, Dt. R1t is the (n + 2) × T matrix of the residual retrieved from a regression
equation with a variable of X̃t−1, and the independent variable is ∆Xt−1, ∆Xt−2, . . . , ∆Xt−p+1, Dt.

If λ̂i(i = 1, 2, . . . , n)11 is the eigenvalue computed from Equation (11) where 1 > λ̂1 > λ̂2 >
. . . > λ̂n≥ 0, let the eigenvector consistent with the eigenvalue λ̂1, λ̂2, . . . , λ̂n be written as
V̂ =

[
v̂1 v̂2 . . . v̂n

]
(n+2)×(n+2)

. Therefore, we can obtain the estimator of the co-integrating

vector as follows:
V̂ =

[
v̂1 v̂2 . . . v̂r

]
×(n+2)×r

(13)

Thus, according to the concept of Johansen [37], when all variables are analyzed and found to be
co-integrated, more values can be added into the error correction mechanism by inserting ECMt−1

into a model. ECMt−1 was incorporated into the SEM-VECM model by estimating a parameter in the
same way as the other variables do. The estimated parameter will then reflect the magnitude and the
adjustment ability for the equilibrium.

Therefore, the SEM-VECM Model is a model that reflects the relationship between exogenous
variables and endogenous variables in the pursuit of causal relationship both directly and indirectly.
Additionally, this relationship happens in both the short and long term. When the model is used
for forecasting, it will be high in efficiency in outcome and viable for future application in different
contexts. As for its designation, the model is most suitable for both short- and long-term prediction.
Therefore, this research applied the SEM-VECM model to a 30-year forecast (2018–2047), while the
model can be explained below.

Commonly, there are two popular patterns of forming primary and secondary assumptions
pertaining to the number of the long-term co-integration.

Pattern 1: H0 is the maximal number of vectors indicating the long-term co-integration equivalent
to r. H1 is the number of vectors indicating the long-term co-integration greater than r. In the above,
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r = 0,1,2,. . . ,n− 1; the statistical value to testify the above assumption is trace statistic (λtrace), which
can be computed using the equation below:

λtrace(r) = −T
n

∑
i=r+1

(1− λ̂i) (14)

Pattern 2: H0 is the maximal number of vectors indicating the long-term co-integration equivalent
to r. H1 is the number of vectors indicating the long-term co-integration equivalent to r + 1. In
the above, r = 0, 1, 2, . . . , n − 1, and the statistical value to testify the above assumption is
maximum eigenvalue λmax, which can be computed using the equation below:

λmax(r, r + 1) = −T(1− λ̂r+1) (15)

Âi =


I +

_
Π +

_
Γ

_
Γ i −

_
Γ i−1

−
_
Γ p−1

, i = 1
, 2 ≤ i ≤ −1

i = p
(16)

After that, we used the SEM-VECM forecasting model of the time series in vector Xt by using
the same concept, which is the forecasting of the minimum mean square error. Hence, the forecast of
1, 2, . . . , h pre-timing of the time series in the vector Xt can be illustrated as:

X̂T+1 = Â1XT + Â2XT−1 + ÂpXT−p+1 (17)

X̂T+2 = Â1XT+1 + Â2XT−1 + ÂpXT−p+2 (18)

X̂T+h = Â1XT+h−1 + Â2XT+h−2 + . . . + ÂpXT−p+h (19)

where X̂T+j = Â1XT+j if j < 0.

2.2. Measurement of the Forecasting Performance

For this research, we decided to use the mean absolute percentage error (MAPE) and root mean
square error (RMSE) to compare the forecasting accuracy of each model [39,40]. The calculation
equations are shown as follows:

MAPE =
1
n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (20)

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (21)

3. Empirical Analysis

3.1. Screening of Influencing Factors for Model Input

This paper identified a structure equation modeling containing both exogenous variables and
endogenous variables, in which the variables are both latent variables and observed variables.
The latent variables comprise economic growth, social growth, and environmental growth, whereas
the observed variables include nine factors: carbon dioxide emissions (CO2), per capita GDP (GDP),
labor growth(L), urbanization rate (UR), industrial structure (IS), energy consumption (EC), foreign
direct investment (FDI), oil price (OP), and net exports (X− E). However, all causal factors we used in
the structure equation modeling were confirmed to be stationary at the same level according to the
Augmented Dickey-Fuller theory. Therefore, this study found that all nine causal factors are stationary
at the First Difference I(1), as illustrated in Table 1.
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Table 1. Augment Dickey Fuller (ADF) test at First Difference I(1).

ADF Test at First Difference I(1) MacKinnon Critical Value

Variables Value 1% 5% 10%

∆ln(CO2) −6.79 *** −4.75 −3.41 −2.77
∆ln(GDP) −5.92 *** −4.75 −3.41 −2.77

∆ln(L) −4.77 *** −4.75 −3.41 −2.77
∆ln(UR) −6.51 *** −4.75 −3.41 −2.77
∆ln(IS) −5.99 *** −4.75 −3.41 −2.77
∆ln(EC) −6.47 *** −4.75 −3.41 −2.77

∆ln(FDI) −4.99 *** −4.75 −3.41 −2.77
∆ln(OP) −6.54 *** −4.75 −3.41 −2.77

∆ln(X− E) −6.13 *** −4.75 −3.41 −2.77

Note. CO2 is the carbon dioxide emissions; GDP is the per capita GDP; L is the labor growth; UR is the urbanization
rate, IS is the industrial structure, EC is the energy consumption, FDI is the foreign direct investment, OP is the oil
price, and X− E is net exports, *** denotes a significance, α = 0.01, compared to the Tau test with the MacKinnon
Critical Value, ∆ is the first difference, and ln is the natural logarithm.

In this paper, we have defined the structure equation modeling with exogenous variables and
endogenous variables for latent variables, such as economic growth, social growth, and environmental
growth, and the observed variables are nine factors: carbon dioxide emissions, per capita GDP, labor
growth, urbanization rate, industrial structure, energy consumption, foreign direct investment, oil
price, and net exports. However, we have determined that all causal factors analyzed in the structural
equation modeling must be stationary at the same level according to the Augmented Dickey-Fuller
theory. The nine causes are stationary at the First Difference I(1), We deployed a time-series data
from 1977 to 1990 in the analysis. In addition, we tested the estimated value as to whether it is not
spurious or otherwise by assessing the problem of heteroskedasticity, perfect multicollinearity, and
autocorrelation, as illustrated in Table 1.

Table 1 demonstrates that all factors are non-stationary at Level I(0). The factors were carried out
for a first difference: it was found that those factors became stationary at Level I(1). Here, the value
of the ADF test was greater than the MacKinnon Critical Value. This shows that the factors were at a
statistical significance level of 1%, 5%, and 10%. Once the factors were identified as stationary, they
were taken for a co-integration test, as suggested by Johansen Juselius as shown in Table 2.

3.2. Analysis of Co-Integration

Table 2 presents the results of co-integration test. The results verified that each causal factor was
co-integrated at a confidence interval of 99%. This is because the trace test results were 241.65 and
89.15, whereas the maximum eigenvalue test results were 135.09 and 91.50, which are higher than
MacKinnon Critical Values at a significance level of 1% and 5%. In addition, the factors were used to
construct the SEM-VECM Model.

Table 2. Co-integration test by Johansen Juselius.

Variables Hypothesized
No of CE(S)

Trace Statistic
Test

Max-Eigen
Statistic Test

MacKinnon
Critical Value

1% 5%

∆ln(CO2), ∆ln(GDP), ∆ln(L), ∆ln(UR), ∆ln(IS),
∆ln(EC), ∆ln(FDI), ∆ln(OP), ∆ ln(X− E)

None *** 241.65 135.09 25.25 12.50
At Most 1 *** 89.15 91.50 5.60 3.50

*** denotes significance α = 0.01.

3.3. Formation of Analysis Modeling with the SEM-VECM Model

The SEM-VECM Model is a model optimized to illustrate the relationship of causal factors in both
the short and long term. The direct and indirect effect relationships of factors are shown in Figure 2.
In addition, the paper examines the model with regards to heteroscedasticity, multicollinearity and
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autocorrelation. The examination results show that the SEM-VECM Model is free from those three
issues. The analysis results of the relationships demonstrated by the SEM-VECM Model are presented
in Table 3.

Table 3. Results of relationship size analysis of the SEM-VECM Model.

Dependent
Variables

Type of
Effect

Independent Variables

∆ln(GDP)t−1∆ln(L)t−1 ∆ln(UR)t−1 ∆ln(IS)t−1 ∆ln(EC)t−1 ∆ln(FDI)t−1 ∆ln(OP)t−1 ∆ln(X−E)t−1 ECMt−1

∆ln(CO2)t−1 DE 0.82 *** 0.31 ** 0.69 *** 0.74 *** 0.80 *** 0.66 ** 0.47 ** 0.35 *** 0.39 ***
IE 0.11 *** 0.15 ** 0.04 *** 0.09 *** 0.02 *** 0.01 ** 0.05 ** 0.11 *** -

∆ln(GDP)t−1 DE - 0.09 *** 0.64 *** 0.36 *** 0.55 *** 0.32 *** - 0.73 *** -
IE - - - - - - - -

∆ln(L)t−1 DE - - 0.62*** - - - - - -
IE - - - - - - - -

∆ln(UR)t−1 DE - - - - - - - - -
IE - - - - - - - - -

∆ln(IS)t−1 DE - - - - - - 0.22 *** - -
IE - - - - - - - -

∆ln(EC)t−1 DE - 0.45 *** - - - - 0.43 *** - -
IE - - - - - - - - -

∆ln(FDI)t−1 DE - - - - - - - - -
IE - - - - - - - - -

∆ln(OP)t−1 DE - - - - - - - - -
IE - - - - - - - - -

∆ln(X− E)t−1 DE - - 0.49 *** - - - 0.41 ** - -
IE - - - - - - - - -

Note: In the above, ECMt−1 is Error Correction Mechanism test, *** denotes significance α = 0.01, ** denotes
significance α = 0.05, χ2/d f is 1.19, root mean square of error approximation (RMSEA) is 0.02, root mean squared
residual (RMR) is 0.008, goodness of fit index (GFI) is 0.97, adjusted goodness of fit index (AGFI) is 0.99, R-squared
is 0.95, adjusted R-squared is 0.94, the Durbin-Watson statistic is 1.89, the F-statistic is 275.00 (probability is 0.00),
the ARCH test is 35.01 (probability is 0.1), the LM test is 1.36 (probability is 0.10), DE is direct effect and IE is
indirect effect.

Figure 3 demonstrates the analysis results of relationship of the causal factors in the SEM-VECM
Model. The factors of the model consist of ∆ln(CO2)t−1, ∆ln(GDP)t−1, ∆ln(L)t−1, ∆ln(UR)t−1,
∆ln(IS)t−1, ∆ln(EC)t−1, ∆ln(FDI)t−1, ∆ln(OP)t−1, ∆ln(X− E)t−1 and ECMt−1. The study indicates
that each causal factor has both direct and indirect effect relationships, while the relationship size can
be found in Table 3.
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Table 3 illustrates the parameters of the SEM-VECM Model with a statistical significance level
of 1% and 5%. The study analysis confirms that each causal factor has an influence on changes in
CO2 emissions in both direct effect and indirect effect, as can be observed in the following. The factor
of per capita GDP (∆ln(GDP)t−1) had a direct effect on CO2 emissions (∆ln(CO2)t−1), equivalent to
82.00%, and its indirect effect was equal to 11.00% with a significance level of 1%. Labor growth
(∆ln(L)t−1) had a direct effect on CO2 emissions (∆ln(CO2)t−1) at 31.00%, while its indirect effect
was equal to 15.00% with a significance level of 5%. In addition, labor growth (∆ln(L)t−1) had a
direct effect on per capita GDP (∆ln(GDP)t−1) equivalent to 9.00% with a significance level of 1%,
and it also (∆ln(L)t−1) had a direct effect on energy consumption (∆ ln (EC)t−1) equivalent to 45.00%
with a significance level of 1%. The urbanization rate factor (∆ln(URT)t−1) had a direct effect on
CO2 emissions (∆ln(CO2)t−1) equivalent to 69.00%, and its indirect effect was equal to 4.00% with
a significance level of 1%. Furthermore, urbanization rate (∆ln(URT)t−1) had a direct effect on
per capita GDP (∆ln(GDP)t−1) equivalent to 64.00% with a significance level of 1%. Urbanization
rate (∆ln(URT)t−1) had a direct effect on labor growth (∆ln(L)t−1) equivalent to 62.00% with a
significance level of 1%, and the urbanization rate (∆ln(URT)t−1) also had a direct effect on net exports
(∆ln(X− E)t−1) equivalent to 49.00% with a significance level of 1%. As for industrial structure
(∆ln(IS)t−1), it had a direct effect on CO2 emissions (∆ln(CO2)t−1) equivalent to 74.00% and its indirect
effect was equal to 9.00% with a significance level of 1%. In addition, industrial structure (∆ln(IS)t−1)
had a direct effect on per capita GDP (∆ln(GDP)t−1) equivalent to 36.00% with a significance level of
1%. Energy consumption (∆ln(EC)t−1) had a direct effect on CO2 emissions (∆ln(CO2)t−1) at 80%, and
its indirect effect was equal to 2% with a significance level of 1%. With regards to energy consumption
(∆ln(EC)t−1), it had a direct effect on per capita GDP (∆ln(GDP)t−1) at 55% with a significance level
of 1%. Foreign direct investment (∆ln(FDI)t−1) had a direct effect on CO2 emissions (∆ln(CO2)t−1)
at 66%, and its indirect effect was equal to 1% with a significance level of 1%. Furthermore, foreign
direct investment (∆ln(FDI)t−1) had a direct effect on per capita GDP (∆ln(GDP)t−1) at 32% with a
significance level of 1%. Oil price (∆ln(OP)t−1) had a direct effect on CO2 emissions (∆ln(CO2)t−1)
equivalent to 47%, and its indirect effect is equal to 5% with a significance level of 5%. Oil price
(∆ln(OP)t−1) had a direct effect on industrial structure (∆ln(IS)t−1) at 22% with a significance level
of 1%, while oil price (∆ln(OP)t−1) had a direct effect on energy consumption (∆ln(EC)t−1) at about
43% with a significance level of 1%. Moreover, oil price (∆ln(OP)t−1) had a direct effect on net exports
(∆ln(X− E)t−1) at about 41% with a significance level of 5%. Net exports (∆ln(X− E)t−1) had a direct
effect on CO2 emissions (∆ln(CO2)t−1) at about 35%, and its indirect effect was about 11% with a
significance level of 1%. In addition, net exports (∆ln(X− E)t−1) had a direct effect on per capita GDP
(∆ln(GDP)t−1) at 73% with a significance level of 1%.

ECMt−1 had a parameter of −0.39, which indicates that the adjustment ability of the SEM-VECM
Model to the equilibrium is at the rate of 39%.

Based on the analysis shown in Table 3, all variables were included in the forecast. In order to see
the effectiveness of the SEM-VECM model, we conducted a comparison of forecasting performance by
using the MAPE and RMSE. This comparison was paired against other models, namely, the multiple
linear regression, artificial neural natural (ANN), back propagation neural network (BP Model), gray
(GM (1,1)), ARIMA and GM-ARIMA models, as demonstrated below.

Table 4 shows that the SEM-VECM Model had the lowest value of MAPE and RMSE equivalent
to 1.21% and 1.02%, respectively. In comparison with other models, this produces the following
results. The GM-ARIMA Model had a MAPE and RMSE of 4.63% and 4.09%, respectively. The ARIMA
Model presented a MAPE and RMSE with a percentage of 4.97 and 6.07, respectively. The Gray
Model (GM (1,1) had a MAPE and RMSE of 8.61% and 7.98%, respectively. The Back propagation
neural network (BP Model) had a MAPE and RMSE of 10.15% and 10.03%, respectively. The Artificial
Neural Natural Model (ANN) generated a MAPE and RMSE of 15.54% and 14.22%, respectively,
while the Multiple Linear Regression model had a MAPE and RMSE equivalent to 23.09% and 21.39%,
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respectively. Thus, the SEM-VECM Model is seen to be the most appropriate model for the future
long-term forecasting.

Table 4. The performance monitoring of the forecasting model.

Forecasting Model Mean Absolute Percentage
Error (MAPE) (%)

Root Mean Square Error
(RMSE) (%)

Multiple Linear Regression model 23.09 21.39
Artificial Neural Natural Model (ANN) 15.54 14.22

Back propagation neural network (BP model) 10.15 10.03
Gray model (GM (1,1)) 8.61 7.98

ARIMA model 4.97 6.07
GM-ARIMA Model 4.63 4.09
SEM-VECM Model 1.21 1.02

3.4. CO2 Emission Forecasting Based on the SEM-VECM Model

We later employed the SEM-VECM Model to predict changes in CO2 emissions in Thailand’s
transportation sector for the next 30 years (2018–2047), as shown in Figure 4.
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Figure 4 shows that CO2 emissions in Thailand’s transportation sector over the next 30 years
(2018 to 2047) are projected to increase with a growth rate of 67.04%, producing a significant amount of
CO2 emissions, continuously adding to the greenhouse gas problem.

4. Discussion

This research was conducted to develop a new long-term forecasting model adapted from
existing, older models. The newly-developed SEM-VECM Model was designed for use in long-term
forecasting of CO2 emissions in Thailand’s transportation sector over the next 30 years (2018–2047).
The SEM-VECM Model was constructed utilizing various relevant forecasting theories. The study
found that the SEM-VECM Model is the most efficient model with the lowest MAPE and RMSE as
compared to the other models, namely GM-ARIMA Model, ARIMA Model, Gray Model (GM (1,1)),
Back propagation neural network (BP Model), Artificial Neural Natural Model (ANN), and Multiple
Linear Regression Model.

The SEM-VECM Model projected CO2 emissions from the Thai transportation sector to increase
steadily over the projection period. This indicates that CO2 levels will likely increase beyond projections
used for the government’s current management strategy. At the same time, the results reflect that the
current management plans and approaches will likely not be effective enough to achieve its sustainable
development goals. Therefore, the responsible parties must focus on the formulation of new policies
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and management strategies taking into account each causal factor affecting changes in CO2 emissions
in the transportation sector, be it a direct and indirect effect. Otherwise, poor planning could result in
serious negative consequences for both the economy and environment.

This research took a unique approach to forecasting CO2 emissions from the transportation sector.
It was structured based on an analysis of the causal factors, optimizing the Structural Equation Model,
and utilizing the VECM Model, which had not been done in previous studies. The researchers chose
to use LISREL software integrating Microsoft office to produce the most efficient and effective tool,
which is also suitable for application in other sectors. The SEM-VECM Model passed an analysis of
co-integration test and error correction mechanism test, which testifies to its ability as an ideal model
for checking heteroskedasticity, multicollinearity, and autocorrelation. Throughout the study, it can
be observed that the SEM-VECM Model is capable of predicting long-term changes more effectively
compared to older models.

This paper shares similarities with past studies with regards to predicting CO2 emissions in both
the short and long term by sector. However, few studies forecast more than 20 years into the future.
The current study integrated advanced statistics in its modeling and made special effort to minimize
errors. However, since the model deals with long-term prediction, there are possible factors that could
affect its accuracy. Therefore, the paper emphasized the research processes, and used only the specified
causal factors with strict criteria in the selection process. If certain variables did not meet the criteria,
they were immediately removed from the model. This is another factor which distinguishes this model
from other existing forecasting models.

With regards to further study, any interested individuals should pay careful attention to choosing
causal factors and the research process in reference to this research. Additionally, the estimation of
parameters must use advanced statistics to close research gaps of past models in developing new
models. Causal factors must be stationary at the same level, and adjustment to the equilibrium must be
taken into a consideration. Furthermore, the Error Correction Mechanism should always be included
in the model.

A limitation of this research is that Thailand’s current sustainable development policy does not
take into account new causal factors. This will no doubt change in the future. One new factor that
should be considered is how the continued promotion of national tourism will contribute to future
changes in CO2 emissions. It is recommended that the government reviews and revises the relevant
current policies based effective implementation of this forecasting model so as to increase managerial
efficiency and effectiveness.

5. Conclusions

As part of the contributions of this paper, we have established a forecasting model called
the “SEM-VECM Model,” which is an application of the SEM model that incorporates the VECM
Model. This application was initiated in order to increase the efficiency and effectiveness of
the established model. Additionally, it attempts to pave a guideline for future research. In the
modeling of the SEM-VECM Model, only stationary variables at the first difference were selected.
They included per capita GDP (∆ln(GDP)t−1), labor growth (∆ln(L)t−1), urbanization rate factor
(∆ln(URT)t−1), industrial structure (∆ln(IS)t−1), energy consumption (∆ln(EC)t−1), foreign direct
investment (∆ln(FDI)t−1), oil price (∆ln(OP)t−1), and net exports (∆ln(X− E)t−1). Those variables
then underwent a co-integration test. The study showed that all variables are co-integrated, and this
enabled us to include ECM into the analysis of the SEM-VECM model.

As for the study’s findings, it is evident that the SEM-VECM model can adjust itself toward the
equilibrium with a ratio of 39%, and this implies that all variables have a direct effect on the changes of
CO2 emissions during the time period (t − 1) at confidence intervals of 99% and 95%. In addition, all
factors were found to have an indirect effect on the change of CO2 emissions during the time period
(t − 1) at confidence intervals of 99% and 95%, except for the error correction mechanism (ECM)
variable. Additionally, the study reveals that all variables are influential over one variable to another,
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with both direct and indirect effects at confidence intervals of 99% and 95%. Therefore, the use of the
SEM-VECM Model for a CO2 emissions prediction is more effective when compared to previously
studied models.

As for the study’s results, it will have effective applications for future research and in different
research contexts or sectors. Moreover, it will help to facilitate national policy planning in the future.
Nonetheless, for maximal application of this research in the future, any interested individual will have
to develop a new model by adapting the established model, while other concepts need to be taken
into account. For instance, the concept of path analysis along with the Vector Autocorrective (VAR)
model can be used for modeling, or the factor analysis with the Autoregressive Integrated Moving
Average with Exogenous Variables (ARIMAX) model should be adapted to construct a model. All of
these different applications of various concepts are to produce a useful output to achieve sustainable
development goals.
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