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Abstract: The vitality, timing, and magnitude of hydropower production is driven by streamflow,
which is determined by climate variables, in particular precipitation and temperature. Accordingly,
changes in climate characteristics can cause alterations in hydropower production potential. This
delineates a critical energy security concern, especially in places such as Canada, where recent
changes in climate are substantial and hydropower production is important for both domestic
use and exportation. Current Canadian assessments, however, are limited as they mainly focus
on a small number of power plants across the country. In addition, they implement scenario-led
top-down impact assessments that are subject to large uncertainties in climate, hydrological, and
energy models. To avoid these limitations, we propose a bottom-up impact assessment based on the
historical information on climatic trends and causal links between climate variables and hydropower
production across political jurisdictions. Using this framework, we estimate expected monthly
gain/loss in regional hydropower production potential under the continuation of historical climate
trends. Our findings show that Canada’s production potential is expected to increase, although the
net gain/loss is subject to significant variations across different regions. Our results suggest increasing
potential in Yukon, Ontario, and Quebec but decreasing production in the North Western Territories
and Nunavut, British Columbia, and Alberta.

Keywords: hydropower production; climate change; bottom-up impact assessment; trend analysis;
casualty; Canada

1. Introduction

Increasing global energy demand, limiting fossil fuel resources as well as looming effects of climate
change have created the urgency for looking at alternative energy resources, in particular renewable
energy supplies [1]. In contrast to fossil fuels, renewable energy sources are sustainable, constantly
replenished, easily convertible to electricity, and are not associated with large greenhouse gas emissions.
These characteristics make renewable energy sources ideal for moving towards a carbon-free global
economy [2,3]. Currently hydropower accounts for the highest proportion of renewable energy supply
globally [4]. There are several countries, such as Canada, where national energy security is largely
dependent on the hydropower. The majority of Canada’s hydropower facilities are located in the
provinces of Quebec, British Columbia, and Ontario [5–7], that include the largest population and
concentration of socio-economic activities. Hydropower is currently the first source of electricity supply
in Canada. In 2015, hydropower supplied 95% of the electricity need in Québec, 97% in Manitoba,
95% in Newfoundland and Labrador, and 86% in British Columbia [8]. In the same year, Canada was
the second largest hydroelectric exporter in the world, generating 10% of the world’s hydroelectricity
exportation [9], half of which was contributed by Québec only [10].
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Canada owes this massive production potential to a large network of rivers and lakes, distributed
coast to coast. From the hydrological perspective, running water is the main driver of hydropower
production. The seasonal, annual, and interannual characteristics of runoff, however, are largely
controlled by climate variables in particular precipitation and temperature [11–13]. As a result,
alterations in climate variables can consequently lead to changes in hydropower production
potential [14–16]. This, in fact, is a global concern considering significant increasing trends in
temperature since the mid 20th century [17–19] including in Canada [20–23], where the rate of
warming is nearly twice of the global average [24]. Such significant warmings are mainly attributed to
the increase in the concentration of greenhouse gases and can cause major changes in other climate
variables such as precipitation and evaporation [25–27]. Such changes, in turn, alter natural runoff

regimes [28,29] with large temporal and spatial differences [19,30–32]. This is particularly the case for
precipitation [33–35], as not only the amount, but also the form of precipitation can also change due to
warming [36,37].

The effects of warming are expected to be more intensified under future conditions [38–42] and
can largely affect hydropower generation potential globally, regionally, and locally [43,44]. Projections
of future runoff show significant decreases in mid-latitudes and some dry tropics by the end the 21st
century, which can jeopardize hydropower production potential in southern Europe, northern Africa as
well as the Middle East [45–49]. Analyses of hydropower production potential under warming climate
in northern countries, such as Canada, highlight the opportunity for increasing power generation
potential due to increased glacial melts, which act as additional sources of runoff [50–52]. Having said
that, climate change-induced shifts in timing of the runoff can offset the effect of increasing the annual
runoff volume [53–56], as the surplus runoff may translate to unproductive spill, depending on the
available reservoir storage and/or the turbine capacity [57–59].

Current studies portray an overall increase in Canadian hydropower production potential, with
increasing and decreasing trends in northern and southern parts of the country, respectively [60–62].
These findings however are quite uncertain. Primarily, climate impacts on hydropower generation
often involves multiple intermediate physical processes that are not fully known, particularly at
larger scales [63]. In addition, climate impacts on runoff can transcend across different temporal
scales [43], and are subject to large spatial differences [16,64,65]. Apart from inherent complexity in
physical processes that determine hydropower production potential, methodological frameworks,
with which the climate change impacts are assessed, are still incomplete. For instance, current studies
only focus on a small number of hydropower plants across the large Canadian landmass; and therefore,
extrapolation of the results to political jurisdictions, where management decisions are made, is not
readily possible. In addition, the majority of impact assessments are built upon the IPCC-endorsed
top-down and scenario-led impact assessment framework [25], which includes a cascade use of
climate along with hydrological and energy simulation models. These models are still limited. For
instance, climate models still struggle to accurately represent the historical climate, particularly
with respect to precipitation [37,66,67]. Furthermore, hydrological models that convert the climate
forcing to streamflow sequences have major issues in their structures, parameterizations, and data
support [68–71]. Most importantly, climate change impacts can be largely offset or amplified by human
intervention in land and water management [72–74], however current hydrological models are limited
in terms of representing human activities within hydrological cycle [75,76]. Finally, energy simulation
models, with which power production is estimated based on water availability and socio-economic
variables, can be another source of uncertainty. A study in Canada showed that by changing the energy
simulation model only, the estimated magnitude of change in hydropower production can differ up to
50% [77]. The total uncertainty can be therefore substantially large and can hinder their application in
real-world decision making processes [78].

An alternative approach to top-down impact assessments is to use historical data or synthetic
hydroclimatic scenarios as a basis for doing “stress-tests”. Such assessments, which are particularly
useful for management purposes, are geared toward representing critical thresholds under which



Resources 2019, 8, 163 3 of 29

the system under consideration becomes vulnerable. Applications of bottom-up impact assessments
have been growing recently [79,80], including in the hydropower domain [11,81–85]. Here, we aim at
developing a fully bottom-up, empirically-based impact assessment framework to provide a synoptic
look at the impacts of climate change on hydropower production across political jurisdictions in Canada.
We recognize that current assessments (1) may not be relevant at larger scales, particularly across
political jurisdictions where management decisions are made; and (2) are subject to large uncertainties
due to limitations in current modeling technology that support impact assessment. To avoid these gaps,
we focus on understanding empirical trends in regional climate variables, as well as dependency and
causal links between regional climate variables and hydropower production. On the one hand, regional
climate trends can provide a set of plausible scenarios for changing climate conditions at the larger
scales. On the other hand, understanding causal links between climate variables and hydropower
production can provide a basis for developing data-driven predictive tools, with which the expected
gain/loss in monthly hydropower production across Canadian jurisdictions can be assessed. Section 2
provides more details on the rationale and assessment procedure used in this study. Section 3 introduces
the data availability for historical monthly hydropower generation in Canada along with climate data
used to compile regional climate variables across Canadian jurisdictions. Section 4 introduces the
methods used for upscaling climate data, quantifying climate trends, understanding the dependency
and casualty between climate and hydropower generation, as well as developing predictive models for
simulating monthly regional hydropower production. Section 5 presents and discusses our results.
Section 6 applies the findings towards assessing the sensitivity of regional hydropower production to
continuation of the historical climate trends. Finally, Section 7 concludes this study and provides some
further remarks.

2. Rationale and Assumptions

We aim at introducing a fully bottom-up scheme that can reveal expected change in hydropower
production potential, if historical trends in climate variables continue in the future. Figure 1 shows a
schematic view to the proposed framework. The procedure starts with estimating regional climate
variables based on a number of in situ climate measurements. We then use a statistical trend test to
investigate monotonic changes in regional climate variables across monthly, seasonal, and annual
scales. In parallel, we use two other statistical tests to assess the dependency and casual links between
lagged climate variables and hydropower production. After understanding specific climatic causes of
hydropower generation at each political region, different competing hypotheses for simulating monthly
hydropower generation are formed and tested to infer the best predictive model for impact assessment.
We then plug the historical trends in regional climate variables to the non-falsified predictive models
to portray what would be the historical hydropower production, if historical trends continue as-is in
the future. Using this framework, the sensitivity of hydropower production to continuation of climatic
trends can be assessed without using climate, hydrological, and energy simulation models.

Our proposed framework is based on two key assumptions. Most importantly, we use the
observed trends in climate variables as a basis to perform the impact assessment. Accordingly, our
assessment aims at understanding “what would be the change in the historical hydropower production,
if current trends in climate variables continue in future”. This implies that no other variable, e.g.,
generation capacity, demand-production balance, etc., is changed. We recognize that the hydropower
production is also driven by the electricity demand, for which the drivers of change can go well
beyond the climate variables at the region where hydropower is produced. As a result, our proposed
assessment essentially addresses the change in “hydropower production potential” rather than actual
change in hydropower production itself. Second, our assessment essentially considers each political
region as a standalone hydropower production unit, in which the fluctuations around the expected
production can be described by the fluctuations in relevant climate variables at the same regional scale.
Due to this conceptualization, we can consider developing a set of predictive Box-Jenkins models, with
which the monthly hydropower productions at each political jurisdictions can be described as a set of
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autoregressive functions with inputs from corresponding regional climate variables across a range
of temporal scales. This assumption, however, is not taken for granted and will be tested rigorously
through a comprehensive setup/falsification procedure to evaluate the credibility of the predictive
models and accordingly the assessments made.
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Figure 1. A schematic overview of the proposed bottom-up framework to address the impact of climate
trends on hydropower production potential in Canada.

3. Data Support

The data related to monthly hydropower production across Canadian jurisdictions, covering
the period of January 1977 to December 2007, are publicly available through Statistics Canada’s key
socioeconomic database (CANSIM; http://www5.statcan.gc.ca/cansim). It should be noted that the
data for Nanuvat and Northwest Territories are given as one regional unit and there are no data for
Prince Edward Island due to insignificant hydropower production. Figure A1 in Appendix A shows
the monthly time series of hydropower production across Canadian political regions.

The historical climate data are taken from the APC2 archive, developed by the Environment and
Climate Change Canada. The data have been already used for addressing climate change impacts in
Canada [86–88] and is publicly available at https://www.canada.ca/en/environment-climate-change/

services/climate-change/science-research-data/climate-trends-variability/adjusted-homogenized-
canadian-data.html. We consider total monthly values of precipitation, rainfall, and snowfall along with
monthly mean temperature across a large number of Canadian climate stations that have data during
the period of 1977 to 2007. Precipitation data are available at daily scale and include adjusted rain and
snowfall amounts across 450 climate stations. For each station, we aggregate the daily data to come
up with monthly estimates. The stations with more than 15% of missing data are discarded from our
analyses. This results into selecting 379 precipitation stations. The distribution of selected precipitation
stations are shown in Figure A2 in the Appendix A. Similar to precipitation, the daily temperature data
are aggregated into mean monthly estimates and stations with more than 15% of missing data during
1977 to 2007 are discarded from the analysis. Accordingly, 308 stations from the total of 338 stations are
selected. The distribution of the selected stations are shown in Figure A3 in Appendix A.

http://www5.statcan.gc.ca/cansim
https://www.canada.ca/en/environment-climate-change/services/climate-change/science-research-data/climate-trends-variability/adjusted-homogenized-canadian-data.html
https://www.canada.ca/en/environment-climate-change/services/climate-change/science-research-data/climate-trends-variability/adjusted-homogenized-canadian-data.html
https://www.canada.ca/en/environment-climate-change/services/climate-change/science-research-data/climate-trends-variability/adjusted-homogenized-canadian-data.html
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4. Methodology

4.1. Upscaling Climate Variables

There is a scale mismatch between local climate and regional hydropower data. Accordingly, we
upscale the available monthly climate data at each Canadian jurisdiction to come up with regional
estimates of climate variables. To do so, we use a gridding scheme, proposed by Han et al. [89]. The
algorithm divides the whole landmass into a finite number of grids and calculates the weights of
association of each station to each grid. The grid size can be predetermined based on the total area and
total number of stations, respectively. Weighting is based on the inverse of squared Euclidian distance
between the centre of the grid and each station, i.e., closer stations have a higher weight compared to
distant stations. After the weights of all stations to each grid is assigned, the grid-wide estimate for the
considered climate variable can be calculated as the weighted average of all stations in the considered
region. Accordingly, the regional climate variable can be estimated using the arithmetic mean of all
grids in that region—see [89] for more details.

4.2. Quantifying Trends in Regional Climate Variables

The analysis of trend involves detecting the signal of a monotonic temporal change in a particular
climate variable and includes quantifying direction, magnitude, and significance of the change [90].
Here, we apply the Mann-Kendall trend test [91,92]. The method is non-parametric, and therefore, does
not require any assumption about statistical properties of data [92]. This makes the test particularly
suitable for detecting monotonic changes in hydroclimatic data [93–97]. The null hypothesis of the
Mann-Kendall test is the existence of no trend. The rejection of the null hypothesis requires a significant
upward or downward slope. Like any other formal statistical test, the significance can be objectively
inspected using the p-value. Here, we consider the p-value of 0.05 as the threshold for distinguishing
between significant and insignificant trends. The slope is often calculated by the Sen’s slope, which
is a robust estimation of the linear trend [98]. The advantages of using Sen’s slope estimator is its
insensitivity to extreme values that can dampened or exaggerate the true trend. Due to the different
scales and/or dimension of climate variables, the trend test is performed on the anomaly of the time
series, so that the results from various regions and/or variables can be comparable. The anomaly can
be calculated as the following:

.
Xi =

Xi − X
σ

(1)

where
.

Xi and Xi are the transferred and raw data; and X and σ are the mean and standard deviation of
the raw data.

4.3. Analysing Dependency between Hydropower Production and Climate Variables

The analysis of dependency aims at understanding the statistical association between a
pair of random variables and is a commonly-used inference in hydrology and water resource
management [99–101]. Here, we used Kendall’s tau [102], which is a scaled and non-parametric
measure for evaluating the degree of similarity between two sets of random variables [103]. The
absolute value of the Kendall’s tau shows the magnitude and its sign indicates the direction, where
one is the complete positive dependence, zero is no dependence, and −1 is the complete negative
dependence. Again, we consider p-value of 0.05 as the threshold for distinguishing between significant
and insignificant test results. We consider analyzing the dependency between the hydropower and
lagged climate for lags between zero to 11 months. This is due to the fact that hydrological processes
that affect runoff generation have annual recurrence and therefore the considered range can fully reveal
the intra-annual links between climate drivers and hydropower production at the same regional scale.
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4.4. Diagnosing Climate Causes of Hydropower Production across Canadian Jurisdictions

Statistical dependency between climate variables and hydropower production does not necessarily
imply causality [104]. Testing causality requires an exclusive statistical framework to quantify the
significance of how occurrence of causes (here regional monthly climate variables) makes changes in
the effect (here monthly regional hydropower generation). One of the most intuitive explanations of
causal relation between two time series was introduced by Wiene [105] and later formalized by Granger
in 1969 as a formal statistical test, known as “Granger causality test” [106]. The test has been used in
several milestone hydroclimatological studies. Most importantly, in understanding the causal effect of
CO2 on the global warming [107,108], El Nino’s southern oscillation on the Indian monsoon [109], sea
surface temperature on the northern Atlantic oscillation [110], and feedback effects between land cover
on the local climate [111,112].

Granger causality works based on the concept of prediction using linear autoregressive models
with or without considering exogenous variables [106]. The test is built upon two main assumptions:
First, the cause is always prior to the effect in terms of the occurrence. Second, knowing the cause
improves the prediction of the effect. To better understand the concept of Granger’s causality test,
assume x1(t) and x2(t) are two separate time series. If we are better able to predict x1(t) by using
the past value of both x1(t) and x2(t) rather than only using the value of x1(t), then x2(t) is the
Granger cause of x1(t) [113]. This means that the past values of x2(t) have additional information to
help predicting x1(t) with more accuracy. The procedure of Granger causality starts from modeling a
particular effect (here hydropower) only based on its own past values using a simple autoregressive
model (hereafter AR). Considering the AR with the order p, x1(t) with t = p + 1, p + 2, . . . , T can be
calculated as:

x1(t) =
p∑

k=1

a1(k)x1(t− k) + u1(t) (2)

where x1(t) is the predicted time series, u1(t) is the prediction error, and a1(k) are model coefficients
in the AR model. The order p can be empirically found by analyzing the autocorrelation structure of
x1(t). Considering the AR model, the quality of predicting x1(t) depends only on the past values of
x1(t). The prediction error of the AR model can be formally assessed with the unbiased variance of
prediction error, calculated as the following:

Σx1 |x−1
=

1
T − p

T∑
t=1

u2
2(t) =

RSSx1 |x−1
T − P

(3)

here, T is the length of the time series, and RSSx1 |x−1
is the sum of squared errors in the AR model.

Alternatively, an autoregressive model with an exogenous variable (hereafter ARX) can be considered
with the same order p to simulate x1 by considering both values of x1 and x2 [106]:

x1(t) =
p∑

k=1

a1.1(k)x1(t− k) +
p∑

k=1

a1.2(k)x2(t− k) + w1(t) (4)

where x1(t) is the predicted time series, w1(t) is the prediction error, a1.1(k) and a1.2(k) are the
coefficients of the ARX model, associated with the past values of both effect (here hydropower
production) and cause (here one climate variable), respectively. The variance of the prediction error of
x1(t) for the ARX model can be estimated as:

Σx1 |x−2 ,x−1
=

1
T − 2p

N∑
t=1

w2
2(t) =

RSSx1 |x−2 ,x−1
T − 2p

(5)
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where the prediction error of Σx1 |x−2 ,x−1
depends on the past values of both the effect and the cause.

According to the definition of Granger causality, if the prediction error of ARX model is smaller than
the prediction error of the AR model, then it can be inferred that x2 is a Granger cause of x1 [106].
To objectively compare the prediction errors, the complexity of AR and ARX models should be also
considered, given the fact that they contain different number of parameters. For this purpose, the
Bayesian information criterion (BIC) can be used [114]:

BIC = n× ln(
RSS

n
) + k× ln(n) (6)

where n is the sample size, RSS is the sum of squared residuals, and k is the number of free parameters
in the model. The lower the BIC is, the more efficient the model.

4.5. Developing Predictive Models for Regional Hydropower Production

By knowing the climatic causes of hydropower production at each political region, different
predictive models can be set up for simulating regional hydropower production by combining past
values of hydropower production as well as climatic causes. To avoid dimensional inconsistencies and
scaling issues, regional hydropower and climate time series should be first mapped into a homogeneous
space. We considered standardizing data within 0.1 and 0.9 to allow extrapolation capability in both
predictors and predict beyond the observed range [115,116]. Here, four schemes for setting up the
autoregressive models are considered that differ from one another in terms of how climate causes are
considered within the formulation of the autoregressive models. In Scheme A, only the dominant
climate cause of hydropower generation at each time lag is considered. The dominant climate cause
at each time step is the climate variable that makes the highest improvement in the prediction of
hydropower production. Scheme B is similar to Scheme A, but instead of considering only the
dominant climate causes at each time step, their corresponding values at the previous time steps
are also considered. In Scheme C, all climatic causes of hydropower at each previous time lag are
considered. Scheme D is similar to Scheme B but apart from the dominant climate cause at each time
step, all climate causes are considered. Table 1 summarizes the four setups considered for developing
predictive models for simulating hydropower production at each region. In terms of complexity,
Scheme A resembles the most parsimonious model and Scheme D is the most parametrically-complex
representation. For each region, several competing hypotheses for simulating hydropower generation
are formed using the four schemes and considering all possible time lags from one month to the critical
number of time lags, after which there is no trace of climatic causes in the hydropower time series.

Table 1. Four schemes for developing predictive models of monthly hydropower production across
Canadian political regions.

Scheme Endogenous
Component Exogenous Component Model Formulation

A Hydropower production
at previous time steps

Dominant climate causes
of hydropower at each

previous steps
Ht =

p∑
i=1

[aiHt−i + biC∗t−i]

B Hydropower production
at previous time steps

Dominant climate causes
of hydropower at all
previous time steps

Ht =
p∑

i=1
[aiHt−i + biC∗t−i] +

i−1∑
j=1

c jC∗t− j

C Hydropower production
at previous time steps

all climate causes of
hydropower at each
previous time steps

Ht =
p∑

i=1
aiHt−i +

p∑
i=1

d∑
j=1

bi, jC j,t−i

D Hydropower production
at previous time steps

all climate causes of
hydropower at all

previous time steps

Ht =
p∑

i=1
aiHt−i +

p∑
i=1

d∑
j=1

bi, jC j,t−i +

p∑
i=1

d∑
j=1

i−1∑
k=1

c jC j, t−k
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To systematically develop, compare, and falsify predictive models at each region, the available
data is divided into two parts, related to calibration and validation of predictive models. For this,
we used the first 80% of the data for calibration and the last 20% for validation. During calibration,
the parameters of the predictive models are identified using the least square estimator. Using the
extracted parameters, the monthly hydropower production is simulated for the remaining 20% of
the data. Each modeling hypothesis is utilized in two different simulation modes, related to offline
and online simulations. Offline simulation mode refers to the simulation condition, in which current
hydropower generation is simulated using observed hydropower production as well as climate causes
in the previous time step. In the online mode, in contrast, past hydropower productions are obtained
from past simulation time steps and therefore simulation errors can transcend from one time step to
the next simulation time steps. The performance of the developed models during the training and
testing periods are inspected using the BIC, root mean square error (RMSE) and the coefficient of
determination

(
R2

)
. For each region, the modeling alternative that has the best online performance

based on R2 in the testing period is chosen as the non-falsified predictive model, which can be further
used for impact assessment.

5. Results and Discussion

5.1. Validating Upscaled Climate Data

Before using the regional climate data for further analyses, we evaluate the skills of upscaled
climate variables in capturing spatiotemporal variability at each region. For this purpose, we calculate
the anomalies in annual climate variables across all stations located in a given region and compare
them with the anomaly in corresponding upscaled regional climate variables—see Figures A4–A7
in Appendix A for temperature, precipitation, snowfall, and rainfall, respectively. In all regions and
for all climate variables, the upscaled climate variables are within the empirical variability observed
collectively in the in situ data. We also look at how trends in anomalies of climate variables across
climate stations can be maintained by corresponding upscaled climate variables. The results are
presented in Figure A8 in the Appendix A for temperature, precipitation, snowfall, and rainfall,
respectively. The results confirm that the trends of upscaled climate anomalies are within the empirical
range in all cases, expect for Nunavut (NU) and Northwest Territories (NT) for mean temperature.
This is due to sparse networks of stations distributed unevenly within this large region.

5.2. Trends in Regional Climate Variables

We apply the Mann-Kendall trend test to the anomalies of upscaled climate variables at monthly,
seasonal, and annual scales. The results are illustrated in Figure 2 using a set of standardized heat
maps, in which x-axis indicates, monthly, seasonal, and annual time scales, respectively from left to
right. Political regions are shown in the y-axis and are ordered based on their location. From top to
bottom, it starts with northern regions, then goes from west to east and finally shows Canada as a
whole. In each cell, the magnitude of trend in anomalies of climate variables are color coded based on
a unified scheme to allow comparison between different variables. Upside and downside triangles
indicate positive and negative trend, respectively. Significant trends at 95% confidence limit are shown
by filled triangles.
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Figure 2. The results of the Mann-Kendall trend test for anomalies in (a) mean temperature, (b) total
precipitation, (c) total snowfall, and (d) total rainfall at monthly, seasonal, and annual scales. For
each case, the magnitude of Sen’s slope is shaded by the color code in the side bar. The direction
and significance of trend is shown with the triangular (upward positive, downward negative; filled
significant, unfilled insignificant); significant level is considered at 95% confidence level.

With respect to the mean temperature, the majority of trends are positive across considered
temporal and spatial scales. In addition, all significant trends are positive showing that Canada is
extensively warming. During the winter of 1977 to 2007, all provinces experienced an increase in mean
temperature, with significant increases in NU and NT, British Columbia (BC), and Canada as a whole.
During spring, trends are significant and positive in Yukon (YK) and BC; but they are insignificant and
negative in Saskatchewan (SK) and Manitoba (MB), and insignificant and positive in other regions.
The mean temperature increased during the summer across all provinces. The captured trends are
significant in all provinces except in YK, Alberta (AB) and SK. During the study period of 1977 to 2007,
mean temperature in the fall increased across all regions. These increasing trends are significant in NU
and NT, Quebec (QC), and the Atlantic provinces. In the annual scale, significant and positive trends
are captured in all regions except in MB, which is still positive but insignificant. Such warmings can
cause significant alteration in hydrological processes that affect runoff generation.

Regarding monthly precipitation, trends can be divergent across various spatial and temporal
scales. For instance, in the northern regions, trends are positive in January, March, June, July, November,
and December but negative in April and October. In the western provinces, precipitation increased
mainly in January and May, but decreased in February, July, and December. The trends are also positive
in the eastern provinces through May to July, as well as September to November. In terms of seasonal
trends, northern regions experienced increments in total precipitation during the winter. The trend
was also positive in MB, QC, and Newfoundland (NL), but the significant trends have only occurred
in NU and NT. BC, AB, SK, Ontario (ON), New Brunswick (NB), and Nova Scotia (NS) experienced
insignificant negative trends in total precipitation. In spring, positive trends are captured in NU and
NT, BC, and ON, however, other regions show insignificant negative trends. During the summer
season, most regions experienced insignificant increments in total precipitation except in AB, MB, NB,
and NS. Total precipitation has increased across the northern regions, BC, SK, as well eastern provinces
but decreased in other regions during the fall. In the annual scale, northern regions experienced
increments in total precipitation, which is significant in NU and NT. In AB, annual precipitation
significantly decreased, while ON experienced a significant increase.
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Similar to precipitation, trends in snowfall show different patterns across various temporal and
spatial scales. In general, during the winter, snowfall increased insignificantly in northern regions;
however, it decreased along western, eastern, and Atlantic Canada except in MB, QC, and NL. Having
said that both negative and positive trends are insignificant. In spring, all regions show negative
trends in snowfall except in ON, which shows an insignificant positive trend. During the summer,
northern regions show negative trends, which is significant in NU and NT. The amount of snowfall
decreased during fall across the whole country except in the northern regions and ON. Considering the
annual scale, the snowfall insignificantly increased in NU and NT, but decreased over western, eastern,
and Atlantic provinces except in ON. The negative trends are found to be significant in NL and NB.
In general, our study confirms the overall decrease in snowfall throughout Canadian regions. With
respect to rainfall, in contrast, it seems that positive events outnumber negative trends and increasing
trends are stronger in summer and fall. Total rainfall has increased across the country except in ON,
QC, and NS during the winter. Having said that, the only significant positive trend captured in SK.
Total rainfall increased across Canada during the spring except in AB, NL and NS; however, all trends
are insignificant. During the summer, all regions experienced increments in rainfall except AB, NB,
and NS. The captured increasing trends are significant in NU and NT, QC, and NL. During the fall,
trends in rainfall are positive in all provinces except in AB, MB, and NS. These trends are significant
over QC and Canada as a whole. In the annual scale, trends are positive in northern regions, which is
significant in NU and NT. In western provinces, BC and SK experienced increments in rainfall and the
trend is significant in BC. Decreasing trends however are observed in AB and MB. At the annual scale,
rainfall has increased significantly in eastern provinces; however, across Atlantic provinces, only NL
has experienced a significant increase in rainfall.

5.3. Regional Dependencies between Climate Variables and Hydropower Production

Similar to the analyses of trend, the results of dependency analyses between lagged climate
variables and hydropower production are summarized in four heat maps—see Figure 3. Heat maps
in Figure 3 are slightly different from those presented in Figure 2 as the x-axis refers to the lagged
climate variables sorted from zero to 11 months. Positive and negative dependencies are shown with
upward and downward triangles. In addition, significant dependencies (p-values ≤ 0.05) are shown
with filled triangles. With respect to temperature, except in AB, the relation between mean temperature
and hydropower generation is significantly negative in first months. After few months, the negative
dependency becomes positive. This observation excludes SK, in which the dependence is negligible.
This pattern in inverted in AB, which can be referred to the particular runoff generation/hydropower
production dynamic in this province, where the majority of power plants are located at the eastern
slopes of Rocky Mountains, which receives a large annual snow pack over a small region and therefore
the annual snowmelt is often extensive and fast.

Few strong patterns can be seen for dependency between precipitation and hydropower generation,
which can reveal important natural and anthropogenic mechanisms behind hydropower generation
across Canadian regions. In the first few lags, there are two distinct patterns showing different effects
of total precipitation on hydropower generation in AB, BC as well as Atlantic provinces (i.e., positive
effect), versus what is observed in northern and eastern Canada as well MB (i.e., negative effect). First
it should be noted that the mechanism of runoff generation in mountainous BC and AB is largely
different from those in QC and ON, in which negative dependence within the first time lags can
be referred to unproductive spillage [117]. A historical example in QC includes additional release
ordered by Hydro-Quebec in 1996 to preserve the integrity of reservoirs against heavy rainfall. This
spillage did not add to power generation as it was beyond the turbine capacity [118]. The negative
dependency, however, change to positive after few months except in mountainous provinces. SK
resembles an outlier case, as the hydropower generation in this province is not significantly dependent
on its own precipitation in most of the time lags. MB also has a negligible dependency in comparison
with other provinces, meaning that the power generation in MB and SK are not dependent to the
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precipitation poured over their own territory. This is intuitively appealing as water in SK and MB is
mainly contributed from upstream province of AB [119].
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Figure 3. The results of the Kendall tau test for identifying lagged dependency between (a)
temperature and hydropower production, (b) precipitation and hydropower production, (c) snowfall
and hydropower production, and (d) rainfall and hydropower production across Canadian political
regions. For each case, the magnitude of dependency is shaded by the color code in the side
bar. The direction and significance of dependency is shown with the triangular (upward positive,
downward negative; filled significant, unfilled not significant). Significant level is considered at 95%
confidence limit.

With respect to snowfall, all provinces except AB and NB show a positive dependency between
snowfall and hydropower production in the first months. These dependencies are statistically significant
in the majority of regions, excluding MB. The lack of significant dependency between snowfall and
hydropower production in this region can be traced back to the fact that majority of water availability
for hydropower production in MB is contributed from the mountainous headwaters in AB. As the lag
between snowfall and hydropower production increases, positive dependencies turn to negative. The
dependency between rainfall and hydropower production, however, is rather different. All regions,
except AB, NB and NS, have negative short-term dependencies with rainfall. The negative rainfall
dependency is relatively longer and more significant in ON. The dependency is also significantly
negative in Canada for the first three months, and then changes to significantly positive. Similar to the
hydropower and precipitation dependency, this can be referred to the impact of storage and the fact
that immediate rainfall can go to unproductive spillage, if the reservoir storage is already full.

5.4. Climatic Causes of Hydropower Production across Canadian Jurisdictions

Identifying climatic causes of hydropower production at each region is based on the
intercomparison between a wide range of AR and ARX models that represent monthly hydropower
production. The model development starts with analyzing the autocorrelation structure within monthly
regional hydropower production, which reveals to what extent hydropower generation is dependent
to its previous values. Potentially, all lags up to the first break in significance of autocorrelation
(i.e., first occasion where p-value goes above 0.05) can be considered for forming AR models. Our
analyses show that autocorrelation structures within monthly hydropower time series are quite
different across Canadian regions—see Figure A9 in Appendix A. There are three different patterns
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within autocorrelation structures. The first pattern is related to sharp and short memory in monthly
hydropower generation observed in AB, ON, NL, NB and NS, in which the first break in significance of
autocorrelation takes place before one full annual cycle. The second form is related to low interannual
memory, observed in NU and NT, YK and BC, in which the autocorrelation in hydropower generation
goes beyond annual hydrologic cycle but it does not last more than two to three years. Finally, the
third form of autocorrelation structure includes high interannual memory, observed in QC, SK, MB
and Canada as a whole, in which the autocorrelation in hydropower generation goes beyond three
years. These three different forms of autocorrelations can refer to systematic differences in hydropower
generation across Canadian regions.

Using ARX models, monthly hydropower generation is simulated using both hydropower and
one climate variable. This can provide a systematic framework to trace climatic causes of hydropower
generation within each region and to reveal after how many months, considering climate variables
do not contribute into a better prediction. The results of this analysis are summarized in Figure A10
in Appendix A. The effective lag time is quite short in the case of SK, MB, due to the low impact of
regional climate variables on forming the provincial runoff. In majority of considered regions, i.e., NU
and NT, YK, BC, AB, ON, QC, NL and Canada as a whole the effect of regional climate on regional
hydropower generation last up to a year. In NB and NS, the effect of climate on hydropower generation
can be traced beyond a year lag time; although such effects remain mainly marginal.

By comparing the BIC values of AR and ARX models, an objective look at the role of each climate
variable in contributing into better prediction of hydropower generation across relevant time scales can
be obtained. Figure 4 summarizes the findings in terms of the percentage of relative improvement in
BIC, when a particular climate variable is considered for forming the ARX models. In each panel, x-axis
identifies the number of lags in month and the y-axis shows the percentage of relative improvement in

prediction, calculated at each time lag p as
BICARX(p,p)−BICAR(p)

BICAR(p)
× 100. The black dashed line indicates no

improvement in the AR prediction.
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For each region and time lag, the climatic variable that causes the maximum improvement in
the BIC can be identified as the dominant climate variable in the considered time step. Based on the
analyses made, dominant climatic causes of hydropower generation can differ based on the region and
the time lag considered. In NU and NT, temperature seems to be the dominant driver in majority of
time lags from one to eight months, although precipitation and rainfall mark similar improvements
during earlier and later lag months, respectively. In addition, snowfall becomes the dominate driver
in this region after eight months lag, which indicates the buffering effects of snow accumulation that
causes delay between snowfall and hydropower generation. In YK, again temperature is the key
driver of hydropower generation across a yearly timespan; however, snow and rain make almost the
same improvement in prediction as temperature after four months lag. In BC, rainfall stands as the
dominant climate driver, particularly within the first four months lag. After that, temperature plays
almost a similar role in predictability of hydropower generation. In AB, rainfall stands as the dominant
climate driver, although temperature becomes a stronger driver for five and six months lag. SK and
MB show marginal effects of regional climate drivers on predicting the hydropower generation due to
small contribution of regional climate in forming regional streamflow. In ON, temperature and snow
stand as dominant climate causes of hydropower production, pointing on how snow accumulation
and melt drive hydropower generation in this province. Similar process can be witnessed in NB. In
QC, the hydropower is driven by a complex interplay between rain, snow and temperature within
a 10-month time span. In NL, hydropower generation is mainly driven by temperature, although
rain plays an almost similar role after six months lag. NS displays rather a complex hydropower
generation process in which temperature and total precipitation are the main causes of hydropower
production up to five months lag and then rainfall and snowfall takeover up to 10 months lag but
only rainfall can be considered as a cause beyond 10 months and up to 15 months lag. In Canada as a
whole, the total precipitation is the immediate cause of hydropower generation, which is substituted
by temperature for two and three months lag. After month four and up to one year lag, rainfall and
snow become dominant drivers of hydropower production, although rainfall has a more important
role in predictability of hydropower generation compared to snowfall.

5.5. Predictive Models of Monthly Hydropower Production

By knowing the autocorrelation structure as well as climate drivers of monthly hydropower
production, it would be possible to form different predictive models for simulating hydropower
generation based on the four schemes presented in Section 4.5. Accordingly, using each scheme and
for each region, several competing hypotheses for modeling hydropower generation are formed by
considering all possible time lags from one month to the critical number of time lag, after which there
is no trace of climatic causes in the hydropower time series—see Figure A10 in Appendix A. The
results of standardized equation for hydropower generation can be further scaled back to the actual
domain using the inverse transformation, considering minimum and maximum monthly hydropower
production during the training period. The performance of developed models are inspected using
three performance measures. For each region, the modeling alternative that presents the best online
performance based on R2 in the testing period was chosen as the non-falsified predictive model, which
can be further used for impact assessment. More details on the performance of the non-falsified
predictive models are provided in Table A1 in Appendix A. Figure 5 shows the observed versus online
and offline simulations of hydropower production across Canadian regions. As it is obvious, in offline
simulation modes, the non-falsified models are able to track the monthly time series of hydropower
production very well. Having said that, by moving to online simulation, the performance of the
predictive models declines substantially particularly in SK and MB, where regional climate variables
have marginal effect in the formation of hydropower production. Some discrepancies are also seen in
NB, ON and YK; however, the predictive models can describe more than 75% of the variance within the
observed data in Canada as a whole. This can provide an opportunity to use these predictive models
for impact assessment.
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Figure 5. Comparison between observed (x-axis) and simulated (y-axis) monthly hydropower
production across Canadian provinces and territories. Simulated results are provided in online
(dark gray) and offline (light gray) simulation modes. The red dashed lines show the 1-1 line.

6. Expected Change in Hydropower Production Potential under Historical Climate Trends

Before implementing the non-falsified models for impact assessment, the reliability of predictive
models should be inspected in terms of their performance in tracking the expected monthly hydropower
production during the historical period. To do so, we introduce the historical climate data to non-falsified
models to simulate the monthly hydropower time series in the online mode. We then average all
the yearly hydropower profiles to come up with an expected time series of monthly hydropower
production in a typical year. The results are shown in Figure 6, revealing that the expected values of
hydropower production gathered from simulations are close to the observed values in most of the
Canadian regions, except in SK and MB.
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Figure 6. The expected historical (black) and simulated (red) monthly hydropower production in a
typical operation year.

We categorize the confidence level of the non-falsified models in simulating the expected monthly
hydropower production based on the correlation coefficient, R2, as well as percentage of relative
error between observed and simulated monthly hydropower production—see Table 2. In general, the
confidence in the non-falsified models for capturing the expected monthly hydropower production is
“good” and “very good” in ten out of twelve jurisdictions considered and therefore it is legitimate to
use their corresponding predictive models for impact assessment. We therefore do not include SK and
MB in our assessment, as the predictive models are not credible.

Table 2. Confidence of the models to simulate expected monthly hydropower generation in
Canadian provinces.

Province R R2 ∆E% Confidence

NT&NU 0.97 0.95 −1.67 Very good
YK 0.99 0.98 0.20 Very good
BC 0.96 0.93 0.85 Very good
AB 0.98 0.97 3.04 Good
SK 0.50 0.25 5.93 Very weak
MB 0.59 0.34 1.39 Very weak
ON 0.97 0.95 −1.16 Very good
QC 0.98 0.97 0.47 Very good
NL 0.98 0.96 0.09 Very good
NB 0.92 0.84 1.78 Good
NS 0.98 0.97 2.20 Very good

CANADA 0.98 0.97 1.16 Very good

To investigate the impact of existing trends on hydropower production, changes in monthly
climate variables in the course of 31 years (i.e., monthly trend values multiplied by 31) are added
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as delta factors to the observed monthly climate variables. This implies that no shift in timing and
duration of seasonal and/or interannual variability is considered. The synthetic data are then fed into
the non-falsified predictive models. Accordingly, the difference between expected monthly generation,
simulated under observed and perturbed climate data, can reveal the expected gain/loss of hydropower
production in light of the existing trends in climate variables. The results of this analysis are shown in
Figure 7.
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In NU and NT, there are lower expected values in all months except October and November. The
maximum expected decrement in hydropower production potential takes place around 10% in August.
On the other hand, hydropower is expected to increase under the continuation of historical trends in
climate variables across YK, where the maximum gain will occur in March by 8% and other months
will experience increases in generation by around 5%. In BC, the expected effect of continuation in
hydropower production potential varies throughout a typical year, but it decreases during summer and
fall. The maximum gain will be in March around 8%, while hydropower can decrease by around 10% in
September. In AB, the hydropower production potential experience a maximum increase of 3% in April
but can also suffer from maximum expected loss of 10%, captured in December. In ON, hydropower
production potential is expected to increase in spring, summer, and fall but can decrease marginally
in winter. The maximum gain in hydropower production potential will occur in June and July by
around 10%. Higher hydropower production potential is expected under the continuation of climate
trends in QC, with the maximum gain of around 15%, taking place in June. NL and NS will experience
marginal changes in their production potential. In NB, hydropower production potential is expected to
increase during the winter and summer but to decrease in spring and fall. The maximum gain in this
region is expected to take place in August by around 15%. Looking at Canada as a whole, hydropower
production potential is expected to increase in all months except in March and August. The maximum
gain is expected by around 15% in June and the maximum loss is in March by around 5%.
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7. Summary, Conclusions and Further Remarks

Due to imposing significant changes in characteristics of water availability in time and space,
climate change can be a critical stressor to hydropower production, locally, regionally, and globally.
This has a particular importance in a country like Canada, in which hydropower production has
an important role in both domestic and international electricity supply. Despite this importance,
current studies are limited due to two key reasons. First, the majority of current impact assessments
performed at small samples of power plants and/or river basins and therefore they do not provide
a large-scale understanding, particularly across political jurisdictions where management decisions
are made. In addition, current studies mainly adopt a top-down impact assessment based on using
climate, hydrological, and energy simulation models. These modeling technologies are still incomplete
and therefore impose large uncertainties into assessment results. To avoid these limitations, here we
develop a fully bottom-up and empirical-based approach to assess the impact of changing climate
across Canadian political regions. On the one hand, we use historical trends in regional climate
variables as a plausible scenario to quantify the changing climate. On the other hand, the knowledge
of dependency and causal links between climate variables and hydropower production across political
jurisdictions is used as a basis to develop a set of predictive data-driven models, with which the
expected gain/loss in hydropower production potential can be estimated under the quantification of
historical climatic trends.

Our results of monthly, seasonal, and annual climate trend analyses across political regions in
Canada confirm previous findings that Canada is getting warmer and wetter with more contribution
from rainfall than snow. Warming temperature, however, stands as dominant signal of historical
climate change across Canadian regions, as the rates of warming across temporal and spatial scales
are more significant, compared to the incline in rainfall amount and/or decline in snowfall. In
addition, our analyses reveal the regional autocorrelation structure in hydropower production and
dependencies between climate variables and hydropower production across Canadian regions. In
terms of autocorrelation structure, our analyses show three distinct forms of autocorrelation in monthly
regional hydropower production, related to short-, mid- and long-range memory in monthly time
series of hydropower production. We highlight strong dependencies between climate variables and
hydropower production, which can be highly variant in time and space.

Having said that, we note that the statistical dependency does not necessarily mean causal links
between climate variables and hydropower production; and therefore, we use a formal casualty test to
trace the climatic causes of hydropower production across time and space. Despite regional differences
in climatic causes of hydropower production, we show that considering climatic variables up to
one-year lag can improve the predictability of hydropower production. There is however an exception
in Saskatchewan and Manitoba, where the water availability is mainly contributed from upstream
province of Alberta. Accordingly, we establish a wide range of modeling alternatives to predict monthly
hydropower production, based on previous values of hydropower production and climatic causes
at each Canadian region. We make a rigorous intercomparison among modeling hypotheses based
on a number of goodness-of-fit measures and in two online and offline simulation modes. For each
region, we then select the modeling option that resembles the highest coefficient of determination
during testing period and in online simulation mode. We show that these non-falsified predictive
models are able to track the expected monthly hydropower production very well across Canadian
regions, except in Saskatchewan and Manitoba. By knowing the climatic trends and a non-falsified
predictive model at each region, we can assess how the hydropower production potential can change
under continuation of climatic trends. For this purpose, we perturb the historical time series of climate
by adding the corresponding climatic shift in the course of 31 years using the identified trends, and
accordingly, feed the synthesized time series to the predictive model to calculate the expected change
in the hydropower production potential. Our assessment show that Canada as a whole can benefit
from higher monthly hydropower production potential under continuation of climatic trends. This
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conclusion however is subject to large variability across political regions, as for instance the production
potential can significantly decrease in BC, NU and NT as well as AB.

It should be noted that our findings are only one possible narrative that portrays Canadian hydropower
production under uncertain climate futures. As it was pointed earlier, hydropower production is also
dependent on electricity demand as well as production capacity, for which we did not consider any
change under future condition. As a result, our findings should be taken as an assessment of change
in hydropower production potential under one possible scenario for future climate. We would like to
emphasize on the inherent uncertainty in this climate scenario, as there is no guarantee that historical
climate trends remain unchanged in the future. Yet, we believe that this scenario can provide a tangible
baseline narrative to inform both public and decision makers on the impact of climate change on Canadian
hydropower production. In addition, it should be noted that we consider each political region as a lumped
production unit in which fluctuation around expected production can be described by variations in
regional climate variables. Although, our modeling results show that this can be a legitimate assumption
except in Saskatchewan and Manitoba, our findings are only relevant at the spatial and temporal scales in
which causal links between climate variables and hydropower productions are considered, i.e., monthly
production across political jurisdictions. We therefore do not suggest extrapolating these results into
other spatial and temporal scales. Last but not the least, other data-driven methodologies can be used to
describe the linkage between climate variables and hydropower production at the regional scale [120,121];
and therefore, there is an uncertainty in our assessment due to the uncertainty in non-falsified predictive
models. We recognize that every single assessment of future conditions is inherently subject to deep
uncertainty and our study is no exception. Having said that, our findings provide a fresh look at
the possible gain/loss in hydropower production potential across Canadian political regions. We hope
our study can trigger more efforts towards understanding challenges and opportunities in Canada’s
hydropower production under climatic changes.
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Table A1. Setup and performance of non-falsified predictive models for hydropower generation across
Canadian Regions.

Region Scheme # of Lags BIC
(Online)

BIC
(Offline)

R2

(Online)
R2

(Offline)
RMSE

(Online)
RMSE

(Offline)

NT&NU D 11 6126.72 5787.89 0.28 0.71 0.0006 0.0004
YK D 12 6520.39 6004.94 0.32 0.84 0.0010 0.0005
BC D 12 9816.36 9564.69 0.61 0.81 0.1009 0.0711
AB D 8 7978.56 7778.86 0.40 0.65 0.0079 0.0060
SK A 1 8515.76 8105.06 0.02 0.67 0.0177 0.0102
MB A 2 9717.99 9057.81 0.30 0.88 0.0915 0.0375
ON D 12 9329.26 9191.53 0.54 0.69 0.0517 0.0427
QC D 10 10,496.78 10,052.97 0.79 0.94 0.2555 0.1384
NL B 7 9507.62 9333.78 0.71 0.82 0.0727 0.0573
NB B 12 8419.53 8333.38 0.52 0.61 0.0185 0.0164
NS B 12 7153.24 7100.78 0.75 0.78 0.0028 0.0026

CANADA D 12 10,595.57 10,241.35 0.87 0.95 0.2954 0.1806

References

1. International Renewable Energy Agency (IRENA). Renewable Energy Benefits: Understandinf the Socio-Economics;
International Renewable Energy Agency (IRENA): Abu Dhabi, United Arab Emirates, 2017.

2. International Energy Agency (IEA). World Energy Outlook 2011; International Energy Agency (IEA): Paris,
France, 2011.

3. UNFCCC. Paris Agreement; UNFCCC: Bonn, Germany, 2015.
4. BP Energy, P.L.C. BP Statistical Review of World Energy; BP Energy P.L.C.: London, UK, 2019.
5. Energy Information Administration (EIA). International Energy Outlook 2010; Energy Information Administration

(EIA): Washington, DC, USA, 2010.
6. Energy Information Administration (EIA). Canada Is One of the World's Five Largest Energy Producers and

Is the Principal Source of U.S. Energy Imports; Energy Information Administration (EIA): Washington, DC,
USA, 2011.

7. Hydro-Quebec. Annual Report 2010; Hydro-Quebec: Montreal, QC, Canada, 2011.
8. Natalia Lis, C.C.; Ektvedt, I. Michael Nadew, Ken Newel, Sara Tsang, and Cassandra Wilde. In Canada’s

Renewable Power Landscape Energy Market Analysis; National Energy Board: Calgary, AB, Canada, 2016.
9. Canada—A Global Leader in Renewable Energy Enhancing Collaboration on Renewable Energy Technologies.

In Proceedings of the Energy and Mines Ministers’ Conference, Yellowknife, NT, Canada, 26–27 August 2013.
10. Canadian Hydropower Association. Report of Activities 2014–2015; Canadian Hydropower Association:

Ottawa, ON, Canada, 2015.
11. Contreras-Lisperguer, R.; de Cuba, K. The Potential Impact of Climate Change on the Energy Sector in the Caribbean

Region; The Organization of American States: Washington, DC, USA, 2008.
12. Robinson, P.J. Climate change and hydropower generation. In. J. Climatol. J. R. Meteorol. Soc. 1997, 17,

983–996. [CrossRef]
13. Wagner, T.; Themeßl, M.; Schüppel, A.; Gobiet, A.; Stigler, H.; Birk, S. Impacts of climate change on stream

flow and hydro power generation in the Alpine region. Environ. Earth Sci. 2017, 76, 4. [CrossRef]
14. Adam, J.C.; Lettenmaier, D.P. Application of new precipitation and reconstructed streamflow products to

streamflow trend attribution in northern Eurasia. J. Clim. 2008, 21, 1807–1828. [CrossRef]
15. Bonfils, C.; Santer, B.D.; Pierce, D.W.; Hidalgo, H.G.; Bala, G.; Das, T.; Barnett, T.P.; Cayan, D.R.; Doutriaux, C.;

Wood, A.W. Detection and attribution of temperature changes in the mountainous western United States.
J. Clim. 2008, 21, 6404–6424. [CrossRef]

16. Harrison, G.P.; Wallace, A.R. Climate change impacts on renewable energy–is it all hot air? In Proceedings of
the World Renewable Energy Congress (WREC2005), Aberdeen, UK, 22–27 May 2005.

17. IPCC-WG, I. Climate Change 2000, Third Assessment Report; Cambridge University Press: Cambridge, UK, 2001.
18. Nicholls, N.; Gruza, G.; Jouzel, J.; Karl, T.; Ogallo, L.; Parker, D. Observed Climate Variability and Change;

University Press Cambridge: Cambridge, UK, 1996.
19. Schär, C.; Vidale, P.L.; Lüthi, D.; Frei, C.; Häberli, C.; Liniger, M.A.; Appenzeller, C. The role of increasing

temperature variability in European summer heatwaves. Nature 2017, 427, 332. [CrossRef] [PubMed]

http://dx.doi.org/10.1002/(SICI)1097-0088(199707)17:9&lt;983::AID-JOC174&gt;3.0.CO;2-I
http://dx.doi.org/10.1007/s12665-016-6318-6
http://dx.doi.org/10.1175/2007JCLI1535.1
http://dx.doi.org/10.1175/2008JCLI2397.1
http://dx.doi.org/10.1038/nature02300
http://www.ncbi.nlm.nih.gov/pubmed/14716318


Resources 2019, 8, 163 25 of 29

20. Vincent, L.; Zhang, X.; Brown, R.; Feng, Y.; Mekis, E.; Milewska, E.; Wan, H.; Wang, X. Observed trends in
Canada’s climate and influence of low-frequency variability modes. J. Clim. 2015, 28, 4545–4560. [CrossRef]

21. Whitfield, P.H.; Cannon, A.J. Recent variations in climate and hydrology in Canada. Can. Water Res. J. 2000,
25, 19–65. [CrossRef]

22. Yagouti, A.; Boulet, G.; Vescovi, L. Homogénéisation des séries de température et analyse de la variabilité
spatio-temporelle de ces séries au Québec méridional; Ouranos: Montreal, QC, Canada, 2006; p. 154.

23. Zhang, X.; Vincent, L.A.; Hogg, W.; Niitsoo, A. Temperature and precipitation trends in Canada during the
20th century. Atmosph. Ocean 2000, 38, 395–429. [CrossRef]

24. Bush, E.; Gillett, N.; Watson, E.; Fyfe, J.; Vogel, F.; Swart, N. Understanding Observed Global Climate Change.
In Canada’s Changing Climate Report; Bush, E., Lemmen, D.S., Eds.; Government of Canada: Ottawa, ON,
Canada, 2019; pp. 24–72.

25. IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A:Global and Sectoral Aspects; Contribution of
Working Group II to the FifthAssessment Report of the Intergovernmental Panel on Climate Change; Field, C.B.,
Barros, V.R., Dokken, D.J., Mach, K.L., Mastrandrea, M.D., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C.,
et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; p. 1132.

26. Dai, A.; Trenberth, K.E.; Karl, T.R. Global variations in droughts and wet spells: 1900–1995. Geophys. Res.
Lett. 1998, 25, 3367–3370. [CrossRef]

27. Trenberth, K.E.; Dai, A.; Rasmussen, R.M.; Parsons, D.B. The changing character of precipitation. Bull. Am.
Meteorol. Soc. 2003, 84, 1205–1218. [CrossRef]

28. Hartmann, D.L.; Tank, A.M.K.; Rusticucci, M.; Alexander, L.V.; Brönnimann, S.; Charabi, Y.A.R.; Dentener, F.J.;
Dlugokencky, E.J.; Easterling, D.R.; Kaplan, A. Observations: Atmosphere and surface. In Climate Change
2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013.

29. Iimi, A. Estimating Global Climate Change Impacts on Hydropower Projects: Applications in India, Sri Lanka and
Vietnam; The World Bank: Washington, DC, USA, 2007.

30. Dore, M.H. Climate change and changes in global precipitation patterns: What do we know? Environ. Int.
2005, 31, 1167–1181. [CrossRef] [PubMed]

31. Hulme, M.; Osborn, T.J.; Johns, T.C. Precipitation sensitivity to global warming: Comparison of observations
with HadCM2 simulations. Geophys. Res. Lett. 1998, 25, 3379–3382. [CrossRef]

32. Jones, P.; Hulme, M. Calculating regional climatic time series for temperature and precipitation: Methods
and illustrations. Int. J. Climatol. J. R. Meteorol. Soc. 1996, 16, 361–377. [CrossRef]

33. Déry, S.J.; Wood, E. Decreasing river discharge in northern Canada. Geophys. Res. Lett. 2005, 32. [CrossRef]
34. Meehl, G.A.; Stocker, T.F.; Collins, W.D.; Friedlingstein, P.; Gaye, T.; Gregory, J.M.; Kitoh, A.; Knutti, R.;

Murphy, J.M.; Noda, A. Global Climate Projections; Cambridge University Press: Cambridge, UK, 2007.
35. Stone, D.A.; Weaver, A.J.; Zwiers, F.W. Trends in Canadian precipitation intensity. Atmosph. Ocean. 2000, 38,

321–347. [CrossRef]
36. Allard, M.; Calmels, F.; Fortier, D.; Laurent, C.; L’Hérault, E.; Vinet, F. Cartographie des conditions de

pergélisol dans les communautés du Nunavik en vue de l’adaptation au réchauffement climatique. In Rapport
au Fonds D’action Pour le Changement Climatique et à Ouranos; Ouranos: Montreal, QC, Canada, 2007.

37. Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in
snow-dominated regions. Nature 2005, 438, 303–309. [CrossRef] [PubMed]

38. Chun, K.P.; Wheater, H.S.; Nazemi, A.; Khaliq, M.N. Precipitation downscaling in Canadian Prairie Provinces
using the LARS-WG and GLM approaches. Can. Water Res. J. 2013, 38, 311–332. [CrossRef]

39. Bates, B.; Kundzewicz, Z.; Wu, S.; Palutikof, J.P. Climate Change and Water; Intergovernmental Panel on
Climate Change, IPCC Secretariat: Geneva, Switzerland, 2008.

40. IPCC. Climate Change 2007: The Physical Science Basis; Contribution of Working Group I to the Fourth
Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M.,
Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H., Eds.; Cambridge University Press: Cambridge,
UK; New York, NY, USA, 2007; p. 996.

41. Emori, S.; Brown, S. Dynamic and thermodynamic changes in mean and extreme precipitation under changed
climate. Geophys. Res. Lett. 2005, 32. [CrossRef]

42. Kharin, V.V.; Zwiers, F.W. Climate predictions with multimodel ensembles. J. Clim. 2002, 15, 793–799.
[CrossRef]

http://dx.doi.org/10.1175/JCLI-D-14-00697.1
http://dx.doi.org/10.4296/cwrj2501019
http://dx.doi.org/10.1080/07055900.2000.9649654
http://dx.doi.org/10.1029/98GL52511
http://dx.doi.org/10.1175/BAMS-84-9-1205
http://dx.doi.org/10.1016/j.envint.2005.03.004
http://www.ncbi.nlm.nih.gov/pubmed/15922449
http://dx.doi.org/10.1029/98GL02562
http://dx.doi.org/10.1002/(SICI)1097-0088(199604)16:4&lt;361::AID-JOC53&gt;3.0.CO;2-F
http://dx.doi.org/10.1029/2005GL022845
http://dx.doi.org/10.1080/07055900.2000.9649651
http://dx.doi.org/10.1038/nature04141
http://www.ncbi.nlm.nih.gov/pubmed/16292301
http://dx.doi.org/10.1080/07011784.2013.830368
http://dx.doi.org/10.1029/2005GL023272
http://dx.doi.org/10.1175/1520-0442(2002)015&lt;0793:CPWME&gt;2.0.CO;2


Resources 2019, 8, 163 26 of 29

43. Kumar, A.; Schei, T.; Ahenkorah, A.; Caceres Rodriguez, R.; Devernay, J.; Freitas, M.; Hall, D.; Killingtveit, Å.;
Liu, Z. Hydropower. In ‘IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation’;
The Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2011.

44. Shu, J.; Qu, J.; Motha, R.; Xu, J.; Dong, D. Impacts of climate change on hydropower development and
sustainability: A review. IOP Conf. Ser. Earth Environ. Sci. 2018, 163, 012126. [CrossRef]

45. Hamududu, B.; Killingtveit, A. Assessing climate change impacts on global hydropower. Energies 2012, 5,
305–322. [CrossRef]

46. Killingtveit, Å.; Adera, A.G. Climate Change and Impact on Water Resources and Hydropower-The Case of Vanatori
Neamt in the Carpathian Region of Romania; NTNU: Trondheim, Norway, 2017.

47. Teotónio, C.; Fortes, P.; Roebeling, P.; Rodriguez, M.; Robaina-Alves, M. Assessing the impacts of climate
change on hydropower generation and the power sector in Portugal: A partial equilibrium approach. Renew.
Sustain. Energy Rev. 2017, 74, 788–799. [CrossRef]

48. Turner, S.W.; Ng, J.Y.; Galelli, S. Examining global electricity supply vulnerability to climate change using a
high-fidelity hydropower dam model. Sci. Total Environ. 2017, 590, 663–675. [CrossRef] [PubMed]

49. Uamusse, M.M.; Aljaradin, M.; Nilsson, E.; Persson, K.M. Climate Change observations into Hydropower in
Mozambique. Energy Proc. 2017, 138, 592–597. [CrossRef]

50. Cherry, J.E.; Knapp, C.; Trainor, S.; Ray, A.J.; Tedesche, M.; Walker, S. Planning for climate change impacts on
hydropower in the Far North. Hydrol. Earth Syst. Sci. 2017, 21, 133–151. [CrossRef]

51. Minville, M.; Krau, S.; Brissette, F.; Leconte, R. Behaviour and performance of a water resource system in
Québec (Canada) under adapted operating policies in a climate change context. Water Res. Manag. 2010, 24,
1333–1352. [CrossRef]

52. Shevnina, E.; Pilli-Sihvola, K.; Haavisto, R.; Vihma, T.; Silaev, A. Climate Change Will Increase Potential
Hydropower Production in Six Arctic Council Member Countries Based on Probabilistic Hydrological Projections;
Copernicus Publications: Göttingen, Germany, 2018.

53. Caruso, B.; King, R.; Newton, S.; Zammit, C. Simulation of climate change effects on hydropower operations
in mountain headwater lakes, New Zealand. River Res. Appl. 2017, 33, 147–161. [CrossRef]

54. Chilkoti, V.; Bolisetti, T.; Balachandar, R. Climate change impact assessment on hydropower generation using
multi-model climate ensemble. Renew. Energy 2017, 109, 510–517. [CrossRef]

55. Ehrbar, D.; Schmocker, L.; Vetsch, D.; Boes, R. Hydropower potential in the periglacial environment of
Switzerland under climate change. Sustainability 2018, 10, 2794.

56. Hasan, M.M.; Wyseure, G. Impact of climate change on hydropower generation in Rio Jubones Basin, Ecuador.
Water Sci. Eng. 2018, 11, 157–166. [CrossRef]

57. Forrest, K.; Tarroja, B.; Chiang, F.; AghaKouchak, A.; Samuelsen, S. Assessing climate change impacts
on California hydropower generation and ancillary services provision. Clim. Chang. 2018, 151, 395–412.
[CrossRef]

58. Khadka Mishra, S.; Hayse, J.; Veselka, T.; Yan, E.; Kayastha, R.B.; LaGory, K.; McDonald, K.; Steiner, N. An
Integrated Assessment Approach for Estimating the Economic Values of Climate Change Sensitive River
Systems An Application to Hydropower and Fisheries in a Himalayan River, Trishuli. Environ. Sci. Policy
2018, 87, 102–111. [CrossRef]

59. Minville, M.; Brissette, F.; Leconte, R. Impacts and uncertainty of climate change on water resource
management of the Peribonka River System (Canada). J. Water Res. Plan. Manag. 2009, 136, 376–385.
[CrossRef]

60. Filion, Y. Climate change: Implications for Canadian water resources and hydropower production. Can.
Water Res. J. 2000, 25, 255–269. [CrossRef]

61. Minville, M.; Brissette, F.; Krau, S.; Leconte, R. Adaptation to climate change in the management of a Canadian
water-resources system exploited for hydropower. Water Res. Manag. 2009, 23, 2965–2986. [CrossRef]

62. Board, N.E. Canada’s Energy Future 2016: Energy Supply and Demand Projections to 2040; Canada Energy
Regulator: Calgary, AB, Canada, 2016.

63. Blackshear, B.; Crocker, T.; Drucker, E.; Filoon, J.; Knelman, J.; Skiles, M. Hydropower vulnerability and
climate change. In A Framework for Modeling the Future of Global Hydroelectric Resources, Middlebury College
Environmental Studies Senior Seminar, Fall; Middlebury College: Middlebury, VT, USA, 2011.

http://dx.doi.org/10.1088/1755-1315/163/1/012126
http://dx.doi.org/10.3390/en5020305
http://dx.doi.org/10.1016/j.rser.2017.03.002
http://dx.doi.org/10.1016/j.scitotenv.2017.03.022
http://www.ncbi.nlm.nih.gov/pubmed/28283290
http://dx.doi.org/10.1016/j.egypro.2017.10.165
http://dx.doi.org/10.5194/hess-21-133-2017
http://dx.doi.org/10.1007/s11269-009-9500-8
http://dx.doi.org/10.1002/rra.3056
http://dx.doi.org/10.1016/j.renene.2017.02.041
http://dx.doi.org/10.1016/j.wse.2018.07.002
http://dx.doi.org/10.1007/s10584-018-2329-5
http://dx.doi.org/10.1016/j.envsci.2018.05.006
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000041
http://dx.doi.org/10.4296/cwrj2503255
http://dx.doi.org/10.1007/s11269-009-9418-1


Resources 2019, 8, 163 27 of 29

64. De Oliveira, V.A.; de Mello, C.R.; Viola, M.R.; Srinivasan, R. Assessment of climate change impacts on
streamflow and hydropower potential in the headwater region of the Grande river basin, Southeastern Brazil.
Int. J. Climatol. 2017, 37, 5005–5023. [CrossRef]

65. Ehsani, N.; Vörösmarty, C.J.; Fekete, B.M.; Stakhiv, E.Z. Impact of a Warming Climate on Hydropower in the
Northeast United States: The Untapped Potential of Non-Powered Dams. Preprints 2017. [CrossRef]

66. Hassanzadeh, E.; Nazemi, A.; Adamowski, J.; Nguyen, T.-H.; Van-Nguyen, V.-T. Quantile-based downscaling
of rainfall extremes: Notes on methodological functionality, associated uncertainty and application in
practice. Adv. Water Res. 2019, 131, 103371. [CrossRef]

67. Jaramillo, P.; Nazemi, A. Assessing urban water security under changing climate: Challenges and ways
forward. Sustain. Cities Soc. 2018, 41, 907–918. [CrossRef]

68. Ashraf, S.; AghaKouchak, A.; Nazemi, A.; Mirchi, A.; Sadegh, M.; Moftakhari, H.R.; Hassanzadeh, E.;
Miao, C.-Y.; Madani, K.; Baygi, M.M. Compounding effects of human activities and climatic changes on
surface water availability in Iran. Clim. Chang. 2019, 152, 379–391. [CrossRef]

69. Beven, K. I believe in climate change but how precautionary do we need to be in planning for the future?
Hydrol. Proc. 2011, 25, 1517–1520. [CrossRef]

70. Nazemi, A.; Wheater, H.S. Assessing the vulnerability of water supply to changing streamflow conditions.
Eos Trans. Am. Geophys. Union 2014, 95, 288. [CrossRef]

71. Bormann, H.; Holländer, H.M.; Blume, T.; Buytaert, W.; Chirico, G.B.; Exbrayat, J.F.; Nazemi, A. Comparative
discharge prediction from a small artificial catchment without model calibration: Representation of initial
hydrological catchment development. Die Bodenkultur 2011, 62, 23–29.

72. AghaKouchak, A.; Norouzi, H.; Madani, K.; Mirchi, A.; Azarderakhsh, M.; Nazemi, A.; Nasrollahi, N.;
Farahmand, A.; Mehran, A.; Hasanzadeh, E. Aral Sea syndrome desiccates Lake Urmia: Call for action.
J. Great Lakes Res. 2015, 41, 307–311. [CrossRef]

73. Alborzi, A.; Mirchi, A.; Moftakhari, H.; Mallakpour, I.; Alian, S.; Nazemi, A.; Hassanzadeh, E.; Mazdiyasni, O.;
Ashraf, S.; Madani, K. Climate-informed environmental inflows to revive a drying lake facing meteorological
and anthropogenic droughts. Environ. Res. Lett. 2018, 13, 084010. [CrossRef]

74. Nazemi, A.; Wheater, H.S.; Chun, K.P.; Bonsal, B.; Mekonnen, M. Forms and drivers of annual streamflow
variability in the headwaters of Canadian Prairies during the 20th century. Hydrol. Proc. 2017, 31, 221–239.
[CrossRef]

75. Nazemi, A.; Wheater, H.S. On inclusion of water resource management in Earth system models–Part 1:
Problem definition and representation of water demand. Hydrol. Earth Syst. Sci. 2015, 19, 33–61. [CrossRef]

76. Nazemi, A.; Wheater, H.S. On inclusion of water resource management in Earth system models–Part 2:
Representation of water supply and allocation and opportunities for improved modeling. Hydrol. Earth Syst.
Sci. 2015, 19, 63–90. [CrossRef]

77. Enviroment and Climate Change Canada. Canada’s Mid-Century Long-Term Low-Greenhouse Gas Development
Strategy; Government of Canada: Ottawa, ON, Canada, 2016.

78. Nazemi, A.; Wheater, H.S.; Chun, K.P.; Elshorbagy, A. A stochastic reconstruction framework for analysis of
water resource system vulnerability to climate-induced changes in river flow regime. Water Res. Res. 2013,
49, 291–305. [CrossRef]

79. Hassanzadeh, E.; Elshorbagy, A.; Nazemi, A.; Jardine, T.D.; Wheater, H.; Lindenschmidt, K.E. The
ecohydrological vulnerability of a large inland delta to changing regional streamflows and upstream
irrigation expansion. Ecohydrology 2017, 10, e1824. [CrossRef]

80. Hassanzadeh, E.; Elshorbagy, A.; Wheater, H.; Gober, P.; Nazemi, A. Integrating supply uncertainties from
stochastic modeling into integrated water resource management: Case study of the Saskatchewan River
basin. J. Water Res. Plan. Manag. 2015, 142, 05015006. [CrossRef]

81. Boadi, S.A.; Owusu, K. Impact of climate change and variability on hydropower in Ghana. Afr. Geograph.
Rev. 2017, 1–15. [CrossRef]

82. Kabo-Bah, A.; Diji, C.; Nokoe, K.; Mulugetta, Y.; Obeng-Ofori, D.; Akpoti, K. Multiyear rainfall and
temperature trends in the Volta river basin and their potential impact on hydropower generation in Ghana.
Climate 2016, 4, 49. [CrossRef]

83. Khaniya, B.; Priyantha, H.G.; Baduge, N.; Azamathulla, H.M.; Rathnayake, U. Impact of climate variability
on hydropower generation: A case study from Sri Lanka. ISH J. Hydraul. Eng. 2018, 1–9. [CrossRef]

http://dx.doi.org/10.1002/joc.5138
http://dx.doi.org/10.20944/preprints201711.0116.v1
http://dx.doi.org/10.1016/j.advwatres.2019.07.001
http://dx.doi.org/10.1016/j.scs.2017.04.005
http://dx.doi.org/10.1007/s10584-018-2336-6
http://dx.doi.org/10.1002/hyp.7939
http://dx.doi.org/10.1002/2014EO320007
http://dx.doi.org/10.1016/j.jglr.2014.12.007
http://dx.doi.org/10.1088/1748-9326/aad246
http://dx.doi.org/10.1002/hyp.11036
http://dx.doi.org/10.5194/hess-19-33-2015
http://dx.doi.org/10.5194/hess-19-63-2015
http://dx.doi.org/10.1029/2012WR012755
http://dx.doi.org/10.1002/eco.1824
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000581
http://dx.doi.org/10.1080/19376812.2017.1284598
http://dx.doi.org/10.3390/cli4040049
http://dx.doi.org/10.1080/09715010.2018.1485516


Resources 2019, 8, 163 28 of 29

84. Machina, M.B.; Sharma, S. Assessment of climate change impact on hydropower generation: A case study of
Nigeria. Int. J. Eng. Technol. Sci. Res. 2017, 4, 2394–3386.

85. Zhao, G.; Mu, X.; Tian, P.; Wang, F.; Gao, P. Climate changes and their impacts on water resources in semiarid
regions: A case study of the Wei River basin, China. Hydrol. Proc. 2013, 27, 3852–3863. [CrossRef]

86. Mekis, É. J3.7 Adjustments for trace measurements in Canada. In Proceedings of the 15th Conference on
Applied Climatology, Savannah, GA, USA, 19–23 June 2005; pp. 20–24.

87. Mekis, É.; Vincent, L.A. An overview of the second generation adjusted daily precipitation dataset for trend
analysis in Canada. Atmosphere-Ocean. 2011, 49, 163–177. [CrossRef]

88. Vincent, L.A.; Wang, X.L.; Milewska, E.J.; Wan, H.; Yang, F.; Swail, V. A second generation of homogenized
Canadian monthly surface air temperature for climate trend analysis. J. Geophys. Res. Atmosph. 2012, 117.
[CrossRef]

89. Han, D.; Bray, M. Automated Thiessen polygon generation. Water Res. Res. 2006, 42. [CrossRef]
90. Nalley, D.; Adamowski, J.; Khalil, B.; Ozga-Zielinski, B. Trend detection in surface air temperature in Ontario

and Quebec, Canada during 1967–2006 using the discrete wavelet transform. Atmosph. Res. 2013, 132,
375–398. [CrossRef]

91. Mann, H. Non-Parametric Tests Against Trend: Econo-Metrica v. 13; Elsevier: Amsterdam, The Netherlands, 1945.
92. Yue, S.; Wang, C. The Mann-Kendall test modified by effective sample size to detect trend in serially correlated

hydrological series. Water Res. Manag. 2004, 18, 201–218. [CrossRef]
93. Ahmad, I.; Tang, D.; Wang, T.; Wang, M.; Wagan, B. Precipitation trends over time using Mann-Kendall and

spearman’s rho tests in swat river basin, Pakistan. Adv. Meteorol. 2015, 2015. [CrossRef]
94. Cannarozzo, M.; Noto, L.V.; Viola, F. Spatial distribution of rainfall trends in Sicily (1921–2000). Phys. Chem.

Earth Parts A/B/C 2006, 31, 1201–1211. [CrossRef]
95. Kumar, V.; Jain, S.K.; Singh, Y. Analysis of long-term rainfall trends in India. Hydrol. Sci. J. 2010, 55, 484–496.

[CrossRef]
96. Longobardi, A.; Villani, P. Trend analysis of annual and seasonal rainfall time series in the Mediterranean

area. Int. J. Climatol. 2010, 30, 1538–1546. [CrossRef]
97. Sridhar, S.; Raviraj, A. Statistical Trend Analysis of Rainfall in Amaravathi River Basin using Mann-Kendall

Test. Curr. World Environ. 2017, 12, 89–96. [CrossRef]
98. Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389.

[CrossRef]
99. Assani, A.; Guerfi, N. Analysis of the Joint Link between Extreme Temperatures, Precipitation and Climate

Indices in Winter in the Three Hydroclimate Regions of Southern Quebec. Atmosphere 2017, 8, 75. [CrossRef]
100. Feng, J.; Li, N.; Zhang, Z.; Chen, X. How to apply the dependence structure analysis to extreme temperature

and precipitation for disaster risk assessment. Theor. Appl. Climatol. 2018, 133, 1–9. [CrossRef]
101. Nazemi, A.; Elshorbagy, A. Application of copula modelling to the performance assessment of reconstructed

watersheds. Stoch. Environ. Res. Risk Assess. 2012, 26, 189–205. [CrossRef]
102. Genest, C.; Favre, A.-C. Everything you always wanted to know about copula modeling but were afraid to

ask. J. Hydrol. Eng. 2007, 12, 347–368. [CrossRef]
103. Kendall Maurice, G. Rank Correlation Methods; Charles Griffin and Company: London, UK, 1975.
104. Bontempi, G.; Flauder, M. From dependency to causality: A machine learning approach. J. Mach. Learn. Res.

2015, 16, 2437–2457.
105. Wiener, N. The theory of prediction. In Modern Mathematics for Engineers; McGraw-Hill: New York, NY, USA,

1956; pp. 165–190.
106. Granger, C.W. Investigating causal relations by econometric models and cross-spectral methods. Econom. J.

Econom. Soc. 1969, 37, 424–438. [CrossRef]
107. Attanasio, A. Testing for linear Granger causality from natural/anthropogenic forcings to global temperature

anomalies. Theor. Appl. Climatol. 2012, 110, 281–289. [CrossRef]
108. Kodra, E.; Chatterjee, S.; Ganguly, A.R. Exploring Granger causality between global average observed time

series of carbon dioxide and temperature. Theor. Appl. Climatol. 2011, 104, 325–335. [CrossRef]
109. Mokhov, I.I.; Smirnov, D.A.; Nakonechny, P.I.; Kozlenko, S.S.; Seleznev, E.P.; Kurths, J. Alternating mutual

influence of El-Niño/Southern Oscillation and Indian monsoon. Geophys. Res. Lett. 2011, 38. [CrossRef]
110. Mosedale, T.J.; Stephenson, D.B.; Collins, M.; Mills, T.C. Granger causality of coupled climate processes:

Ocean feedback on the North Atlantic Oscillation. J. Clim. 2006, 19, 1182–1194. [CrossRef]

http://dx.doi.org/10.1002/hyp.9504
http://dx.doi.org/10.1080/07055900.2011.583910
http://dx.doi.org/10.1029/2012JD017859
http://dx.doi.org/10.1029/2005WR004365
http://dx.doi.org/10.1016/j.atmosres.2013.06.011
http://dx.doi.org/10.1023/B:WARM.0000043140.61082.60
http://dx.doi.org/10.1155/2015/431860
http://dx.doi.org/10.1016/j.pce.2006.03.022
http://dx.doi.org/10.1080/02626667.2010.481373
http://dx.doi.org/10.1002/joc.2001
http://dx.doi.org/10.12944/CWE.12.1.11
http://dx.doi.org/10.1080/01621459.1968.10480934
http://dx.doi.org/10.3390/atmos8040075
http://dx.doi.org/10.1007/s00704-017-2187-5
http://dx.doi.org/10.1007/s00477-011-0467-7
http://dx.doi.org/10.1061/(ASCE)1084-0699(2007)12:4(347)
http://dx.doi.org/10.2307/1912791
http://dx.doi.org/10.1007/s00704-012-0634-x
http://dx.doi.org/10.1007/s00704-010-0342-3
http://dx.doi.org/10.1029/2010GL045932
http://dx.doi.org/10.1175/JCLI3653.1


Resources 2019, 8, 163 29 of 29

111. Kaufmann, R.; Zhou, L.; Myneni, R.; Tucker, C.; Slayback, D.; Shabanov, N.; Pinzon, J. The effect of vegetation
on surface temperature: A statistical analysis of NDVI and climate data. Geophys. Res. Lett. 2003, 30.
[CrossRef]

112. Papagiannopoulou, C.; Gonzalez Miralles, D.; Decubber, S.; Demuzere, M.; Verhoest, N.; Dorigo, W.A.;
Waegeman, W. A non-linear Granger-causality framework to investigate climate-vegetation dynamics. Geosci.
Model. Dev. 2017, 10, 1945–1960. [CrossRef]

113. Gourévitch, B.; Le Bouquin-Jeannès, R.; Faucon, G. Linear and nonlinear causality between signals: Methods,
examples and neurophysiological applications. Biol. Cybern. 2006, 95, 349–369. [CrossRef]

114. Mekonnen, B.A.; Nazemi, A.; Mazurek, K.A.; Elshorbagy, A.; Putz, G. Hybrid modelling approach to prairie
hydrology: Fusing data-driven and process-based hydrological models. Hydrol. Sci. J. 2015, 60, 1473–1489.
[CrossRef]

115. Hatami, S.; Zandmoghaddam, S.; Nazemi, A. Statistical Modeling of Monthly Snow Depth Loss in Southern
Canada. J. Hydrol. Eng. 2018, 24, 04018071. [CrossRef]

116. Zandmoghaddam, S.; Nazemi, A.; Hassanzadeh, E.; Hatami, S. Representing Local Dynamics of Water
Resource Systems through a Data-Driven Emulation Approach. Water Res. Manag. 2019, 33, 3579–3594.
[CrossRef]

117. De Souza Dias, V.; Pereira da Luz, M.; Medero, G.; Tarley Ferreira Nascimento, D. An overview of hydropower
reservoirs in Brazil: Current situation, future perspectives and impacts of climate change. Water 2018, 10, 592.
[CrossRef]

118. National Roundtable on the Environment and Economy. Available online: http://nrt-trn.ca/hydro-quebec-
case-study (accessed on 15 April 2019).

119. Pomeroy, J.; de Boer, D.; Martz, L. Hydrology and Water Resources of Saskatchewan; Centre for Hydrology,
University of Saskatchewan Saskatoon: Saskatoon, SK, Canada, 2005.

120. Hassanzadeh, E.; Nazemi, A.; Elshorbagy, A. Quantile-based downscaling of precipitation using genetic
programming: Application to IDF curves in Saskatoon. J. Hydrol. Eng. 2013, 19, 943–955. [CrossRef]

121. Nazemi, A.-R.; Hosseini, S.; Akbarzadeh-T, M.-R. Soft computing-based nonlinear fusion algorithms for
describing non-Darcy flow in porous media. J. Hydraul. Res. 2006, 44, 269–282. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1029/2003GL018251
http://dx.doi.org/10.5194/gmd-10-1945-2017
http://dx.doi.org/10.1007/s00422-006-0098-0
http://dx.doi.org/10.1080/02626667.2014.935778
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0001763
http://dx.doi.org/10.1007/s11269-019-02319-3
http://dx.doi.org/10.3390/w10050592
http://nrt-trn.ca/hydro-quebec-case-study
http://nrt-trn.ca/hydro-quebec-case-study
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000854
http://dx.doi.org/10.1080/00221686.2006.9521681
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Rationale and Assumptions 
	Data Support 
	Methodology 
	Upscaling Climate Variables 
	Quantifying Trends in Regional Climate Variables 
	Analysing Dependency between Hydropower Production and Climate Variables 
	Diagnosing Climate Causes of Hydropower Production across Canadian Jurisdictions 
	Developing Predictive Models for Regional Hydropower Production 

	Results and Discussion 
	Validating Upscaled Climate Data 
	Trends in Regional Climate Variables 
	Regional Dependencies between Climate Variables and Hydropower Production 
	Climatic Causes of Hydropower Production across Canadian Jurisdictions 
	Predictive Models of Monthly Hydropower Production 

	Expected Change in Hydropower Production Potential under Historical Climate Trends 
	Summary, Conclusions and Further Remarks 
	
	References

