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Abstract: The variable nature of the coalmine roof poses a challenge to roadway stability during
underground coal mining. There have been fatalities and financial losses in the coal mining industry
due to roadway failures and roof falls. Generally, the geotechnical and geological data gathered
from exploration boreholes, which are drilled at considerable distances from each other, are used
to characterize the thickness and quality (including strength) of the coalmine roof. This process
provides a limited number of samples that cannot represent the discontinuous nature of the strata in
the coalmine roof nor can they form reliable inputs to a digital model of the rock mass component of
the digital mine. Gaining confidence in the strata properties of the coalmine roof is necessary for the
modelling, design, and maintenance of roadways. The paper describes the progress of the ongoing
work to investigate the monitoring while drilling (MWD) concept for characterizing coalmine roofs.
Large-scale drilling experiments in synthesized sandwiched rock samples without interfaces were
carried out. The drilling response data were analyzed to identify whether the drill data differentiates
the various strengths associated with the rock samples. The initial results show that the drilling data
can differentiate the synthesized rock samples.

Keywords: measurement while drilling (MWD); coalmine; roof strata; drill; digital mine

1. Introduction

A major cause of roof instability in underground coalmines is the uncertain variation (for example,
thickness, competence, discontinuities) of the coalmine roof. Normally, the geotechnical and geological
data gathered from exploration boreholes, which are drilled at considerable distances from each
other, are used to characterize the thickness and quality (including strength) of the coalmine roof.
This limited data cannot capture the local variability presented in the coalmine roof. Roof support
designs must accommodate a certain amount of variability and uncertainty, meaning that some areas
are over-supported. Operationally, greater levels of variability and uncertainty are dealt with by means
of trigger action response plans (TARPs). If it was possible to reduce the uncertainty by measuring and
analyzing various drilling parameters for roof bolting to interpret and gain confidence in the coalmine
roof during roadway development, then it would be possible to optimize roof support designs and
improve TARP responses. Moreover, this information would be valuable in generating a reliable
digital model of the rock mass surrounding the mining process, an important component of a ‘digital
twin’ of a mining operation. From the available literature, it was found that Australian underground
coalmines appear to lack a fully integrated measurement while drilling (MWD) system for roadway
development [1], so applied research into the topic is required.

This paper discusses MWD as a means to characterize a coalmine roof as part of an integrated
and intelligent roadway monitoring and assessment system that is being developed at the Coal Mining
Research Program in the Commonwealth Scientific and Industrial Research Organization (CSIRO) as
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an aid to mining operations and as an input into development of the digital mine. Figure 1 shows a
broader concept of the key components of this system and its applications.
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Figure 1. Key components the intelligent roadway monitoring and assessment system and
its applications.

Geology

For underground mining operations, including longwall mining, bord and pillar mining, and
block caving in metalliferous mines, roadway development is a critical part. Roadways are used to
transport mining personnel, equipment, mined coal, and minerals to the ground surface. The roadway
system is a lifeline in any underground mining operation to support and provide critical functions
in day-to-day activities and therefore they need to be stable, reliable, and functional. In addition to
the high cost of development, there is a huge ongoing cost in the maintenance of these roadways.
A one-day stoppage of underground longwall coal extraction would cost more than a million dollars,
including production loss and recovery costs, to a mine.

Further pressure is being placed on roadway development due to mines facing deeper and
more challenging geological operating conditions. As a solution to these problems, remote operation
methods are being implemented. For these systems, reliable roof characterization methods are required
for remote monitoring and digital geological model generation.

The challenges facing effective roadway design include unfavorable geotechnical conditions,
lack of real-time strata monitoring, inadequate understanding of the dynamics and types of failure
mechanisms, and insufficient geological data. A real-time predictive tool that can provide information
on what is ahead on the drilling process while developing the roadways in underground coalmines
would provide valuable data that is not currently available. The integration of the MWD concept,
as shown in Figure 2, provides a high-value input into an intelligent digital mining system. The real-time
geological data obtained from the drill sensors are collated and analyzed with a suitable algorithm,
which is already fed into the MWD analysis box (shown in Figure 2) to characterize the strength and
nature (layered or massive) of the roof strata. After the characterization of the roof strata, the roof
bolting algorithm (which is a part of the intelligent digital mine but not covered in this paper) performs
the calculation and optimization of the roof bolts required for adequate roof support and is passed on

to the roof bolter. This whole process will be a part of the intelligent digital mining concept shown in
Figure 2.
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Figure 2. Role of MWD in intelligent mining.

2. MWD History

The method was first developed for the petroleum exploration industry [2]. The literature has
examples of laboratory experiments, field trials, and the development of instruments to monitor
while drilling [2-12]. Reference [6] provided a brief review of recent improvements on instrumented
drills used in ground characterization and highlighted issues that are still lagging in using these
instruments. Four instruments for roof bolt drills that can acquire roof data during roof drilling are
discussed [6]. These tools have been developed by (a) Parvus Corporationn (Salt Lake City, UT, USA)
(b) Muroran Institute of Technology (Hokkaido, Japan), (c) Robotics Institute of Carnegie Mellon
University (Pittsburgh, PA, USA), and (d) JH Fletcher & Company (Huntington, WV, USA).

Apart from the JH Fletcher & Company system, as per our understanding, none of the available
literature demonstrates the use of these tools in either commercial, prototype, or development status in
Australia. Data obtained from one of the examples of MWD in a concrete block reproduced in Figure 3
(taken from [8] with acknowledgement).
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Figure 3. Data acquired during concrete block drilling for MWD (with acknowledgement to [8]).
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Figure 3 illustrates the distinctive combinations of drilling parameters when different strata are
encountered. Generally, the specific energy of drilling (mechanical work done by drill bit per unit
volume of excavated material) [11] and, recently, the rotation to thrust power ratio [7] are used to
measure the energy required to fracture rocks and classify rock types. Researchers have investigated
the use of the specific energy of drilling as an indicator of the uniaxial compressive strength of the
samples [5].

3. Methods and Materials

Some of the issues that are challenging in the development of MWD for the coal mining
environment in this project while doing experiments and field study include the accuracy in analyzing
and interpreting the measurement data, accurately classifying coal and other like materials (for example,
shale), accuracy in deriving rock properties [2,7], and identifying smaller joints [13].

Most of the literature shows the development of the MWD concept on either the laboratory scale
with the synthesized samples [5,13,14] or drill data collected from the mine [7] with their own analysis
and explanation of the acquired signals and are in the research stage. However, these results are
encouraging (for example, [5,14]).

The objectives of this research were (a) to investigate the applicability of the MWD concept to
perform geotechnical characterization of coalmine roofs to inform geological and geotechnical digital
models, and (b) to detect “signatures” of changes in roof strata to assist in real-time operational
decision making.

The concept of MWD, while sampling as close to the roadway face as possible, has the potential
to allow for early detection and response to geotechnical hazards (for example, thinning roof coal
layer, weak lithology, seam splits, discontinuities, voids). With the installation of sensors on the drills,
the parameters (for example, toque, penetration rate), which are monitored and gathered during the
drilling process, will be analyzed to extract valuable information on roof characteristics that will help
in developing a predictive methodology for improved coalmine roof characterization.

In theory, various methods, including analytical, numerical, and experimental, can be used to
analyze the applicability of MWD to the characterization of coalmine roofs [2-8,11,15-17]. Analytical
and numerical methods provide a straightforward means to understand the immediate effect of various
geotechnical parameters on drilling and bolting operations. However, the main concept these methods
lack is the incorporation of heterogeneity and complexity in the geology (for example, inter-penetration
of layers, voids, pinching of various layers) of the strata properties in the analysis. A limited solution
could be achieved by performing several sensitivity analyses, but a sensitivity analysis does not provide
any useful real-time information regarding a combination of heterogeneity and complexity so is not
meaningful for operational purposes. Consequently, there is a place for experimental observations and
analysis on synthesized and real samples to provide significant information on what type of strata lies
ahead while drilling.

Normally, experienced drill operators can provide a qualitative comparison of strata behaviors
during drilling based on various drill parameters, for example, the feed rate, vibration, sound etc.
The aim of this research is to capture these cues through MWD via various signals, and process and
interpret these signals to develop a predictive tool to characterize the strata.

The research was planned in multiple stages as (a) performing experiments on various synthesized
laboratory samples, (b) developing an analysis method with the data acquired from the synthesized
laboratory samples, (c) testing the real rock samples with the developed analysis method, and (d)
conducting field trials on real-time data. Currently, this project is in its initial stage.

Therefore, this paper presents the progress of the ongoing work of the initial stage. In this initial
stage, various synthesized sandwiched rock samples with synthesized interfaces (as shown Figure 1)
were drilled in the laboratory. The drilling machine had sensors attached and the laboratory testing
was performed in a controlled environment. The data obtained were analyzed to see if any significant
differences exist between various strength layers in order to investigate the applicability of MWD
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in synthesized and real rock samples. Finally, and ideally, the aim was to provide a tool box, which
takes the real-time geological information from the MWD sensors, process it with specific algorithms
to optimize roadway supports, and update the mine’s digital geological model, support plans, and
designs, if needed. Some initial experiments have already been conducted and the results to date are
discussed in this paper. Since the research is at an early stage, ongoing experiments will confirm or
suggest a new approach to analyze the observations noted in this paper.

4. Experimental Program

4.1. Drill Rig

CSIRO’s Rock Cutting Laboratory field-scale drill rig shown in Figure 4 was used for this project.
The specification of the drill rig is given in Table 1. Various instruments to measure spindle revolution
per minute (rotary speed), torque at the spindle, spindle motor input hydraulic pressure, pulldown
force, and mast displacement (position) are installed in the rig to facilitate drilling data acquisition.

(b)

Figure 4. (a) Drill rig used in the experiment. (b) Sample drill bit.

Table 1. Specification of drill rig.

Spindle Speed 0-1250 RPM, 2 Speed Gearbox
Max Torque 4150 Nm
Max Weight on Bit 60 kN
Vertical Feed Rate 0-3 m/s
Mast Stroke 23m
Max Water Flow ~50 L/min at mains pressure
Air Compressor 600 CFM at 190 psi
DTH Hammer Drillroc 5 inch

Dust Suppression with DTH Hammer

1450 psi water at 8 L/min at top swivel
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Sensors to measure drilling parameters, such as the penetration rate, torque, rotary speed, vibration
etc., are becoming common add-ons in drilling machines. The monitoring of these parameters can offer
valuable information regarding the geomechanical properties of strata at the drill bit during drilling.
For example, the pull-down force can indicate the strength and hardness of the rock. As expected, the
pull-down force decreases in soft rock transitions and increases in harder—stronger transitions [18]. The
intensity of vibration identifies different strengths between strata types. Torque measures the variation
between soft and hard rocks.

Drill rods, drill adaptors, and drill bits of dimensions of 38 and 28 mm with M16 thread were
sourced from third party suppliers. A drill bit example is also shown in Figure 4. As per the suppliers’
data, the drill bit should easily drill through materials up to 50 to 60 MPa uniaxial compressive strength.

4.2. Synthesized Sample Preperation

Synthesized layered rock samples of varying strength and thickness were prepared. These samples
were prepared to resemble the variable (strength and thickness) nature of a typical coalmine roof. Key
drilling parameters, such as the torque, rotary speed, hydraulic pressure, and force, were captured
while drilling through the different samples.

A fundamental approach was adopted to prepare synthetic rock samples and conduct drilling
experiments. A general purpose Portland cement that complies with the AS3972 standard and general
purpose construction sand were chosen for the experiments. Double-washed and kiln-dried sand, with
a 0.2- to 0.6-mm sieve size particles was used to prepare the mortar samples.

First, three classes of mortar representing low, medium, and high strength geo-materials were
prepared with the cement and sand mixture as shown in Table 2. Each sample was 0.4 m? in area with
a height of 0.3 m and a volume of 0.048 m3. These samples are expected to represent various strengths
of the strata that are encountered in the coalmine roof. It should be noted that the strength values
shown are estimates only and uniaxial compressive tests should be conducted to confirm these values.
Figure 5 shows the sample preparation process at the laboratory.

Table 2. Used ratio and tested uniaxial compressive strength of each sample.

#  Type Piece Dimension,m  Estimated UCS ¥, MPa  Mixing Ratio (Sand:Cement)
1 Weak 4 04x04x0.3 10 4:1
2 Moderate 4 0.4%x04x0.3 22 2:2
3  Strong 4 04x04x0.3 40 1:4

* Values are estimates only, proper uniaxial compressive strength tests should be conducted to confirm these values.

Figure 5. Examples of sample preparation and samples.

The individual samples were left and regularly watered for 35 days for curing. These samples
were then assembled in a 3 by 4 matrix-type setup, shown in Figure 6, in order to form a representative
geomechanical setup comprising conceptual lithological units of various strengths. These samples
were cased in a large concrete structure of a dimension of 1.2 m square with a 0.9-m height as shown in
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the right-hand picture of Figure 6. This outer casing is needed to contain the samples firmly during the
drilling process. Figure 7 shows the experimental setup.

Figure 6. Test design consisting of various lithological units embedded in concrete.

Figure 7. Experimental set up.
5. Results and Discussion

In each column, three rows of synthesized samples were placed. The top row samples were
weakest, the middle row samples were moderate, and the bottom row samples were the strongest, as
described in Table 2. Several drilling experiments were carried out.

In this preliminary study, 10 holes were drilled in one column. The raw data obtained from the
drill rig data acquisition system were calibrated as per the machine and sensor calibration factors. The
raw data were cleaned to remove the spurious data. Then, using a suitable data processing script in the
python programming language, the data were analyzed and plotted. Preliminary results while drilling
a column of the blocks are shown in Figure 8. This example data is from the same drill hole. These
results are promising as the various curves shown in the figure show a distinct response of the various
sample blocks for the assigned drilling revolution per minute. In the displacement figure, due to the
void interface, there are some kinks at around 480 and 970 s. Depending on the material the drill bit is
passing through, the reaction on the weight on the bit is changing. The weaker block on the top of the
drilled column does not provide much resistance to the drill bit, whereas the second block, which is
stronger than the first block, provides some resistance to the drill bit. The third block is strongest of all,
therefore it provided much resistance to the drill bit while drilling. A similar observation can be noted
for the torque on the bit.
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Figure 8. Preliminary results obtained while drilling a column of blocks (displacement, mm; weight on
bit, kN; torque, Nm, and time, s). Parameters: 50 rpm, weight on bit 1.5 kN, and drill bit diameter
28 mm.

With many tests, we expect to observe similar differentiation of the magnitudes for the torque and
response on other input parameters while the drilling rod passes through blocks of various strengths.
It should be noted here that this is just the beginning of the research in this area. The results presented
and discussed here will need to be repeated under a range of operating conditions to test the hypothesis
discussed in this paper. In the next set of experiments, the plan is to conduct at least 200 experiments
with a range of drilling parameters, both with and without a synthesized interface between the blocks
in the columns. It is planned that combinations of different layers with varying strengths will be used.
Thus, our hypothesis will be tested in a number of real underground coalmine roof development
scenarios. The obtained data will be analyzed with a suite of machine learning algorithms, with the
goal of achieving a functional result.

The risk to achieving the expected outcomes and benefits of the project will depend on the ability
to identify and interpret the signatures obtained from the experiments on synthesized samples and
on real rock samples. In addition to the accuracy in analyzing, interpreting and measurement issues,
accurately classifying coal and shale in field experiments, and accuracy and reliability in deriving rock
properties with the drilling data could be considered as challenges and risks in developing and using
MWD in the coal mining environment [2,7]. Previous work in this area suggests good prospects that
these challenges are surmountable and that a practical MWD system can be developed.

6. Conclusions

Preliminary experiments were conducted to identify the applicability of measurement during
the drilling concept in coal mining scenarios, where there are a lot of alike geo-materials present in
the strata. The very first experiments have shown to be promising; however, it is still too early to
comment any further on the applicability of the concept in underground coal mining, particularly in
roadway development.
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At this preliminary stage, the results obtained from the MWD are promising as they show distinct
responses of the various sample blocks in a controlled environment. The weight on the bit varies with
the strength of the blocks. The torque on the bit also shows a dependency on the strength of the blocks.

The successful analysis, development, and implementation of the MWD analysis box with suitable
hardware can improve the efficiency and production of underground coal mining. The most important
improvement would be a reduction of human exposure to the hazardous underground coal mining
environment and a step towards improved automation and remote management, which can eventually
lead to the achievement of the integrated intelligent digital mine concept. The real-time data obtained
from the MWD could also be used in modelling, calibration, and validation of the physical, numerical,
and analytical model. Further application of the MWD would be in the hazardous environment
experienced in other fields, for example, civil engineering.
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