
electronics

Article

F_Radish: Enhancing Silent Data Corruption Detection for
Aerospace-Based Computing

Na Yang 1,2,* and Yun Wang 1,2,*

����������
�������

Citation: Yang, N.; Wang, Y.

F_Radish: Enhancing Silent Data

Corruption Detection for

Aerospace-Based Computing.

Electronics 2021, 10, 61.

https://doi.org/10.3390/

electronics10010061

Received: 31 October 2020

Accepted: 24 December 2020

Published: 31 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Computer Science and Engineering, Southeast University, Nanjing 210000, China
2 Key Laboratory of Computer Network and Information Integration, Ministry of Education,

Southeast University, Nanjing 210000, China
∗ Correspondence: nyangsd@seu.edu.cn (N.Y.); ywang_cse@seu.edu.cn (Y.W.)

Abstract: Radiation-induced soft errors degrade the reliability of aerospace-based computing. Silent
data corruption (SDC) is the most dangerous and insidious type of soft error result. To detect SDC,
program invariant assertions are used to harden programs. However, there exist redundant assertions
in hardened programs, which impairs the detection efficiency. Benign errors are another type of
soft error result. An assertion may detect benign errors, incurring unnecessary recovery overhead.
The detection degree of an assertion represents the detection capability, and an assertion with a
high detection degree can detect severe errors. To improve the detection efficiency and detection
degree while reducing the benign detection ratio, F_Radish is proposed in the present work to
screen redundant assertions in a novel way. At a program point, the detection degree and benign
detection ratio are considered to evaluate the importance of the assertions in the program point. As a
result, only the most important assertion remains in the program point. Moreover, the redundancy
degree is considered to screen redundant assertions for neighbouring program points. Experimental
results show that in comparison with the Radish approach, the detection efficiency of F_Radish is
about two times greater. Moreover, F_Radish reduces the benign detection ratio and improves the
detection degree. It can avoid more unnecessary recovery overheads and detect more serious SDC
than can Radish.

Keywords: soft error; single event upset; silent data corruption; reliability; redundant assertion

1. Introduction

Soft errors are transient errors caused by single event effects that occur in microelec-
tronics when highly energetic particles, such as protons, electrons, and neutrons, strike
sensitive regions of a microelectronic circuit [1]. Neutron-induced soft errors were ob-
served in airborne computers in 1993 [2]. Today, with the aggressive shrinking of nodes
in microelectronic devices and the reduction in supply voltages, the energy threshold
for causing soft errors has decreased rapidly, resulting in the increase of soft errors and
causing them to become a chief reliability threat [3]. Soft errors have become a critical
reliability concern for applications, and their resulting forms can be categorised as crash,
hang, benign, and silent data corruption (SDC) errors. Crash and hang are explicit errors
that cause programs to respectively stop execution and to run non-stop, and they can be
easily captured by those explicit behaviours. Being benign means that an error is masked
during the program execution and does not have an effect on the output of the program [4].
SDC means that an error does not incur explicit behaviours; however, an incorrect result is
produced after the program finishes. SDC is very difficult to detect and can therefore have
severe consequences [5–7].

Soft error detection is the first and crucial step of soft error protection, and is conducted
at both the software and hardware levels. Hardware-based approaches usually change the
original processor architecture or attach special-purpose hardware modules to the processor.
However, they require substantial development efforts, and the hardware modules are

Electronics 2021, 10, 61. https://doi.org/10.3390/electronics10010061 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics10010061
https://doi.org/10.3390/electronics10010061
https://doi.org/10.3390/electronics10010061
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10010061
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/10/1/61?type=check_update&version=3

Electronics 2021, 10, 61 2 of 20

barely portable. Moreover, as the soft error rates increase, hardware may not provide
adequate protection [8]. In contrast, software-based approaches require no hardware and
provide high portability and a short development time, and are therefore promising.

An SDC is hazardous because it corrupts the execution result of a program without
any explicit behaviour. The instruction duplication mechanism [9–11], prediction-based
mechanism [12,13], and assertion-based mechanism [14,15] are three types of mechanisms
for the detection of SDC at the software level. Via the instruction duplication mechanism,
instructions are duplicated and their results are compared to detect SDC. However, this
method is expensive because it involves the replication of a large portion of a program [14].
The prediction-based mechanism generates a predicted value at runtime via a prediction
method [12], and the predicted and actual observed values are then compared to detect SDC.
This mechanism is applicable to iterative HPC applications or parallel applications [13,16],
and its process is complex. The assertion-based detection mechanism detects SDC at the
program level by inserting assertions into programs [14], and its overhead is low. Moreover,
its process is relatively simple, and it generally does not target specific types of applications.

An assertion is a statement with a predicate (A Boolean-valued function, a true-false
expression). If it is found to be false at runtime, an assertion failure occurs. The predicate
also represents an invariant that is true during normal program execution. At present,
the extracted invariants can be classified as logic-based invariants with multiple variables
and bounded-range-based invariants with a single variable, and the former outperforms
the latter. An SDC detection approach called Radish was proposed in the authors’ previous
research [14]. In Radish, a program invariant describes the relationship of the variables that
appear in the program point, such as global variables, and the local variables and function
parameters of the function in which the program point is located. Figure 1 provides an
example of program invariant assertions in “bitstring”, which is a program in the Mibench
benchmark suite that prints a bit pattern of bytes formatted as a string. In the figure,
“strwid” represents the total width of the string, and strwid > i and strwid > j are two
program invariants at program point A that respectively describe the relationship between
strwid and i and that between strwid and j. They are satisfied whenever the program is
executed normally, but are seldom satisfied if a soft error affects the value of strwid or i or
j. Radish performs well and is outstanding in that it extracts logic-based invariants with
multiple variables. It also screens invariant assertions to improve the detection efficiency.
However, the following challenges have been identified.

while (--biz >= 0) {

*str++ = ((byze >> biz) & 1) + '0';

assert(strwid > i);

assert(strwid > j);

if (!(biz % 4) && biz)

*str++ = ' ';

assert(strwid > i);

assert(strwid > j);

}

A

B

Figure 1. An example of assertions.

(1) Redundant assertions impair the detection efficiency

Because multiple variables appear in the program point and multiple relationships
are considered, multiple assertions are produced in the program point. The detection
efficiency is the ratio between the SDC coverage and detection overhead. To improve
the detection efficiency, Radish reduces the detection overhead by assertion screening
based on the features of assertions. However, there may still exist multiple assertions at a
program point, as assertions may behave with the same features. For example, in Figure 1,
the program point A still has multiple assertions. Additionally, neighbouring program
points may have the same or similar assertions because they are likely to have several of
the same variables. For example, A and B are neighbouring program points that have the

Electronics 2021, 10, 61 3 of 20

same assertions. However, Radish does not screen redundant assertions in neighbouring
program points. In summary, multiple assertions in a program point and the same or
similar assertions in neighbouring program points will incur more detection overhead and
further impair the detection efficiency. Therefore, it is necessary to further filter out these
redundant assertions.

(2) The detection degree and benign detection ratio are not considered in the process of
assertion selection.

The result of a program may consist of multiple outputs that have different impor-
tance to the result and will cause various damage to the result when they are corrupted.
For example, a program performs operations to get a result. The result represents a radian
and consists of two outputs, namely the integral and fractional parts of the radian. The in-
tegral part is more important than the fractional part because an incorrect integral part will
cause more damage to the result. Different SDCs corrupt different variables and program
outputs, causing various damage to the result of the program. The detection degree of an
assertion is considered as the damage of the SDC detected by the assertion to the result
of the program. For example, suppose that there are two assertions, assert(x > 10) and
assert(y > 0), where x and y, respectively, represent the integral and fractional parts of
the radian. The detection degree of the former assertion is higher than that of the latter
assertion, as the SDC detected by the former assertion causes more damage to the result of
the program than that detected by the latter assertion. It is therefore significant to take the
detection degree into consideration and to favour the assertions with high detection degree.
Additionally, assertions may detect benign errors, and a higher benign detection ratio
means more unnecessary recovery overhead. Therefore, disfavoring the assertions with
high benign detection ratios is essential. However, Radish does not consider the detection
degree or benign detection ratio in its process of assertion selection.

In this paper, F_Radish is proposed to detect SDC with a high detection efficiency,
a high detection degree, and a low benign detection ratio. The main contributions of this
research are summarised as follows.

(1) The detection degree and benign detection ratio of an assertion are considered during
the process of assertion screening. For a program point, the importance of each of its
assertions is evaluated based on the detection degree and benign detection ratio. As a
result, only the most important assertion remains in the program point.

(2) Redundant assertions in neighbouring program points are handled. The redundancy
degree of an assertion with respect to its neighbouring assertion is calculated. If the
redundancy degree exceeds a specified threshold, the gain and loss of deleting the
assertion are evaluated. When there is a profit, the assertion is deleted.

(3) An evaluation of F_Radish is conducted. Compared to Radish, the SDC detection
efficiency of F_Radish is about two times greater. Moreover, the percentage increase
of the detection degree is 10%. In addition, F_Radish reduces the benign detection
ratio from 27.8% to 19.2%.

The remainder of this paper is organised as follows. Section 2 briefly reviews related
work. The overview of the proposed F_Radish approach is provided in Section 3. Section 4
presents the process of F_Radish, and explains how redundant assertions in program points
and neighbouring program points are screened. An experimental analysis is reported in
Section 5. Finally, Section 6 draws the conclusions and discusses future work.

2. Related Work

There is a substantial amount of literature on the detection of soft errors at the software
level. SWIFT [9] is an instruction duplication approach that duplicates instructions and
inserts comparison instructions at detection points. During program execution, if there
is a divergence between the original and duplicated instructions, an error is detected.
S-SWIFT-R [17] is a flexible version of SWIFT that selects different register subsets from
the microprocessor register file to be duplicated. NEMESIS [10] also detects soft errors

Electronics 2021, 10, 61 4 of 20

at the compiler level. To reduce the detection overhead, it checks the results, rather
than the operands, of instructions. The research by Rehman et al. [18] found that different
functions are not equally susceptible to soft errors due to their varying data flow and control
flow properties. To avoid excessive protection, only the most reliability-wise important
instructions, which are evaluated by the masking probability, vulnerability and redundancy
overhead, are protected. SDSC [11] is a novel data flow error detection technique that
protects the blocks in the longest path of the control flow graph via instruction duplication,
and inserts comparison instructions only in the critical blocks that have two or more
incoming edges in the longest path of the control flow graph. While various efforts have
been made to refine the duplication space, the overhead of the instruction duplication
mechanism remains quite high.

Targeted at iterative HPC applications, the research work of [12,16] detected SDC by
comparing the observed value at runtime with the predicted value obtained via methods
such as the acceleration-based predictor (ABP), linear curve fitting (LCF), and quadratic
curve fitting (QCF). Mutlu et al. [19] developed a machine learning-based predictor to gen-
erate ground-truth results in the presence of errors. The predictor aims at accelerating SDC
detectors and targeting iterative solvers. LADR [20] was proposed to protect applications
from SDC at the application level by identifying and monitoring manually selected sink
variables. Sirius [13] is a technique for the detection of SDC using the temporal and spatial
locality of physical variables in parallel applications. It constructs a neural network model
for each spatiotemporal variable, and the model is used to check if the actual observed
value of the variable falls within a bounded range around the predicted value. However,
the processes of prediction-based detection approaches are complex, and the selection of
the protected variable is not fully automated.

In the assertion-based mechanism, an assertion is used as a detector. If the assertion
fails at runtime, it indicates that an error has occurred. iSWAT [15] and FaultScreening [21]
adopt bounded-range-based invariant assertions. iSWAT applies soft-level symptoms at
the firmware level to detect permanent faults and invariant assertions at the program level
to detect transient faults. However, its invariants are produced based on the range of
valid values of a single variable. FaultScreening narrows down the valid value space to
improve fault coverage by dynamically dividing the range of valid values into resizable
segments. Although it refines the valid value space, its invariants are also generated based
on single variable values. LPD [22] generates assertions by identifying a few program
properties. However, the process of deriving assertions is manual, which incurs a high
demand of application-specific knowledge. Those assertion-based approaches do not
conduct the work of screening assertions. In addition to bounded-range-based invariants
with a single variable, logic-based invariants with multiple variables are another form of
invariants, and are generated by considering the relationships among multiple variables.
In general, logic-based invariants with multiple variables outperform bounded-range-
based invariants with a single variable. For example, consider two variables in a program,
p and q. During program execution, the sum of p and q is 10, and p and q are both less
than 10. In this case, the assertions generated by single-variable-based methods are in
the form of assert(p < 10) and assert(q < 10). However, the assertion generated by
multiple-variables-based methods is in the form of assert(p + q = 10). assert(p + q = 10)
outperforms assert(p < 10) and assert(q < 10), as its detection overhead is less than the
total detection overhead of assert(p < 10) and assert(q < 10). Additionally, it can detect
more SDC.

Radish [14] automatically extracts logic-based invariant assertions with multiple
variables to detect SDC. It includes three phases, namely the preprocessing, detection,
and selection phases. In the preprocessing phase, Radish identifies critical program points
and extracts their execution profiles. The critical program points are connector and branch
instructions that work against data flow propagation and control flow propagation, re-
spectively. The execution profiles refer to data trace files of variables and their values that
manifest at the critical program points, and they are obtained by Kvasir [23]. In the detec-

Electronics 2021, 10, 61 5 of 20

tion phase, at the critical program points, the values of the variables in the data trace files
are utilised to generate invariants by checking whether the values satisfy any relationship
considered by Radish, such as unary and binary relationships. The relationships that are
satisfied are potential invariants. In the selection phase, the potential invariants are selected
by heuristics and the final invariant assertions are generated. The process of invariant
selection is also that of assertion selection. Radish is simple and the variables that are
protected are identified automatically. It achieves a high detection efficiency and screens
assertions. Radish_D [14] protects the code sections that are not covered by Radish via the
instruction duplication mechanism. In this manner, Radish_D detects SDC at the program
level via assertions and SDC at the instruction level via instruction duplication. At the
program level, the work of Radish_D is the same as that of Radish, Radish_D is Radish.
At present, in terms of the existing assertion-based detection approaches at the program
level, Radish is outstanding in the detection of SDC, and it screens assertions. However,
two factors have been identified as requiring improvement. First, although Radish screens
assertions, redundant assertions still exist and require further screening to improve the
detection efficiency. Second, the detection degree and benign detection ratio need to be
considered during the process of assertion screening to detect severe SDC and reduce
unnecessary recovery overhead.

3. Overview of the F_Radish Approach

F_Radish contains two stages, namely the screening of assertions for every program
point and the screening of assertions for neighbouring program points. Note that program
points in the two stages refer to those that have assertions. The overview of F_Radish is
presented in Figure 2.

Screening assertions for every program point

if there are multiple assertions at the
current program point?

calculate the redundancy degree of the former
assertion with respect to the latter assertion for

the current assertion-pair

if the redundancy degree exceeds a specified
threshold?

N

Y

Screening assertions for neighbouring program points

determine the detection degree of
assertions

determine the benign detection ratio
of assertions

calculate the importance of
assertions

delete the former assertion

the curent assertion-pair has been handled

the most important assertion remains

get the profit of deleting the former assertion

if there is a profit?

Y

Y

N

N

the current program point has been
handled

handle each assertion-pair

 divide assertions into disjoint assertion-pairs

Figure 2. The overview of the F_Radish approach.

Screening assertions for every program point: This stage handles every program
point of the hardened program. If a program point does not have multiple assertions,
it is skipped and considered to have been handled, and the next program point is then
handled. Otherwise, the following steps are executed for the program point. Assume that
the program point has three assertions, namely ai, ai+1, and ai+2. The detection degree
and benign detection ratio of ai, ai+1, and ai+2 are first determined, and are then utilised

Electronics 2021, 10, 61 6 of 20

to assess the importance of ai, ai+1, and ai+2. Finally, only the most important assertion
remains. Under the assumption that the importance of ai is the greatest, ai remains, and ai+1
and ai+2 are deleted. This stage ends when all program points have been handled.

Screening assertions for neighbouring program points: After the first stage, there is
only one assertion in every program point. In the second stage, assertions are screened for
neighbouring program points. As preparation, the assertions in the program are divided
into multiple disjoint assertion-pairs based on their execution order and the functions that
they belong to. For example, suppose that ai, aj, am, and an are four assertions in the pro-
gram after the first stage. They are executed sequentially and belong to the same function.
In this case, two assertion-pairs, (ai, aj) and (am, an), are generated. After preparation, each
assertion-pair is handled. The assertions of an assertion-pair are screened by determining
whether its former assertion can be deleted. To be specific, the redundancy degree of the
former assertion with respect to the latter assertion is first calculated. If the redundancy
degree does not exceed a specified threshold, the former assertion is not deleted. Other-
wise, the profit of deleting the former assertion is calculated. If there is a profit, the former
assertion is deleted or else it is not deleted. This stage ends when all assertion-pairs have
been handled.

An example is subsequently provided to explain the general process of F_Radish.
Assume that there is a program with 1000 program points, and 100 program points have one
or more assertions. In this case, F_Radish will screen assertions for each of the 100 program
points during the first stage. After this stage, only one assertion remains in each of the 100
program points, and the total number of assertions remaining in the program is therefore
100. In the second stage, F_Radish screens assertions for neighbouring program points.
First, the 100 assertions are divided into disjoint assertion-pairs. Assume that 50 disjoint
assertion-pairs are generated based on the execution order of the 100 assertions and the
functions to which the 100 assertions belong. Then, each of the 50 assertion-pairs is
handled. For each assertion-pair, whether its former assertion can be deleted is evaluated
and determined. If the former assertion can be deleted, the former assertion is deleted;
otherwise, it is not deleted. As a result, at least 50 assertions remain in the program.

4. The Stages of F_Radish

The two stages of F_Radish are detailed in Sections 4.1 and 4.2, respectively. The nota-
tions that are frequently used in this section are presented in Table 1.

4.1. Screening Assertions for Every Program Point

(1) Determining the benign detection ratio of assertions

The benign detection ratio of ai is the probability that a benign error that corrupts Vai

can be detected by ai. To determine the benign detection ratio of ai, the instructions that
operate Vai at ai are first obtained, and the backward slice set of these instructions is then
generated. Next, fault injection is conducted on the backward slice set. Finally, the benign
detection ratio of ai is obtained by analysing the result of fault injection, and is represented
by Equation (1).

b(ai) =
n1(ai)

n2(ai)
(1)

The backward slice set of an instruction contains the instructions that will influence
the values of the instruction. To obtain the backward slice set, the dynamic dependence
graph is first constructed. It is a directed acyclic graph that is defined as G = (V, E),
where V is the set of instruction nodes and E is the set of edges. If instruction i2 reads a
value produced by instruction i1, then the edge i1 → i2 is produced. After obtaining the
dependence graph, reverse path-searching is performed to obtain the backward slice set.
Figure 3 presents an example of a program code that calculates the sum of the integers
from 0 to size− 1 and returns the sum. Figure 4 exhibits the dynamic dependency graph
with a size of 2. In Figure 4, the nodes are placed based on the variable that is written.
For example, the nodes in the first column all write k. Table 2 provides the corresponding

Electronics 2021, 10, 61 7 of 20

instructions and nodes, where PR and PW are the positions that are read and written by the
instruction, respectively. Node id refers to the node in Figure 4. Take node 7 as an example,
it represents add dword ptr [esp + 0x24], eax, which reads eax and [esp + 0x24] and writes
[esp + 0x24]. The father nodes of node 7 are node 6, which writes eax, and node 1, which
writes [esp + 0x24]. The child node of node 7 is node 13, which reads [esp + 0x24]. Via a
reverse path search, the backward slice set of node 7 is 1, 6, and 2.

Table 1. Notations.

Symbol Description

O The output set of the program, O = {o1, o2, · · · , oc}.
w(oj) The weight of oj, 1 ≤ j ≤ c.

Vai The variable set of ai, Vai = {V1
ai

, V2
ai

, · · · , Vm
ai

}.
f s(Vl

ai
) The forward slice set of Vl

ai
at ai, 1 ≤ l ≤ m.

s(f s(Vl
ai
)) The size of f s(Vl

ai
).

f s(Vl
ai

, k) The k-th element of f s(Vl
ai
), 1 ≤ k ≤ s(f s(Vl

ai
)).

P The initial hardened program.
FP The filtered program of P after the first stage of F_Radish.
SP The filtered program of FP after the two stages of F_Radish.
ps The set of program points of P.
p The p-th program point in ps. It is also called program point p for convenience.

A(p) The set of assertions at p.
ap,q The q-th assertion at p.
Vap,q The variable set of ap,q.
Vl

ap,q The l-th element of Vap,q .
f s(Vl

ap,q
) The forward slice set of Vl

ap,q
at ap,q.

u(Vap,q) The set of instructions that operate one or more variables in Vap,q at ap,q.
bs(u(Vap,q)) The backward slice set of the instructions in u(Vap,q).

t1(ai) The number of fault injections that incur SDC and invalidate ai.
t2(ai, aj) The number of fault injections that not only result in SDC but also invalidate ai and aj.

θ The threshold of redundancy degree, 0 ≤ θ ≤ 1.
ap The set of assertion-pairs of FP.

bi(Vl
ai
) The backward slice set of instructions that operate Vl

ai
at ai.

n1(ai)

The number of fault injections that are injected on the backward slice set of the instructions
that operate Vai at ai, and not only result in benign error but also are detected by ai.

n2(ai)

The number of fault injections that are injected on the backward slice set of the instructions
that operate Vai at ai and result in benign error.

α
The weight of the detection degree.

β
The weight of the benign detection ratio.

max_d
The maximum detection degree.

max_b
The maximum benign detection ratio.

d(ai, aj)
The instructions between assertions ai and aj.

Electronics 2021, 10, 61 8 of 20

Table 1. Cont.

Symbol Description

x
The instruction number of the first instruction in d(ai, aj).

n(ai, aj)
The number of the instructions in d(ai, aj).

sr(ai)
The SDC detection ratio of ai.

dt(ik)
The execution times of instruction ik.

y
The instruction number of the first instruction of ai.

z
The instruction number of the last instruction of ai.

int sum (int size){

k=0;

for (int i=0;i<size;i++)

{

k=k+i;

}

return k;

}

Figure 3. A program code.

1 2

3
4

5

k eflag eax i

6

7

8

9

10

11

12

13

14

15

16

17

18

Figure 4. The dynamic dependency graph with a size of 2.

Table 2. Instructions and nodes.

Source Code Instruction PR PW Node ID

k = 0 mov dword ptr [esp+0x24], 0x0 - [esp + 0x24] 1

i = 0 mov dword ptr [esp + 0x20], 0x0 - [esp + 0x20] 2

i < size
mov eax, dword ptr [esp + 0x20]

cmp eax, dword ptr [esp – 0x8]

jl 0x80486da

[esp + 0x20]

eax, [esp + 0x1c]

eflag

eax

eflag

eip

3, 9, 15

4, 10, 16

5, 11, 17

k = k + i
mov eax, dword ptr [esp + 0x20]

add dword ptr [esp + 0x24], eax

[esp + 0x20]

eax, [esp + 0x24]

eax

[esp + 0x24]

6, 12

7, 13

i++ add dword ptr [esp + 0x20], 0x1 [esp + 0x20] [esp + 0x20] 8, 14

return k mov eax, dword ptr [esp + 0x24] [esp + 0x24] eax 18

(2) Determining the detection degree of assertions

The detection degree of an assertion is considered as the damage of the SDC detected
by the assertion to the result of the program, and reflects the detection capability. When

Electronics 2021, 10, 61 9 of 20

the SDC detected by an assertion causes more damage to the result of the program, its
detection degree is higher. In this section, an assertion called ai is taken as an example to
present how to determine its detection degree.

Assume that the result of the program is an output set called O that consists of c
outputs with different weights. The greater the weight of an output, the more damage to
the result of the program the output will cause when it is corrupted. Vai is the variable set of
ai. Because the SDC detected by ai damages O by corrupting Vai , the detection degree of ai
can approximately be considered as the damage of corrupted Vai to O. For the l-th element
of Vai at ai, namely V l

ai
, the total weights of the output variables in the forward slice set of

V l
ai

are considered as the damage of corrupted V l
ai

to O. Then, the damage of corrupted
V l

ai
to O can be represented by Equation (2), where the value of e(oj, f s(V l

ai
, k)) is set to 1

when f s(V l
ai

, k) is oj, otherwise, it is set to 0. Because soft errors are rare relative to the
execution time of typical programs, it is assumed that at most one fault occurs during one
program execution. This assumption is in line with previous work in [14,24,25]. Under this
assumption, the detection degree of ai is considered as the averaged z across all variables
of ai, and is expressed by Equation (3).

z(V l
ai
) =

s(f s(Vl
ai
))

∑
k=1

(
c

∑
j=1

(e(oj, f s(V l
ai

, k))× w(oj)) (2)

d(ai) =
∑m

l=1 z(V l
ai
)

m
(3)

The forward slice of a variable in a program statement is the set of the variables in
which the values will be influenced by that variable during program execution. The forward
slice is obtained in a similar way as the acquisition of the backward slice. In particular,
the program statement is first compiled to instructions as preparation, and forward path-
searching is applied. Herein, assert(x > 10) and assert(y > 0) described in Section 1 are
taken as an example to further describe the detection degree. The two assertions are called
a1 and a2. The output set of the program is O, O = {x, y}. Because x represents the integral
part of the radian and is more important than y, w(x) and w(y) can be set to 0.7 and 0.3,
respectively. For a1 and a2, assume that f s(x) = {x, y, z} and f s(y) = {y} after analysing
the forward slices, where z is a variable in the program and does not represent an output.
In this case, the damage of corrupted x in a1 to O is 1, which is the sum of w(x) and w(y)
because f s(x) contains x and y. Because the SDC detected by a1 damage O by corrupting
x, the detection degree of a1 is 1, namely, d(a1) = 1. In a similar way, d(a2) = 0.3.

(3) Calculating the importance of assertions

Because an assertion with a high detection degree and a low benign detection ratio is
preferred, the importance of ai is represented by Equation (4), where α and β, respectively,
represent the weights of the detection degree and benign detection ratio. They are set
according to preference, and their sum is 1. If more attention is paid to the detection of
severe errors than the avoidance of unnecessary recovery overhead, α can be set as having
a larger value than β.

h(ai) = α× d(ai)

max_d
− β× b(ai)

max_b
(4)

After determining the importance of all the assertions of a program point, only the
most important assertion remains at this program point, and other assertions are deleted.
The process of screening assertions for every program point is presented in Algorithm 1.
A detailed explanation is subsequently provided.

If a program point has only one assertion, it is skipped, and the next program point is
handled (Line 4–5), otherwise, the following steps are executed for it. For every assertion
in the program point, the damage of its corrupted variables to the output of the program

Electronics 2021, 10, 61 10 of 20

is first evaluated (Line 11–15), and its detection degree can then be obtained (Line 16).
After this, the backward slices of the instructions, which operate one or more variables of
the assertion at the assertion, are generated, and fault injections are conducted on them
(Line 22–24). Further, the result of fault injections is analysed to determine the benign
detection ratio of the assertion (Line 25–26). After determining the detection degree and
benign detection ratio of each assertion in the program point, the importance of each
assertion is calculated. Finally, only the most important assertion remains, and the other
assertions are deleted (Line 33–43). In particular, t aims to find the maximum value of
h, and it records the current largest value of h of the assertions that have been traversed
during the traversal process, which is conducted by a f or loop (Line 34–42). It is initialised
to a small value that is less than or equal to the minimum value of h. In Equation (4), all
variables are all not less than 0. The minimum value of h is obtained when the first term
is the minimum value and the second term is the maximum value. The minimum value
of h is obtained when α is equal to 0 or d(ai) is equal to 0, and its minimum value is 0.
The maximum value of the second term is obtained when β is equal to 1 and b(ai) is equal
to max_b, and its maximum value is 1. Therefore, t is initialised to −1.

4.2. Screening Assertions for Neighbouring Program Points

For preparation, the assertions that remain after the first stage are divided into disjoint
assertion-pairs based on the functions that they belong to and their execution order. More
specifically, for every function, its assertions are first sorted according to their execution
order, and the sorted assertions are then divided into disjoint assertion-pairs. Note that if
there is an odd number of assertions in the function, the last-executed assertion will not
be considered in this stage, as there is no extra assertion in the function with which it can
compose an assertion-pair. Next, an example is provided to demonstrate how to generate
assertion-pairs for FP, which is the filtered program after the first stage. Suppose that
there are seven assertions and two functions (f1 and f2) in FP. In f1, ai, am, aj, an, and ak
are executed in the order of ai, aj, am, an, ak. In f2, ax and ay are executed in the order of
ax, ay. In this case, two assertion-pairs will be obtained in f 1, namely (ai, aj) and (am, an).
Similarly, (ax, ay) is obtained in f2. As a result, three assertion-pairs are obtained for FP.
After obtaining all assertion-pairs, each assertion-pair is operated to determine whether its
former assertion can be deleted. In the following, (ai, aj) is taken as an example to explain
how to determine whether ai can be deleted.

(1) Calculating the redundancy degree of ai with respect to aj

r(ai, aj) represents the redundancy degree of ai with respect to aj, and refers to the
probability that the SDC detected by ai can also be detected by aj. An SDC invalidates ai by
corrupting the variable of ai. For the variable called V l

ai
in ai, the probability that the SDC

incurred by the corrupted V l
ai

and detected by ai can also be detected by aj is determined by
injecting faults into the backward slice set of the instructions that operate V l

ai
at ai, and by

analysing the result of fault injections. This is represented by Equation (5). Then, r(ai, aj) is
the averaged p across all variables of ai, which is expressed by Equation (6).

p(V l
ai

, aj) =
t2(ai, aj)

t1(ai)
(5)

r(ai, aj) =
∑m

l=1 p(V l
ai

, aj)

m
(6)

If r(ai, aj) exceeds a specified threshold, the profit of deleting ai is further evaluated to
determine whether ai can be deleted, otherwise, ai can not be deleted. Intuitively, r(aj, ai)
can be calculated, and the deletion of aj can be considered. However, in general, r(aj, ai)
is less than r(ai, aj), as there exists some errors that not only occur between ai and aj,
but are also detected by aj, cannot be detected when aj is deleted. This results in a greater
impairment to SDC coverage. Therefore, the deletion of ai is considered.

Electronics 2021, 10, 61 11 of 20

Algorithm 1 Screening assertions for every program point.

Input: P
Output: FP

1: get ps
2: for p = 1→ size(ps) do
3: get A(p)
4: if size(A(p)) == 1 then
5: continue;
6: else
7: max_d = 0, max_b = 0
8: for q = 1→ size(A(p)) do
9: get ap,q and Vap,q

10: d(ap,q) = 0, sum_z = 0
11: for l = 1→ size(Vap,q) do
12: generate f s(V l

ap,q)

13: get z(V l
ap,q) by (2)

14: sum_z = sum_z + z(V l
ap,q)

15: end for
16: get d(ap,q) by (3)
17: if d(ap,q) > max_d then
18: max_d = d(ap,q)

19: else
20: continue
21: end if
22: acquire u(Vap,q)

23: generate bs(u(Vap,q))

24: conduct fault injections on bs(u(Vap,q))

25: count n1(ap,q) and n2(ap,q)

26: get b(ap,q) by (1)
27: if b(ap,q) > max_b then
28: max_b = b(ap,q)

29: else
30: continue
31: end if
32: end for
33: t = −1, m = 0
34: for q = 1→ size(A(p)) do
35: get h(ap,q) by (4)
36: if h(ap,q) > t then
37: t = h(ap,q)

38: m = q
39: else
40: continue
41: end if
42: end for
43: delete ap,q(q 6= m)

44: end if
45: end for

(2) Evaluating the profit of deleting ai

Electronics 2021, 10, 61 12 of 20

The threshold of the redundancy degree is denoted by θ (in general, θ ≥ 0.9). Deleting
ai leads to two losses. On the one hand, (1− θ)× 100 percent of the SDC detected by ai
will not be detected, thereby impairing the SDC coverage of the hardened program. On the
other hand, θ × 100 percent of the SDC detected by ai will be detected by aj with a delay,
thereby incurring a delayed detection loss. In this paper, only the delayed detection loss is
considered because (1− θ)× 100 percent is a small value.

Figure 5 illustrates the delayed detection loss of deleting ai. In the figure, c represents
a checkpoint, and ik(1 ≤ k ≤ 600) is an instruction. It should be noted that instructions
are used in Figure 5 for the convenience of the following calculations. For an SDC called s,
if it is detected by ai, the program will roll back to c and continue to execute. Furthermore,
the program will also roll back to c when s is detected by aj because checkpoints are
usually sparser than assertions. In comparison with the detection of s by ai, the instructions
between ai and aj, namely d(ai, aj), are additionally executed when s is detected by aj.

 ! " #
... …

$%

… … &''

$(
)*$% , $(+

c

Figure 5. An example of deleting an assertion.

The total extra execution times of the instructions in d(ai, aj) is considered as the
loss of deleting ai, as expressed by Equation (7). To determine sr(ai), fault injection is
first conducted on the backward slice set of the instructions that operate Vai at ai. Then,
the result of fault injection is analysed. Finally, sr(ai) is considered as the ratio of the
number of fault injections that not only incur SDC, but are also detected by ai, and the
number of fault injections that result in SDC.

l(ai) =

x+n(ai ,aj)−1

∑
k=x

dt(ik)× sr(ai) (7)

Deleting ai decreases the detection overhead. The total execution times of the in-
structions mapped by ai is considered as the gain of deleting ai, and is represented
by Equation (8). Further, the profit of deleting ai can be expressed by Equation (9).
From Equation (9), it can be seen that there is a profit of deleting ai when f (ai) > 0.
In this case, ai is deleted.

g(ai) =
z

∑
k=y

dt(ik) (8)

f (ai) = g(ai)− l(ai) (9)

The process of screening assertions for neighbouring program points is presented
in Algorithm 2, and a detailed explanation is provided as follows. First, assertion-pairs
are obtained (Line 1). Then, for every assertion-pair, whether its former assertion can be
deleted is evaluated. As the first step of the evaluation, for every variable in the former
assertion, the probability that the SDC incurred by the corrupted value of the variable and
detected by the former assertion can also be detected by the latter assertion is determined
(Line 5–11). As the second step, the redundancy degree of the former assertion with respect
to the latter assertion is calculated by averaging the probability across all variables in the
former assertion (Line 12). In the subsequent steps, if the redundancy degree is less than
a specified threshold, the former assertion cannot be deleted (Line 13–14), and the next
assertion pair is handled, otherwise, the loss and gain of deleting the former assertion are
further assessed to determine whether the former assertion can be deleted.

To determine the loss of deleting the former assertion, the SDC detection ratio of the
former assertion is first obtained by fault injection (Line 16). The total execution times of

Electronics 2021, 10, 61 13 of 20

the instructions between the former and latter assertions is then determined (Line 17–22).
Finally, the loss of deleting the former assertion is represented by the product of the SDC
detection ratio and the total execution times (Line 23). The gain of deleting the former
assertion is determined by counting the total execution times of the instructions mapped
by the former assertion (Line 24–29). After obtaining the loss and gain of deleting the
former assertion, the profit is calculated (Line 30). If the profit is greater than 0, the former
assertion is deleted, otherwise, the former assertion cannot be deleted (Line 31–35). This
stage ends after all assertion-pairs have been handled.

Algorithm 2 Screening assertions for neighbouring program points.

Input: FP
Output: SP

1: get ap of FP
2: for s = 1→ size(ap) do
3: ai = aps. f ormer, aj = aps.latter
4: z = 0, m = size(Vai)

5: for l = 1→ m do
6: generate bi(V l

ai
)

7: conduct fault injections on bi(V l
ai
).

8: count t2(ai, aj) and t1(ai)

9: get p(V l
ai

, aj) by (5)
10: z = z + p(V l

ai
, aj)

11: end for
12: get r(ai, aj) by (6)
13: if r(ai, aj) < θ then
14: continue
15: else
16: get sr(ai) by fault injection
17: t = 0
18: acquire n(ai, aj) and x
19: for k = x → x + n(ai, aj)− 1 do
20: get dt(ik)

21: t = t + dt(ik)

22: end for
23: calculate l(ai) by (7)
24: g(ai) = 0
25: get y and z
26: for k = y→ z do
27: acquire dt(ik)

28: g(ai) = g(ai) + dt(ik)

29: end for
30: get f (ai) by (9)
31: if f (ai) > 0 then
32: delete ai
33: else
34: continue
35: end if
36: end if
37: end for

Electronics 2021, 10, 61 14 of 20

5. Experimental Analysis

The experimental setup is first presented in Section 5.1. Then, the experimental
evaluation is provided in Section 5.2 to demonstrate the effectiveness of F_Radish. In the
experimental evaluation, F_Radish is first compared with Radish in terms of the SDC
coverage, detection overhead, detection efficiency, benign detection ratio, and detection
degree. Then, different contributions of the two stages of F_Radish are evaluated.

5.1. Experimental Setup

(1) Fault injection.

A fault injection experiment was conducted to evaluate F_Radish. The fault injection
experiment was first performed on the original program. The program hardened by Radish
and the program hardened by F_Radish were subsequently targeted. Note that the program
hardened by F_Radish refers to the program that was first hardened by Radish and then
subjected to assertion filtering by the two stages of F_Radish. Moreover, to evaluate the
different contributions of the two stages of F_Radish, faults were also injected to the
program that was first hardened by Radish and its assertions were then filtered only by
the first stage of F_Radish. Faults were injected into the operand of the instructions of
programs. They were not injected into the opcode of the instructions, as this would result
in illegal opcode exceptions rather than SDC or benign errors [26]. A single bit flip was
considered, as this is widely considered in the study of soft errors [6,24] and Radish. In our
fault injection campaign, fault injection was conducted by altering one bit in the register
or memory cell from 0 to 1 or from 1 to 0. The result of fault injection was then compared
with that of fault-free. If there was a divergence, it was considered as SDC, and if the two
results were the same, it was considered as a benign error. The platform for experimental
validation was a Dell Workstation with an i7 processor running Ubuntu 10.04. Pin is
a dynamic binary instrumentation framework [27] that was used to create a dynamic
instrument tool for carrying out the fault injection campaign.

(2) Benchmarks.

The programs used for experimental evaluation were sourced from Mibench and
Siemens benchmark suites. These programs were bitstrng (which prints bit pattern of bytes
formatted to string), rad2deg (which converts between radians and degrees), isqrt (which is
a base-two analogue of the square root algorithm), and replace (which computes statistics
over input data). To evaluate the detection degree, these programs were properly modified.
For example, the input of rad2deg was two figures that represent a radian and a degree,
respectively. The result of rad2deg were four figures, which were the integral and fractional
parts of the degree converted from the radian, and the integral and the fractional parts of
the radian converted from the degree. The weights of the integral parts were greater than
those of the fractional parts.

(3) Evaluation Metrics.

Five metrics were evaluated, namely the SDC coverage, detection overhead, detection
efficiency, benign detection ratio, and detection degree. The SDC coverage is the percentage
of SDC that is detected by the hardened program, and also refers to the SDC detection
ratio. The detection overhead is the cost of SDC detection, which is evaluated by taking
the total execution times of the instructions in the original program as a baseline, and is
represented by the difference between the total execution times of the instructions of the
hardened program and that of the original program, divided by that of the original program.
Assertion screening decreases both the SDC coverage and detection overhead. To ensure
a fair comparison in terms of the SDC coverage and detection overhead, the detection
efficiency was evaluated. It is the ratio between the SDC coverage and detection overhead,
and has been used in previous research [14,25]. The benign detection ratio is the percentage
of benign errors that are detected by the hardened program. The detection degree is the
averaged damage of the SDC, which is detected by the hardened program, to the result of

Electronics 2021, 10, 61 15 of 20

the program. The damage of an SDC is quantified by the total weights of the corrupted
outputs of the program that are corrupted by the SDC.

5.2. Experimental Evaluation

(1) SDC coverage, detection overhead and detection efficiency

Figure 6a compares F_Radish with Radish in term of the SDC coverage. From Figure 6a,
it can be seen that the average SDC coverage of Radish across the four programs was 76.9%.
In contrast, the result of F_Radish was 57%. 19.9% SDCs detected by the program hardened
by Radish were not detected by the program hardened by F_Radish. This is because
the program hardened by F_Radish had fewer assertions than the program hardened by
Radish after the two assertion-screening stages of F_Radish. Figure 6b presents the results
of the detection overhead, from which it is evident that F_Radish reduced the detection
overhead. The average detection overhead of Radish was 54%, while that of F_Radish
was 21%, which is 33% less than that of Radish. The reason for this is that, in comparison
with the program hardened by Radish, the program hardened by F_Radish executed fewer
instructions, as it had fewer assertions. Figure 6a,b reveal that although F_Radish impaired
the SDC coverage, it reduced the detection overhead.

bitstrng rad2deg isqrt replace
0

10

20

30

40

50

60

70

80

90

100

S
D

C
 C

o
v
e

ra
g

e
 (

%
)

Radish

F_Radish

(a)

bitstrng rad2deg isqrt replace
0

10

20

30

40

50

60

70

80

90

100

D
e

te
c
ti
o

n
 O

v
e

rh
e

a
d

 (
%

)

Radish

F_Radish

(b)

bitstrng rad2deg isqrt replace

D
et

ec
tio

n
E

ffi
ci

en
cy

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
Radish
F_Radish

(c)

Figure 6. The performance of F_Radish and Radish on (a) silent data corruption (SDC) coverage, (b) detection overhead, (c)
detection efficiency.

To ensure a fair comparison between Radish and F_Radish in terms of the SDC
coverage and detection overhead, the metric of the SDC detection efficiency was evaluated,
as shown in Figure 6c. The average detection efficiency of Radish was 1.4, while that of
F_Radish result was 2.7, which is about two times greater than that of Radish. This is
because, although Radish had a high SDC coverage because it had more assertions, its
detection overhead was also very high. In contrast, F_Radish obtained a proper SDC
coverage with low overhead by screening redundant assertions, thereby increasing its
detection efficiency. Consider rad2deg as an example, the SDC coverage and detection
overhead of Radish were 83.2% and 68%, respectively, while those of F_Radish were,
respectively, 73.2% and 35.9%. The detection efficiencies of Radish and F_Radish on
rad2deg were 1.2 and 2, respectively, meaning that F_Radish made a better trade-off
between the SDC coverage and detection overhead.

There may exist some programs that have special requirements for the SDC coverage
and detection overhead. For example, a program may pay more attention to the SDC
coverage than to the detection overhead, or vice versa. To meet different requirements,
the creation of an adjustable F_Radish is important, and this will be addressed in future
work. With regard to this future work, to satisfy the requirement for a higher SDC coverage,
more assertions remain. For example, during the first stage of F_Radish, two or more of
the most important assertions remain at a program point rather than one. To satisfy the
requirement for a lower detection overhead, more redundant assertions can be deleted.
For example, during the second stage of F_Radish, n (n > 2) assertions are considered as a

Electronics 2021, 10, 61 16 of 20

group, instead of considering two assertions as an assertion-pair. In this case, the detection
overhead is reduced by determining whether the previous n− 1 assertions can be deleted.

(2) Benign detection ratio

Figure 7 compares the benign detection ratio of F_Radish with that of Radish. As can
be seen, the benign detection ratios of F_Radish for the four programs were all lower than
those of Radish. On average, the benign detection ratio of Radish was 27.8%, while that
of F_Radish was 19.2%, thereby exhibiting a decrease of 8.6%. This means that F_Radish
detected fewer benign errors than Radish, and could avoid more unnecessary recovery
overhead.

bitstrng rad2deg isqrt replace

B
en

ig
n

D
et

ec
tio

n
R

at
io

 (
%

)

0

10

20

30

40

50

60

Radish
F_Radish

Figure 7. The benign detection ratios of F_Radish and Radish.

(3) Detection degree

The detection degrees of F_Radish and Radish were evaluated, and the results are
presented in Figure 8. The average detection degree of Radish was 0.4, whereas that
of F_Radish was 0.44. F_Radish achieved a higher detection degree by considering the
detection degrees of assertions in the first assertion-screening stage. The percentage
increase of the detection degree is the difference between the detection degrees of F_Radish
and Radish divided by the detection degree of Radish, and was equal to 10%. These results
demonstrate that F_Radish outperformed Radish in term of the detection degree, and it
detected more serious SDC than did Radish.

bitstrng rad2deg isqrt replace

D
et

ec
tio

n
D

eg
re

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Radish
F_Radish

Figure 8. The detection degrees of F_Radish and Radish.

(4) Different contributions of the two stages of F_Radish

The influences of the two stages of F_Radish on the SDC coverage, detection overhead,
detection efficiency, benign detection ratio, and detection degree were evaluated to reveal
the different contributions of the two stages to the enhancement of SDC detection. The
influence of each stage on every metric is represented by the decrement or increment of the
metric produced by it. For example, the influence of the first stage on the benign detection
ratio is the decrement of the benign detection ratio produced by the first stage, namely
the difference between the benign detection ratios of P and FP. As another example,
the influence of the second stage on the detection efficiency is the increment of the detection

Electronics 2021, 10, 61 17 of 20

efficiency produced by the second stage, namely the difference between the detection
efficiencies of SP and FP.

The influences of the two stages on the SDC coverage, detection overhead, and de-
tection efficiency were first evaluated, as presented in Figure 9. As shown in Figure 9a,b,
for stage one, the averaged decrements of the SDC coverage and detection overhead were
17.1% and 29%, respectively. For stage two, these values were respectively 2.8% and 4%.
The two stages therefore had different influences on the SDC coverage and detection over-
head. The increment of the detection efficiency is presented in Figure 9c, which reveals
that the averaged increments of the detection efficiency for stage one and stage two were
1 and 0.3, respectively. This means that stage one made greater contributions to the im-
provement of the detection efficiency than did stage two. Although stage two made fewer
contributions, it increased the detection efficiency by 0.3. Via the two stages, F_Radish
enhanced SDC detection in terms of the detection efficiency. It is worth noting that the
reason why the contribution of stage two was less than that of stage one is that there were
fewer redundant assertions in neighbouring program points than in program points.

bitstrng rad2deg isqrt replace
0

5

10

15

20

25

30

35

40

45

50

T
h
e
 D

e
c
re

m
e
n
t
o
f
S

D
C

 C
o
v
e
ra

g
e
 (

%
)

stage one

stage two

(a)

bitstrng rad2deg isqrt replace
0

5

10

15

20

25

30

35

40

45

50

T
h

e
 D

e
c
re

m
e

n
t

o
f

D
e

te
c
ti
o

n
 O

v
e

rh
e

a
d

 (
%

)

stage one

stage two

(b)

bitstrng rad2deg isqrt replace

T
he

 In
cr

em
en

t o
f D

et
ec

tio
n

E
ffi

ci
en

cy

0

0.5

1

1.5

2

2.5

stage one
stage two

(c)

Figure 9. The decrement or increment of (a) SDC coverage, (b) detection overhead, (c) detection efficiency.

The influences of the two stages on the benign detection ratio and detection degree
were then evaluated, as shown in Figures 10 and 11. As exhibited in Figure 10, the averaged
decrements of the benign detection ratio for stage one and stage two were 8.1% and 0.5%,
respectively. As presented in Figure 11, the averaged increments of the detection degree
for stage one and stage two were 0.04 and −0.0008, respectively. In summary, the first
stage made contributions to decreasing the benign detection ratio and improving the
detection degree, while the second stage made little contributions. The reason for this is
that, in comparison with stage one, the second stage did not consider the benign detection
ratio or detection degree during assertion screening.

bitstrng rad2deg isqrt replace

T
he

 D
ec

re
m

en
t o

f B
en

ig
n

D
et

ec
tio

n
R

at
io

 (
%

)

-5

0

5

10

15

20

25

30

stage one
stage two

Figure 10. The decrement of benign detection ratio.

Electronics 2021, 10, 61 18 of 20

bitstrng rad2deg isqrt replace

T
he

 In
cr

em
en

t o
f D

et
ec

tio
n

D
eg

re
e

-0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09 stage one
stage two

Figure 11. The increment of detection degree.

6. Conclusions and Future Work

This paper proposed the F_Radish approach, which is an enhancement of SDC detec-
tion that screens redundancy assertions to improve the detection efficiency and detection
degree while reducing the benign detection ratio.

There are two stages of F_Radish, namely, the screening of assertions for each program
point and the screening of assertions for neighbouring program points. In the first stage,
if a program point has only one assertion, it is skipped. Otherwise, the benign detection
ratio and detection degree are applied to evaluate the importance of each assertion in the
program point. As a result, only the most important assertion remains in the program
point. In the second stage, assertion-pairs are first generated. Then, for each assertion-pair,
the redundancy degree of the former assertion with respect to the latter assertion and the
profit of deleting the former assertion are calculated. If the redundancy degree exceeds
a specified threshold and there is a profit of deleting the former assertion, the former
assertion is deleted. Otherwise, it is not deleted.

Experiments were conducted to validate the effectiveness of F_Radish, and the results
demonstrated that F_Radish improved the detection efficiency and detection degree and
reduced the benign detection ratio. The influences of the two stages of F_Radish were also
analysed to demonstrate the different contributions of the two stages to the enhancement of
SDC detection. The experimental results indicated that both stages made contributions to
the improvement of the detection efficiency, and the first stage made greater contributions
to the reduction of the benign detection ratio and the improvement of the detection degree.

In future work, a deeper exploration will be conducted to further improve the detection
degree, and a checkpoint recovery mechanism will be applied to quantify the unnecessary
recovery overhead. The second stage of F_Radish will also be refined to improve its
contributions, and multiple bit flips will be considered. Another facet of future research
will be to make F_Radish adjustable.

Author Contributions: Conceptualization, N.Y. and Y.W.; investigation, N.Y. and Y.W.; methodology,
N.Y. and Y.W.; software, N.Y.; supervision, Y.W.; validation, N.Y.; writing—original draft preparation,
N.Y.; writing—review and editing, Y.W.; funding acquisition, Y.W. All authors have read and agreed
to the published version of the manuscript.

Funding: This work was supported by the National Hi-Tech Project, China with grant No. 315055101,
and Collaborative Innovation Center of Novel Software Technology and Industrialization.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Restrictions apply to the availability of these data. Data sharing is not
applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2021, 10, 61 19 of 20

References
1. James, B.; Tran, L.T.; Bolst, D.; Peracchi, S.; Davis, J.A.; Prokopovich, D.A.; Guatelli, S.; Petasecca, M.; Lerch, M.; Povoli, M.; et al.

SOI Thin Microdosimeters for High LET Single-Event Upset Studies in Fe, O, Xe, and Cocktail Ion Beam Fields. IEEE Trans. Nucl.
Sci. 2020, 67, 146–153. [CrossRef]

2. Olsen, J.; Becher, P.E.; Fynbo, P.B.; Raaby, P.; Schultz, J. Neutron-induced Single Event Upsets in Static RAMS Observed at 10 km
Flight Altitude. IEEE Trans. Nucl. Sci. 1993, 40, 74–77. [CrossRef]

3. Martínez, J.A.; Maestro, J.A.; Reviriego, P. Evaluating the Impact of the Instruction Set on Microprocessor Reliability to Soft Errors.
IEEE Trans. Device Mater. Reliab. 2018, 18, 70–79. [CrossRef]

4. Yang, N.; Wang, Y. Identify Silent Data Corruption Vulnerable Instructions using SVM. IEEE Access 2019, 2019, 40210–40219.
[CrossRef]

5. Yang, N.; Wang, Y. Predicting the Silent Data Corruption Vulnerability of Instructions in Programs. In Proceedings of the IEEE
International Conference on Parallel and Distributed Systems, Tianjin, China, 4–6 December 2019; pp. 862–869.

6. Li, G.P.; Pattabiraman, K.; Hari, S.K.S.; Sullivan, M.; Tsai, T. Modeling Soft-Error Propagation in Programs. In Proceedings of the
IEEE International Conference Dependable Systems and Networks, Luxembourg, 25–28 June 2018; pp. 27–38.

7. Snir, M.; Wisniewski, R.W.; Abraham, J.A. Addressing Failures in Exascale Computing. Int. J. High Perform. Comput. Appl. 2014,
28, 129–173. [CrossRef]

8. Calhoun, J.; Snir, M.; Olson, L.N.; Gropp, W.D. Toward a More Complete Understanding of SDC Propagation. In Proceedings of
the International Symposium High-Performance Parallel and Distributed Computing, Washington, DC, USA, 26–30 June 2017;
pp. 131–142.

9. Reis, G.A.; Chang, J.; Vachharajani, N.; Rangan, R.; August, D.I. SWIFT: Software Implemented Fault Tolerance. In Proceedings of
the International Symposium Code Generation and Optimization, New York, NY, USA, 20–23 March 2005; pp. 243–254.

10. Didehban, M.; Shrivastava, A.; Lokam, S.R.D. NEMESIS: A Software Approach for Computing in Presence of Soft Errors.
In Proceedings of the IEEE/ACM Int. Conf. Computer-Aided Design, Irvine, CA, USA, 13–16 November 2017; pp. 297–304.

11. Thati, V.B.; Vankeirsbilck, J.; Boydens, J.; Pissort, D. Selective Duplication and Selective Comparison for Data flow Error Detection.
In Proceedings of the International Conference System Reliability and Safety, Rome, Italy, 20–22 November 2019; pp. 10–15.

12. Berrocal, E.; Gomez, L.B.; Di, S.; Lan, Z.L.; Cappello, F. Lightweight Silent Data Corruption Detection Based on Runtime Data
Analysis for HPC Applications. In Proceedings of the International Symposium High-performance Parallel & Distributed
Computing, Portland, OR, USA, 15–19 June 2015; pp. 1–4.

13. Thomas, T.E.; Bhattad, A.J.; Mitra, S.; Bagchi, S. Sirius: Neural Network based Probabilistic Assertions for Detecting Silent Data
Corruption in Parallel Programs. In Proceedings of the IEEE International Symposium Reliable Distributed Systems, Budapest,
Hungary, 26–29 September 2016; pp. 41–50.

14. Ma, J.; Yu, D.Y.; Wang, Y.; Cai, Z.B.; Zhang, Q.X.; Hu,C. Detecting Silent Data Corruptions in Aerospace-based Computing using
Program Invariants. Int. J. Aerosp. Eng. 2016, 2016, 1–10. [CrossRef]

15. Sahoo, S.K.; Li, M.L.; Ramachandran, P.; Adve, S.V.; Sdve, V.S.; Zhou, Y.Y. Using Likely Program Invariants to Detect Hardware
Errors. In Proceedings of the IEEE International Conference Dependable Systems and Networks with FTCS and DCC, Anchorage,
AK, USA, 24–27 June 2008; pp. 70–79.

16. Di, S.; Cappello, F. Adaptive Impact-Driven Detection of Silent Data Corruption for HPC Applications. IEEE Trans. Parallel Distrib.
Syst. 2016, 27, 2809–2823. [CrossRef]

17. Restrepo-Calle, F.; Martĺnez-Álvarez, A.; Asensi, S.C.; Morenilla, A.J. Selective SWIFT-R: A Flexible Software-Based Technique for
Soft Error Mitigation in Low-Cost Embedded Systems. J. Electron. Test. 2013, 29, 825–838. [CrossRef]

18. Rehman, S.; Shafique, M.; Aceituno, P.V.; Kriebel, F.; Chen, J.J.; Henkel, J. Leveraging Variable Function Resilience for Selective
Software Reliability on Unreliable Hardware. In Proceedings of the IEEE International Conference Design, Automation & Test in
Europe Conference & Exhibition, Grenoble, France, 18–22 March 2013; pp. 1759–1764.

19. Mutlu, B.O; Kestor, G.; Cristal, A.; Unsal, O.; Krishnamoorthy, S. Ground-Truth Prediction to Accelerate Soft-Error Impact
Analysis for Iterative Methods. In Proceedings of the IEEE International Conference High Performance Computing, Data, and
Analytics, Hyderabad, India, 17–20 December 2019; pp. 333–344.

20. Chen, C.; Eisenhauer, G.; Wolf, M.; Pande, S. LADR: Low-cost Application-level Detector for Reducing Silent Output Corruptions.
In Proceedings of the International Symposium High-Performance Parallel and Distributed Computing, Tempe, AZ, USA, 11–15
June 2018; pp. 156–167.

21. Racunas, P.; Constantinides, K.; Manne, S.; Mukherjee, S.S. Perturbation-based Fault Screening. In Proceedings of the IEEE
International Symposium High Performance Computer Architectur, Scottsdale, AZ, USA, 10–14 February 2007; pp. 169–180.

22. Hari, S.K.S.; Adve, S.V.; Naeimi, H. Low-cost Program-level Detectors for Reducing Silent Data Corruptions. In Proceedings of
the IEEE International Conference Dependable Systems and Networks, Boston, MA, USA, 25–28 June 2012; pp. 1–12.

23. Ernst, M.D.; Perkins, J.H.; Guo, P.J.; McCamant, S.; Pacheco, C.; Tschantz, M.S.; Xiao, C. The Daikon system for dynamic detection
of likely invariants. Sci. Comput. Program. 2007, 69, 35–45. [CrossRef]

24. Fang, B.; Lu, Q.; Pattabiraman, K.; Ripeanu, M.; Gurumurthi, S. ePVF: An Enhanced Program Vulnerability Factor Methodology
for Cross-layer Resilience Analysis. In Proceedings of the IEEE International Conference Dependable Systems and Networks,
Toulouse, France, 28 June–1 July 2016; pp. 168–179.

http://dx.doi.org/10.1109/TNS.2019.2939355
http://dx.doi.org/10.1109/23.212319
http://dx.doi.org/10.1109/TDMR.2018.2796178
http://dx.doi.org/10.1109/ACCESS.2019.2905842
http://dx.doi.org/10.1177/1094342014522573
http://dx.doi.org/10.1155/2016/8213638
http://dx.doi.org/10.1109/TPDS.2016.2517639
http://dx.doi.org/10.1007/s10836-013-5416-6
http://dx.doi.org/10.1016/j.scico.2007.01.015

Electronics 2021, 10, 61 20 of 20

25. Lu, Q.; Pattabiraman, K.; Gupta, M.S.; Rivers, J.A. SDCTune: A Model for Predicting the SDC Proneness of an Application for
Configurable Protection. In Proceedings of the International Conference Compilers, Architecture and Synthesis for Embedded
Systems, Greens, India, 12–17 October 2014; pp. 1–10.

26. Ma, J.; Wang, Y.; Zhou, L.; Hu, C.; Wang, H. SDCInfer: Inference of Silent Data Corruption Causing Instructions. In Proceedings
of the International Conference Software Engineering and Service Science, Beijing, China, 23–25 September 2015; pp. 228–232.

27. Ma, J.; Wang, Y. Identification of Critical Variables for Soft Error Detection. In Proceedings of the IEEE International Conference
Human Centered Computing, Colombo, Sri Lanka, 7–9 January 2016; pp. 310–321.

	Introduction
	Related Work
	Overview of the F_Radish Approach
	The Stages of F_Radish
	Screening Assertions for Every Program Point
	Screening Assertions for Neighbouring Program Points

	Experimental Analysis
	Experimental Setup
	Experimental Evaluation

	Conclusions and Future Work
	References

