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Abstract: This work proposes a methodology for the optimal training of rule-based management
strategies, to be directly implemented in the industrial controller of hybrid off-grid microgrids.
The parameters defining the control rules are optimally tuned resorting to different evolutionary
algorithms, based on the expected operating conditions. The performance of the resulting manage-
ment heuristics is compared with conventional approaches to optimal scheduling, including Mixed
Integer Linear Programming (MILP) optimization, direct evolutionary scheduling optimization, and
traditional non-trained heuristics. Results show how the trained heuristics achieve a performance
very close to the global optimum found by the MILP solution, outperforming the other methods,
and providing a single-layer commitment and dispatch algorithm which is easily deployable in the
microgrid controller.

Keywords: microgrid; energy management system; optimization methods

1. Introduction

Microgrids [1] have catalyzed increasingly vast attention in recent years. The tech-
nological advancements involving many distributed energy resources have fostered their
evolution: from straightforward isolated systems, supplying electricity in remote areas
mainly relying on diesel generators, to more articulated structures, that can ensure im-
proved economic performances, lower environmental impact, and have a broader range
of applicability. This is made possible by a more pervasive presence of distributed energy
resources and their increasing remote control capability, which allows the integration of
generators, storages and flexible loads [2] in coordinated control systems. Of particular
interest is the case of hybrid microgrids, which combine traditional dispatchable gener-
ators with electrochemical storage systems and Renewable Energy Sources (RES), such
as PV panels and wind turbine generators [3–5]. These systems are expected to play a
significant role in the electrification of regions where the national grid is poorly developed
or unreliable [6], as they can serve as cost-effective nucleation centers for increasingly
interconnected local electrical networks.

The management strategy adopted in the microgrid has a substantial effect on its
performance, as it is responsible for reducing fuel consumption as much as possible,
maximizing the exploitation of RES, and determining the strategic usage of the energy
storage systems. Two main classes of management approaches can be identified:

• Rule-based strategies: decisions are taken based on a predefined response pattern to a
set of monitored conditions (e.g., net demand, storage state of charge);

• Predictive optimization: scheduling decisions are the variables of an optimization
problem, defined over a given future temporal window;

Rule-based strategies have been traditionally adopted, especially in off-grid systems,
due to their simplicity and effectiveness. The most well-known examples are the cycle-
charge (CC) and load-following (LF) strategies [7], which establish two alternative modes
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of interaction between dispatchable generators and storage systems in islanded hybrid
microgrids. CC and LF have been explored in many works in the literature [8–11] and are
implemented as reference management solution in the commercial software HOMER [12].

Predictive optimization, on the other hand, requires describing the system in terms
of its technical constraints and to identify a temporal window over which the scheduling
decisions constitute the problem variables [13–15]. Different mathematical techniques can
then be adopted to solve the optimization problem. Mixed Integer Linear Programming
(MILP) based EMS are currently the most used approach, since they can effectively deal
with large numbers of integer variables and provide the globally optimal solution [16]. For
instance, MILP is applied effectively for the optimal short-term management of a microgrid
in [17,18]. However, the on-field application of these techniques is made difficult by the
mathematical and numerical complexity of the MILP models, which often require the use
of licensed commercial solvers that cannot be handled directly by the microgrid control
system architecture typically constituted by Programmable Logic Controllers (PLC) [19,20].
Among all the other possible predictive approaches for EMS in microgrids, Evolutionary
Algorithms (EA) have been applied to substitute for the MILP formulation. In [21], the
control management of the microgrid is managed by means of Genetic Algorithm (GA),
which manages the set point of all the dispatchable generators and the power exchanged
by the Energy Storage System. Similarly, in [22], the authors solved the scheduling problem
with a hybrid Differential Evolutionary–Harmony Search (DE–HS) algorithm. A slightly
different approach is implemented in [23], where the problem constraints have been
considered as additional objectives and, thus, the multi-objective problem has been solved
with Non-Dominated Sorted Genetic Algorithm-II (NSGA-II). Even if these algorithms
allow a non-linear formulation of the problem and overcome the need of expensive software
licenses to solve the optimization instance, they do not ensure to reach the global optimum
of the objective function and, being computationally expensive both in terms of resources
and time, they must rely on a PC hardware. Additionally, any predictive optimization
nominal solution should be continuously adjusted by a real-time re-dispatching layer to
cope with instantaneous deviations of net demand from forecasts, increasing the complexity
of the whole control system.

As far as real-time control is concerned, it is worth noting that EAs have been used for
optimization of the parameters of controllers in many works. In [24], the authors propose an
optimal parameter setting method that exploits Particle Swarm Optimization for enhancing
power quality and load following in island operation conditions. In [25], the authors
compare three different optimization algorithms for parameter tuning of a PI controller. In
particular, they test Salp Swarm Algorithm (SSA), Particle Swarm Optimization (PSO) and
Grasshopper Optimization Algorithm (GOA). Another approach is the use of fuzzy logic
for the definition of the controller. In [26], the authors present a Fuzzy Logic Controller
(FLC) for the Time-of-Use Cost Management program in the microgrid. The parameters of
the FLC are set by means of a Genetic Algorithm. In [27], the authors propose a complex
system that combines Neural Networks (NN), GA and Fuzzy Logics (FL) for the optimal
management of a microgrid. In particular, NN are used for the forecasting of variable loads
and production, while GA and FL are then applied for the optimal microgrid management.

To the best of authors’ knowledge, even if EAs have been already applied for the
optimization of real time regulators, they have never been leveraged to tune parameters
for rule-based heuristic strategies applied to microgrid management. This work proposes a
new methodology for the optimal training of predictive rule-based management strategies,
which can attain improved performances with respect to traditional rule-based approaches
while still be suited for direct implementation in the microgrid PLC. The parameters of
the control heuristics are tuned, resorting to evolutionary algorithms, based on the day-
ahead forecast of demand and RES generation potential. The performance of the proposed
framework is compared with alternative approaches, including the direct adoption of MILP
optimization, evolutionary optimization, and traditional non-trained heuristics. The effect
of the uncertainty on the forecasts is not accounted for in this work, so to exclude in the
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comparison the effect of the adopted re-dispatch algorithm adopted and only compare the
dispatch strategies under the assumption of perfect foresight. However, it must be further
stressed that one of the advantages of the proposed Tunable Rule-Based Heuristic (TRBH)
strategy is that it implicitly provides a re-dispatching strategy, since a specific response
can be computed for any arbitrary manifestation of uncertainty according to the optimally
tuned dispatch rules. The results show how the trained heuristics achieve performance
very close to the direct solution of the MILP formulation, outperforming the other classical
rule-based methods, and also intrinsically providing a response pattern to the deviations of
exogenous parameters from forecasts. A summary of the advantages of the proposed TRBH
method with respect to other management strategy solutions is presented in Figure 1.

Figure 1. Comparison summary among the different strategies under consideration.

The remainder of this paper is organized as follows. The problem statement and the
comparison objectives are explained in Section 2. The modelling of system and units is
presented in Section 3, followed by the control strategies in Section 4. Simulation results
and conclusion remarks are discussed in Sections 5 and 6, respectively.

2. Problem Description

The conceptual schematization of a general hybrid microgrid is represented in Figure 2.
The microgrid comprises a set of RES, a set of dispatchable generators, an energy storage
system, and an aggregated electrical load. A single-node representation of the microgrid
is commonly assumed when defining the optimal scheduling problem: if the electrical
connections have a limited extension (e.g., generators and loads are all in the same area)
and do not operate close to their maximum capability, the expected voltage profile variance
is minimal and voltage regulation does not influence the active power flow. The electrical
stability including frequency and voltage regulation can, therefore, be fully entrusted to
lower control layers that can be directly managed by the microgrid subunits [28]. Under
this assumption, different RES generation technologies can be aggregated in a single power
injection term.

Figure 2. Hybrid microgrid single-node representation, and representation of operating variables.

Thus, the role of the management strategy is to determine in each time step the
scheduling plan, defined by (i) the optimal commitment status zG (on/off) of all dispatch-
able generators and (ii) the operating setpoint for all microgrid units.
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The competitiveness of a given scheduling solution is measured in terms of overall
operating cost, including (i) the cost of fuel, (ii) operation and maintenance costs for all
units (including the estimation of components wearing), and (iii) the cost of non-served
energy (e.g., cost of service interruptions).

Comparability of Scheduling Approaches

As mentioned, different scheduling approaches are compared in this work, but their
applicability is not the same and the terms of the comparison must, therefore, be clarified.

The solution of the MILP formulation of the optimal scheduling problem sets a lower
bound for the operating costs, as this optimization technique can certify the global opti-
mality of the solution. The competitiveness of the other methods is, therefore, not related
to the quality of the optimal scheduling plan they can identify, but rather to their simpler
and cheaper implementation in real-life systems, which might justify a minor reduction in
the optimality of the scheduling solution. Specifically, rule-based strategies have null com-
putational cost and can be directly implemented in the system PLC, whereas evolutionary
algorithms, even if they require a considerable computational effort and thus a PC-based
hardware, do not require the purchase of expensive dedicated commercial solvers.

Furthermore, the MILP and evolutionary scheduling techniques only provide a refer-
ence plan associated with the considered forecasts of demand and RES generation. To be
used in real-life EMS, these techniques must therefore be complemented by lower control
layers, that adjust the dispatch of units to cope with the deviations of exogenous parameters
from forecasts. The need for second-layer corrections can most likely cause a performance
reduction compared to the perfect forecast assumption, the entity of which also depends
on [29]:

• the magnitude of forecast errors;
• how uncertainty was addressed in the problem formulation;
• the quality of the correction algorithm implemented.

The deterministic scheduling solution thus represents a lower bound to the actual
operating cost that would follow an accurate quantification of the effect of uncertainty.

Conversely, rule-based strategies can be implemented by simply following the dis-
patch actions prescribed by the real-time monitoring of demand and RES production and
do not need the implementation of any re-dispatching layer.

3. System Modelling

The optimization of scheduling decisions, as well as the evaluation of the system
performance associated with different management strategies, is based on a mathematical
model of the system operation. MILP optimization requires the modelling equations to be
linear, whereas the other methods considered do not impose any restriction on the problem
formulation. In the modelling approach conventionally adopted for hybrid microgrid
systems, the main non-linearity to be accounted for is represented by the part-load curve
of the generators. In the MILP formulation, the curve has been approximated through a
piece-wise function. The number of breakpoints of the piecewise has been controlled to
ensure a negligible error in the approximation.

The following paragraphs summarize the modelling approach adopted for each
microgrid component. All the model parameters have been identified with the hat symbol.

3.1. Dispatchable Generators

Regardless of the technology they are based upon, dispatchable generators are funda-
mentally represented by their part-load curve, which associates fuel consumption f G

t to the
corresponding rate of output production (pG

t ) at a certain time step t. When in operation
(commitment status zG

t equal to 1), the generators must work in the range of admissible
operating conditions, defined by their maximum and minimum load (respectively p̂G

max
and p̂G

min). Other technical constraints include potential limitations in terms of dynamic
variation of the operating load (up/downwards ramp rate), and duration of start-up and
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shut down operations (minimum up/downtime). It has to be noted that since this work
deals with hourly simulation time steps, this last constraints have not been included.

3.2. Renewable Generators

The aggregate non-dispatchable RES generator is represented by the overall generation
potential profile p̂MPP

t , which states the maximum power output that can be extracted by the
RES set when working in Maximum Power Point (MPP). The actual output of most renewable
generators can be reduced compared to MPP conditions, operating a generation curtailment
pcurt

t and leading by subtraction to the definition of the net RES contribution pRES
t .

3.3. Energy Storage System

A simple dynamic model is considered to describe the evolution of the energy stored in
the ESS SoEt, namely the State of Energy (SoE) at time t, accounting for the power exchange
of the ESS with the common bus net of losses due to its charge/discharge efficiencies η̂+

and η̂−. SoEt is bounded between the maximum and minimum state of energy thresholds
( ˆSoEmax and ˆSoEmin). It is worth mentioning that two more constraints are implemented
to limit the ESS power between maximum discharge power p̂ESS

max and minimum charge
power p̂ESS

min . Despite its simplicity, the model has proven to be adequately accurate for
battery technologies such as Li-Ion, which currently represent the dominant technological
solution adopted in the hybrid systems under analysis.

3.4. Electrical Load

The microgrid electrical load is modelled as a power absorption profile d̂t, which can
be partially reduced by shedding a fraction of the load σt. The cost of load shedding is
proportional to the amount of non-served energy.

3.5. Spinning Reserve Requirements

To ensure a stable operating schedule, reserve constraints are normally enforced on the
operating profiles, imposing that the system can promptly respond to a sudden increase
in net demand relying on the currently committed generation resources. The net demand
increase can either be caused by a reduction in the non-dispatchable RES generation potential
or by an increase in the load energy demand. The contribution of the active dispatchable
generators to the system spinning reserve can be computed considering the status of the
generator and their maximum load (ramp limitations have not been considered due to the
hourly resolution considered during the simulations). The contribution of the ESS is instead
determined by its maximum power output and by its available energy content. In formula,

SRt =
nG

∑
G

SRG
t + SRESS

t > d̂t(1 + γ̂)− p̂MPP
t (1 − β̂) (1)

SRG
t = zG

t p̂G
max (2)

SRESS
t = min

(
p̂ESS

max,
SoEt − ˆSoEmin

∆t

)
(3)

where nG is the total number of dispatchable generators, SRG
t indicates the spinning reserve

contribution of each generator at time t, SRESS
t quantifies the spinning reserve guaranteed

by the energy storage, γ̂ and β̂ identify the increase in load demand and the potential drop
in RES power output, respectively.

4. Scheduling Strategies

This section describes the approaches to optimal scheduling compared in this work:
deterministic MILP scheduling, evolutionary scheduling, CC and LF strategy scheduling,
and the proposed evolutionary training of rule-based heuristics scheduling.
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4.1. Milp Scheduling Optimization

A detailed description of the MILP formulation for the scheduling problem of an
off-grid microgrid can be found in [4] and, therefore, is not extensively addressed in this
work. A deterministic formulation is pursued, including spinning reserve constraints,
as specified in Section 3. The solution of the formulation provides an absolute lower
bound for the operating cost, which can be used to assess the competitiveness of the other
scheduling approaches.

4.2. Evolutionary Scheduling Optimization

The second considered scheduling approach is based on the direct use of Evolutionary
Optimization Algorithms (EAs) to tackle the predictive optimal scheduling problem. This
class of algorithm is suitable for the solution of high-dimensional non-linear and multi-
modal problems [30]. Among all the possible EAs, Social Network Optimization (SNO)
has been used in this work because of the high-quality performance that this algorithm
shows in many problems [31].

The optimization algorithm, in this application, can directly set the power contribu-
tions to the system. The total number of management variables required by the EMS is
(nG + 1)× nH , where nH is the number of hours in the considered time horizon. In fact, for
this optimization, as for the MILP scheduling strategy, an hour time discretization has been
used. The selection of the effective design variables has been investigated for improving
the system performance.

As first step, the energy balance equation has been inserted in the variable decodification
phase in order to avoid service interruptions (σ = 0) and reduce the number of free variables.
The two remaining degrees of freedom for each time step has been managed as follows. The
selected dispatch variables are the battery SoE trajectory and the load sharing coefficients α
among the generators. These variables are selected due to their minimal coupling, for helping
the optimization stability, and for their matching with the performance parameters.

In fact, the reduced coupling of the variables can be clarified by analysing the prob-
lem decodification process shown in Figure 3. The inputs of the system are the scenario
information (demand d̂t and and potential RES production p̂MPP

t ) and the optimization
variables (SoE and α).

Figure 3. Decodification process of the EA formulation for the scheduling optimization problem.

The first optimization variable (the SoE) is used to compute the power exchanged by
the ESS (ESS definition block in Figure 3): this step takes into consideration the physical
limits of the BESS in terms of power exchangeable. The minimum and the maximum SoE,
instead, are directly embedded in the optimization process by means of using the absorbing
wall boundary condition [32].

The ESS power exchange computed in this way is used to find the target genset
production by exploiting the energy balance:

pgset
target = d̂t +

pESS,ch
t
η̂ch − p̂MPP

t − η̂disch pESS,disch
t (4)
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The target genset production is split among the generator by using the αt values, i.e.,
the breakdown of this production between the available generators:

pG
target = min(αG

t · pgset
target, p̂G

max) (5)

where p̂G
max is the maximum dispatchable power from the generator. This target production

is compared with the minimum dispatchable power to find the actual production of
generator G:

pG
t =

{
0 pG

target < p̂G
min

pG
target pG

target ≥ p̂G
min

(6)

This approach for the computation of the production from dispatchable generators
already takes into account the physical constraints on the generator and, at the same time,
reduces the difference between the target genset production and the actual one.

The optimization variables are partially decoupled because the αt value does not
interact with the SoEt trajectory for the ESS power definition. In addition to this, they
have a different effect on the system: the SoE trajectory takes into account almost all the
contributions to the power balance, while the α values are devoted to the minimization of
the specific consumption of the genset.

The cost function should take into account five different performance parameters.
The first one is the actual target of the optimization process, i.e., the total consumption of
the genset. The second and the third cost components are related to the two violations of
constraints: the absence of service interruptions and the spinning reserve. Both these two
constraints are managed by means of a two-stage penalty approach: if they are violated,
a constant cost is added to the penalization proportional to the constraint violation. In
this way, the unfeasible solutions have an higher cost than feasible ones and the optimizer
is driven toward solutions with a lower constraint violation. Finally, the last two cost
components are added to further penalize suboptimal solutions: in fact, a cost component
is associated to dump production and to curtailed RES.

The selected design variables and the cost definitions help the optimizer in finding
good and feasible solutions with a low computational load.

4.3. Load Following and Cycle Charge

Cycle Charge (CC) and Load Following (LF) are two of the widely adopted rule-based
strategies that will be considered as a benchmark for this study [12]. CC basically consists
of running the dispatchable generators at full load whenever they are in operation, this may
result in a surplus of production that is used to recharge the Energy Storage System (ESS).
Once the ESS State of Charge (SoC) overcomes a certain level, its discharge is prioritized
with respect to the dispatchable generators until the SoC is reduced below a lower threshold.
LF on the contrary always prioritizes the ESS over the dispatchable generators, which run
at partial load, producing only enough power to meet the net demand, thus, ESS charging
is caused only by a surplus of renewable energy.

4.4. Tunable Rule-Based Heuristic Strategy

The TRBH strategy we propose in this work is based on the definition of an adaptable
superstructure, which can be flexibly configured to define a wide range of operating modes.
Dispatch decisions are based on the observed net demand (assuming the operation of RES
generators in MPP tracking), while enforcing that an adequate spinning reserve is always
available and that all technical limitations on the units are respected. The logical scheme of
the described heuristic is shown in Figure 4. It is apparent how the value of SoE thresholds
SoETh

t and SoETh
t determine the strategic utilization of the ESS. Specifically, three scenarios

can be identified:
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Figure 4. Schematic representation of the Tunable Rule-Based Heuristic (TRBH) decisional structure.

• If SoETh
t ≥ SoETh

t , the strategy is equivalent to the traditional CC, with the amplitude

of the ESS cycles set by the value of the thresholds. In particular, if SoETh
t > ˆSoEESS

max

(maximum allowable SoE) or SoETh
t < ˆSoEESS

min (minimum allowable SoE), the corre-
sponding prioritization mode switch, defined by the the change of variable H that
prioritize programmable generators over storages, will not be allowed. In other words,
in these conditions, the periodic cycling of the ESS, specific to this control strategy,
will be forbidden.

• If 0.5SoETh ≤ SoETh
t ≤ SoETh

t , the strategy is equivalent to the traditional load follow-
ing (LF): the battery is always prioritized with respect to programmable generators
and recharged only if RES production is exceeding demand, while the generators
supply positive net loads.

• If SoETh
t ≤ SoETh

t , the energy content of the battery is stabilized, following the net
load with the generators without discharging the storage. Precisely for this reason,
this operating scenario has been classified as SoC Preservation (SP).

The aggregate power generation required from the genset is distributed among the
individual generators through a separate dispatch routine, which implements the classic
lambda iteration method [33]. In addition to the active power constraint, this routine
ensures that the constraints on minimum on and off time and ramp rate requirements of
programmable generators are satisfied. This function also guarantees that an adequate
spinning reserve is provided to the system. These features are obtained by sorting out all
the combinations that respect the aforementioned constraints, applying the lambda method
to all the feasible options and selecting the best solution in terms of total fuel consumption.

A final step where the system balance is checked is necessary to manage potential
setpoint redistribution to the ESS in case some programmable generator’s constraints are
active and to manage potential RES curtailment.

To increase the flexibility of the tunable heuristic strategy, the horizon window is
divided into intra-day periods, for which different SoE thresholds can be defined. The
daily operating strategy, therefore, results from the combination of different operating
modes during different hours of the day. The effect of the number of intra-day windows
considered is explored at the end of Section 5.

5. Results
5.1. Case Study Description

The described scheduling strategies are numerically compared by simulating the
operation of an off-grid microgrid. Demand and non-dispatchable generation potential
profiles have been characterized based on on-field measurements in the real-life microgrid
supplying the village of Garowe, Somalia.

In order to find a set of possible scenarios for assessing the proposed technique, the
available dataset has been clustered. Starting from a dataset spanning 12 months with an
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hourly resolution, the days have been separately clustered in terms of electricity consump-
tion and RES generation potential profiles, identifying, respectively, three and four groups of
days through the k-means algorithm (Figure 5: orange and blue clusters, respectively). The
Cartesian intersection between the two sets of clusters then defines a resulting redistribution
of the initial population of days in twelve new clusters (Figure 5: purple clusters). From
these clusters, subsets of days have been extracted for the numerical campaign. To ensure a
good balancing of the clusters in the final set of scenarios, the number of days selected from
each cluster is proportional to the cluster size; in this way, the sub-set of scenarios is well
representative of the original dataset. The final number of test days is 28.

Figure 5. Clusterization procedure of demand and load profiles.

The analysed microgrid for this study is a system comprising of two 550 kW diesel
generators, one 1440 kW/1440 kWh storage, and a 1000 kWp PV field.

Simulations were carried out on an Intel(R) Core(TM) i9-10900KF processor, 64 GB
RAM computer. All the optimization trials with genetic algorithms use the number of
objective function calls as termination criterion: in fact, it is well representative of the
total computational time required for the optimization due to the fact that the algorithm
self-time is negligible with respect to the total. Each trial of optimization for the TRBH
requires around 38 s. This time does not depend on the number of intervals, since they do
not influence the computational complexity of the cost evaluation process (although they
will impact on the speed of convergence to the optimal solution). To improve performances,
ten trials are launched for each test day, leading to a total computational time of 380 s per
day. For the pure EA dispatch optimization problem, since it involved a reduced numerical
complexity of the cost function evaluation, the average computation time of a single trial
of optimization is 5 s, corresponding to 50 for each test day. For the MILP optimization,
a convergence gap of 0.1% is considered, associated with an average simulation time of
about 4 s per test day. Due to the optimality proof characterizing MILP optimization, no
multi-trial approach is necessary.

5.2. Rule-Based Heuristic Structure Optimization Results

The tuning of SoE thresholds defining the TRBH described in Section IV is a non-
linear problem that is greatly affected by the specific demand and RES production profiles
characterizing the day under analysis.

Figure 6 shows an example of the cost function for a single operating day, assuming
that the SoE thresholds are constant throughout the day.
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Figure 6. Daily operating cost [€] yielded by the TRBH approach with one intra-day window, as a
function of the SoE thresholds.

The search space is divided, as expected, into three parts: the top-right part of the search
space corresponds to the SP strategy, the central part to the LF, and the bottom left to the CC.
The first two strategies are not affected by the value of the SoE thresholds, and therefore,
are associated with flat surfaces. The CC strategy is instead affected by the combination of
thresholds considered, and it is possible to see that the cost function is multimodal, and it
is formed by a set of flat subspaces. When the number of intra-day intervals increases, the
objective function space becomes more complex, but it preserves its basic features.

This cost surface justifies the use of Evolutionary Algorithm for the optimization of
the TRBH. In fact, they can handle multimodal function thanks to the use of a population
of candidate solutions; moreover, they do not rely on gradient information, thus they are
not negatively affected by plateaus.

When tackling the optimal tuning problem, the population size has been set to 25 indi-
viduals and 100 iterations were completed, performing 2500 objective function calls. Due
to the stochastic nature of the algorithm, 20 independent trials were always performed.

SNO was firstly compared with other algorithms in this problem. The other tested
algorithms are the Differential Evolutionary (DE), the Biogeography Based Optimization
(BBO), the Stud-Genetic Algorithm (SGA), and the Particle Swarm Optimization (PSO).

For each algorithm, the mean values obtained in each of the 28 tested scenarios are
compared. Figure 7 shows the results of this comparison: for each algorithm the number of
losses are counted, i.e., the number of times in which its average value is higher than the
minimum one achieved. It is important to note that in most of the cases, several algorithms
achieve the same results, meaning that this is most likely to be the global optimum.

DE BBO SGA PSO SNO
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s

Figure 7. Number of losses in the comparison between the average final value obtained by DE, BBO,
SGA, PSO, and SNO.
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A preliminary analysis was carried out on the impact of the number of intra-day
intervals on the TRBH performance. Figure 8 shows the results of this test on the same
day considered in Figure 8. For each set of parameters, the graph shows the mean, best,
and worst fitness of the optimal heuristic tuning over the 20 independent optimization
trials. The performance of the optimal heuristic tuning tends to increase with the number
of intra-day windows, which guarantee a more flexible dispatch strategy structure. The
irregularities in the trend are due to how the hours of the day are clustered differently
according to the spacing of the intra-day windows: some clustering configurations will
allow the switch from one strategy to another at more appropriate hours of the day. The
dispersion of the optimization trials is due to the stochastic nature of all the Evolutionary
Algorithms; nevertheless, the mean performance is, on average, only about 0.5% from the
best solution.

Figure 8. Mean, best, and worst daily operating cost attained by the optimal tuning of TRBH over 20
instances, as a function of the number of intra-day intervals.

The effect of the number of intra-day windows considered in the TRBH structure is
confirmed by the performance of the TRBH over all the considered sample days. Results
are measured in terms of average percentage cost increase compared to the MILP solution
(Figure 9). Only a selected set of intra-day windows numbers (1, 3, 6, 12 intervals) are
plotted so that each solution with a higher number of intervals is contained in the coarser
configurations, avoiding the effect of changes in the position of the interfaces between
hours of the day that may influence the trend due to the coarse time step used in the
simulation. From Figure 9, it is evident how increasing the number of intraday intervals is
beneficial to reduce the gap with respect to the MILP solution.

Figure 9. TRBH average percentage cost increase compared to the MILP solution as a function of the
number of intra-day intervals.
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5.3. Dispatch Results Comparison

The performance of the TRBH with 12 intra-day windows (TRBH12) can finally be
compared with the alternative scheduling strategies, including direct scheduling optimiza-
tion with the SNO algorithm, and the traditional LF and CC heuristic strategies. The
comparison of the TRBH with LF and CC is particularly interesting, as the two are special
instances of the TRBH structure. Performances are characterized in terms of percentage cost
increase with respect to the MILP solution (referred to as gap), constituting, as mentioned,
the objective function lower bound.

TRBH12 significantly outperforms all other methods, with an average distance from
the MILP solution of only 2.39%. Resorting to the SNO algorithm to directly optimize the
scheduling decisions appears to be less effective, as a large number of variables and the
complexity of the scheduling problem solution-space is not well suited for this optimization
methodology. Nevertheless, the SNO average distance from global optimality is only 5.31%,
although this value is expected, for more complex system architectures, its competitiveness
would quickly reduce. LF and CC perform significantly worse than the two optimized
methods, although they attain an acceptable performance especially during the days that
are well suited to their management philosophy (Table 1).

Table 1. Average gap attained by each method over all simulated days of operation. The 10th and
90th percentiles are also shown, to give an idea of the reliability of the scheduling approach in
operating days with different characteristics.

Strategy

TRBH SNO LF CC

10th perc. 1.43% 3.72% 10.79% 6.71 %
Average 2.39% 5.31% 12.45% 10.46%

90th perc. 3.41% 6.25% 13.99% 17.21%

Figure 10 shows the gap for the four scheduling approaches in the four days corre-
sponding to the best performance of each method. As expected, the best performance of
the LF strategy corresponds to a particularly bad performance of the CC strategy and vice
versa, since the two represent opposite approaches to the battery management strategy. It
is also interesting to notice that neither of the two dominates the other (although LF is, on
average, performing better), and the suitability of one strategy with respect to the other
depends on the specific profiles of demand and RES production in the day under analysis.

Figure 10. Distance from minimum operating cost of the scheduling approaches, in the days associ-
ated with the best performance of each method.

The flexibility of the TRBH structure on the other hand allows switching from one to the
other throughout the day, resulting in a dramatically improved overall performance despite
starting from the same logical blocks (with the addition of the SoC preservation option).
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Finally, Figure 11 shows a comparison of the detailed dispatch profiles yielded by the
MILP formulation and by the TRBH12, on the day during which the performance difference
between the methods is minimal. The two methods come to very similar scheduling decisions,
and the TRBH12 manages to mimic the behavior of the MILP solution by adjusting the SoE
thresholds during the day (Figure 11-bottom), combining the available operating modes.

Figure 11. Comparison of dispatch profiles yielded by the MILP formulation and the optimal tuning
of TRBH12, defined by the SoE thresholds shown in the bottom graph.

Overall, the TRBH has proven to be an effective dispatch strategy. It consistently
achieves an improved performance with respect to both standard rule-based logics (LF and
CC) because the ability to switch among different operating modes allows the TRBH to
adapt to the external operating conditions (i.e., load and RES profiles).

Furthermore, the heuristic strategies implemented inside the TRBH reduce the degrees
of freedom of the optimization problem with respect to the pure EA approach, leading to
an improved performance. In fact, incorporating an already effective response dispatch
structure, which can be properly adjusted acting on a limited set of parameters, greatly
simplifies the optimization problem with respect to a fully unconstrained approach.

In virtue of the highlighted advantages, the TRBH is able to closely approach the
MILP objective function, which constitutes the absolute performance lower bound since
the uncertainty effect has been neglected.

6. Conclusions

This paper presents a new approach to the optimal scheduling of hybrid off-grid
microgrids, consisting in the predictive tuning of a Tunable Rule-Based Heuristic (TRBH)
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dispatch logic based on the forecasts of demand and RES generation potential. The param-
eters defining the TRBH behavior are optimally adjusted using Evolutionary Optimization
Algorithms (EA), and the resulting performance is compared with alternative schedul-
ing approaches, including conventional rule-based logics and MILP optimization. The
developed algorithm:

• Significantly outperforms the standard rule-based logics LF and CC that constitute its
building blocks by identifying the optimal combination of operating modes during
different hours of the day that can minimize operating costs;

• Outperforms the direct use of EAs to tackle the optimal scheduling problem, showing
how a dispatch strategy structure based on physical considerations can reduce the
number of optimization variables and guide the EA towards better decisions

• Shows comparable results with respect to a perfect foresight MILP, defining the global
optimum for the daily operating cost.

Moreover, with respect to the EA and MILP approaches, TRBH can be directly imple-
mented in the microgrid PLC without any need for a re-dispatching layer that manages
forecast errors.

Future work will focus on a deeper assessment of the TRBH potential adoption in
real-life systems, extending the comparison with other predictive approaches by explicitly
addressing the uncertainty of forecasts and including the effect of the re-dispatching layer in
the evaluation. The training procedure will be pursued with a stochastic approach, defining
the fitness of the candidate over a family of scenarios, representative of the variability of
the uncertain parameters.
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MILP Mixed Integer Linear Programming
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SSA Salp Swarm Algorithm
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