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Abstract: The Hall sensor is the most commonly used position sensor of the permanent magnet
brushless direct current (PMBLDC) motor. Its failure may lead to a decrease in system reliability.
Hence, this article proposes a novel methodology for the Hall sensors fault diagnosis and fault-
tolerant control in PMBLDC motor drives. Initially, the Hall sensor faults are analyzed and classified
into three fault types. Taking the Hall signal as the system state and the conducted MOSFETs as
the system event, the extended finite state machine (EFSM) of the motor in operation is established.
Meanwhile, a motor speed observer based on the super twisting algorithm (STA) is designed to
obtain the speed signal of the proposed strategy. On this basis, a real-time Hall sensor fault diagnosis
strategy is established by combining the EFSM and the STA speed observer. Moreover, this article
proposes a Hall signal reconstruction strategy, which can generate compensated Hall signal to realize
fault-tolerant control under single or double Hall sensor faults. Finally, theoretical analysis and
experimental results validate the superior effectiveness of the proposed real-time fault diagnosis and
fault-tolerant control strategy.

Keywords: permanent magnet brushless direct current (PMBLDC) motor; Hall sensors; fault diag-
nosis; fault-tolerant control; extended finite state machine (EFSM); super twisting algorithm (STA);
signal reconstruction

1. Introduction

Permanent magnet brushless direct current (PMBLDC) motors have been widely
used in various industrial and commercial fields, benefit from the characteristics of high
power density, simple structure, and low cost [1–3]. During the regular operation of a
PMBLDC motor, the control system needs to acquire the position of its rotor in real-time
and apply the corresponding voltage vector on its stator winding to produce the required
electromagnetic torque by its rotation [4–7]. Although different sensorless control methods
have been proposed in many literatures, there are many limitations in the applications of
these approaches, especially in the startup stage and the speed range [8–11]. Therefore, the
PMBLDC motor drives with position sensors are usually preferred in most applications.
The Hall sensors have advantages of simplicity and inexpensive, which make them well
suited for the position sensors of the PMBLDC motor drives. Hence, the Hall sensors play
a considerable important role in the motor drives [12–14]. The Hall sensors may fail due to
various reasons (such as harsh environments, faulty connections, violent vibration, etc.),
which can result in that the feedback signal of the faulty Hall sensor cannot correctly reflect
the position of the rotor [15,16]. Once there is a fault in the Hall sensors, the dynamic
performance of the motor drives will be significantly reduced or even overcurrent, which
can lead to extensive damage to the whole system [17–19].

To improve the reliability of the PMBLDC motor drives with Hall sensors, it is essential
to realize the fault-tolerant control (FTC) of the Hall sensors faults in motor drives [20–22].
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In most relevant literatures, the FTC is consists of fault diagnosis and signal reconstruction,
and the most essential critical part is the fault diagnosis strategy [23–26]. Several FTC
methods of the Hall sensors faults in PMBLDC motor drives have been proposed in
different researches, such as in [27], G. Scelba et al. investigated a fault-tolerant control
algorithm to deal with the Hall-effect sensor faults and repercussion on the low-cost
vector control drives. The performances of the fault-tolerant control system are discussed
along with the theoretical analysis and the experimental results. Based on [27], in [28],
the authors explored a much effective methodology for the detection, identification, and
compensation of the binary Hall-effect sensor faults in BLDC motor drives. The proposed
fault compensation strategy was applied in three states of the art estimation algorithms
(the zero-order algorithm, the hybrid observer, and the vector tracking observer). The
proposed fault-tolerant control methods in [27,28] both need to convert the Hall signal or
the current signal to a rotation vector. Further, the fault detection was realized by detecting
the corresponding zero vector. However, these methods result in significant data processing
time and low fault diagnosis efficiency.

In [29], Donget et al. put forward three different fault diagnosis methods based on
the characteristics of the Hall signal sequence (FD-1, FD-2, and FD-3, respectively) and
the corresponding fault signal reconstruction measures were also implemented. Through
the theoretical analysis and the comparison of the experimental results of the three fault
diagnosis control methods, the author finally adopts the more efficient FD-3 as their fault
diagnosis strategy. In [30], an improved fault-tolerant control strategy based on the vector-
tracking observer was proposed based on [29], which reduced the transient current and
speed dip of the motor during the Hall sensor fault diagnostic process. In most researches,
the fault diagnosis and fault-tolerant control of the Hall sensor is analyzed separately. The
research ideas are basically the same: after the fault of a Hall sensor, first, the fault of the
Hall sensor is identified by detecting the specific Hall signal (such as “000” and “111”)
or another similar signal sequence; then the faulty sensor can be located by comparing
the actual Hall signal with a specific Hall signal sequence; finally, the corresponding fault
tolerant control strategy is carried out. However, during the period from the fault of a
Hall sensor to the fault tolerant control, the electric drive system may have commutation
error or even over-current. Therefore, the control system needs to diagnose the Hall sensor
fault as soon as possible and apply the corresponding compensation control strategies, in
case of huge damage to the motor drives. Z. Qian et al. in [31] proposed a new fast fault
diagnosis (FFD) method for different Hall sensor faults cases by using a high-frequency
fast counter for the purpose of diagnosing the fault Hall signal in the shortest time. This
research provides us with a good solution for the fast fault diagnosis of Hall sensor fault.
Worst of all, there are still some limitations in its working environments. The fast counter
plays an essential role during the fault diagnosis, and the threshold coefficient of the fast
counter is critical data. In [31], the author only adjusts the threshold coefficient according
to the motor speed calculated by the Hall signal, which dramatically limits the dynamic
performance and application range of the proposed FTC algorithm. Meanwhile, in order to
reduce the performance fluctuation during the Hall sensor faults, we need to analyze the
fault diagnosis and fault tolerant control simultaneously instead of separately.

To improve the dynamic performance of the FTC that can be applied in more fields,
it is necessary to estimate the motor speed more accurately. In this work, we extend the
research of Dong et al. [29,30] and Zhang et al. [31] by proposing a real-time fault diagnosis
(RFD) method using an extended finite state machine (EFSM) and super twisting algorithm
(STA) based motor speed observer.

Considering the above analysis, this article proposed a real-time fault diagnosis and
fault-tolerant control strategy for Hall sensors in PMBLDC motor drives. The overall
contributions of this paper are summarized as follows:

(1) This article analyzed the cause of the Hall sensor failure in detail. Meanwhile,
according to the fault occurring instants, this article classified the possible faults into
three types.
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(2) This article proposed a superior real-time Hall fault diagnosis strategy, which is
learning from the ideal of the EFSM and STA observer.

(3) Directing at the single and double Hall sensor fault, an effective Hall fault-tolerant
control strategy is proposed.

(4) The 35-W PMBLDC motor experimental platform verified the effectiveness and
superiority of the proposed methodology.

This reminder of this article is structured as follows. Section 2 classifies the Hall fault
types according to the cause of failure. In Section 3, a superior real-time Hall sensor fault
diagnosis and fault-tolerant control strategy are present. Meanwhile, the effectiveness
of the proposed scheme is demonstrated by experiments in Section 4. Finally, Section 5;
concludes this article and addresses the future work directions.

2. Ideal Hall Signal and Hall Sensor Fault Types

The structure of the PMBLDC motor drives is shown in Figure 1a, which comprises a
PMBLDC motor with three Hall sensors, a voltage-source inventor, and a motor control
system [32,33]. The three Hall sensors A, B, and C are fixed at the stator. When the rotor
turns to different positions, the Hall sensors will output different Hall signal Ha, Hb, and
Hc. The rotor positions are divided into six sectors by the different Hall signal with an
interval angel of π/3 rad, as shown in Figure 1b.
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choose to analyze the Hall sensor faults based on the different fault occurring sectors. 
When the motor is rotating CCW (counter-clockwise), and there are no faults in the Hall 
sensors, the three regular commutation Hall signal aH , bH , and cH  in six sectors are 
depicted in Figure 2 (lower panel). Without loss of generality in fault analysis, a single 
fault in Hall Sensor A at six different sectors are adopted to demonstrate the fault 
occurring instants, and the fault signal of Hall Sensor A is marked with H a , as shown in 
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Table 1. Hall sensor fault. 

Fault Types Fault States Faulty Sensor (s) 
Normal Operation Fa = 0, Fb = 0, Fc = 0 None 

Single Fault 
Fa = 1, Fb = 0, Fc = 0 A 
Fa = 0, Fb = 1, Fc = 0 B 
Fa = 0, Fb = 0, Fc = 1 C 

Figure 1. The Permanent magnet brushless direct current (PMBLDC) motor drive and Hall sen-
sors: (a) the structure of PMBLDC motor drives; (b) the simplified view of the Hall sensors in the
PMBLDC drives.

When the rotor turns from a sector to the next sector, there will be an edge signal in
the corresponding Hall signal. Without loss of generality, the edge signal of Hi (i = a, b, c)
is signed with Ei:
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Ei =


1 dHi

dt > 0

−1 dHi
dt < 0

0 dHi
dt = 0

(1)

According to the analysis in [20], Hall sensors may fail due to many reasons, which
will lead to the loss of the rotor position information contained in the Hall signal. Like
Zhang et al. [22], we just consider the situation of one or two Hall sensors failure in this
study. Because when all the three Hall sensors are invalid, only the sensorless control
method can be used to maintain the operation of the motor. In the control system, the Hall
signal is treated as a digital signal of “0” or “1”. For all the Hall sensors failure types, the
signal from the faulty Hall sensor is assumed to be a constant value of either “0” or “1”.

For simplicity, we define the fault states of Hall sensors for the single and double faults
(as shown in Table 1), where Fi = 1 indicates a fault in Hall signal (i = a, b, c). Furthermore, to
realize the fault detection of Hall sensors in the shortest possible time, we choose to analyze
the Hall sensor faults based on the different fault occurring sectors. When the motor is
rotating CCW (counter-clockwise), and there are no faults in the Hall sensors, the three
regular commutation Hall signal Ha, Hb, and Hc in six sectors are depicted in Figure 2
(lower panel). Without loss of generality in fault analysis, a single fault in Hall Sensor A at
six different sectors are adopted to demonstrate the fault occurring instants, and the fault
signal of Hall Sensor A is marked with Ha, as shown in Figure 2 (upper panel).

Table 1. Hall sensor fault.

Fault Types Fault States Faulty Sensor (s)

Normal Operation Fa = 0, Fb = 0, Fc = 0 None

Single Fault
Fa = 1, Fb = 0, Fc = 0 A
Fa = 0, Fb = 1, Fc = 0 B
Fa = 0, Fb = 0, Fc = 1 C

Double Fault
Fa = 1, Fb = 1, Fc = 0 A, B
Fa = 1, Fb = 0, Fc = 1 A, C
Fa = 0, Fb = 1, Fc = 1 B, C

In Figure 2 (lower panel), during the normal operations, it can be found that the Hall sig-
nal Ha, Hb, and Hc changes according to the sequence 011→001→101→100→110→010→011
for CCW and an opposite sequence for CW rotation. In fault situations, the signal from Hall
Sensor A does not change anymore, which results in different Hall signal sequences. These
Hall sensor faults in Figure 2 can be classified into three fault types, defined as Types 1–3.

Fault Type 1: Abnormal Hall signal change appears when the Hall sensor fault occurs.
For example, when the fault in Hall Sensor A occurs at the sector 5π/67π/6, there is an
abnormal Hall signal change of 011→111, while the normal one is 011→001; when the
fault occurs at the sector π/25π/6, the abnormal Hall signal change is 010→110, while the
normal one is 010→011.

Fault Type 2: Hall signal change appears in advance when the Hall sensor fault
occurs. For example, when the fault in Hall Sensor A occurs at the sector 7π/63π/2, there
is a normal Hall signal change of 001→101, but the Hall signal change is earlier than the
normal one.

Fault Type 3: No Hall signal change appears when the Hall sensor fault occurs. For
example, when the fault in Hall Sensor A occurs at the sector 3π/211π/6, 11π/6π/6 and
π/6π/2, there is no Hall signal change appears.
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Figure 2. Examples of faults in Hall Sensor A at six different sectors (Signal Ha changes to “1”).

As presented in [20], the fault sensor is identified by detecting the corresponding
fault Hall state and Hall transition sequences. Using the fault diagnosis methods in [20],
the Type 1 fault can be detected in real-time. However, for the Type 2 and Type 3 fault,
there is a common limitation in these fault diagnosis methods: it needs some time for the
fault diagnosis system to detect the corresponding abnormal Hall signal sequence from the
occurrence of the Hall sensor faults to the completion of the fault detection. During this
period, the motor commutation still relies on the fault Hall signal, which will lead to an
incorrect commutation in some sectors, as shown in Figure 2. Furthermore, these incorrect
commutations may cause the motor to be unable to maintain the normal operation and
eventually lead to massive damage to the motor drive system. Therefore, it is necessary
to develop a real-time fault diagnosis (RFD) method for the Hall sensor failure in the
PMBLDC motor.

3. Realization of Control Strategy
3.1. Finite State Machine and Definition of Signals

The finite state machine (FSM) is a mathematical model, which is usually used to
describe the running process of a control system [34,35]. There are four basic components
in a traditional basic FSM: state, transition, action, and event [36,37]. For a certain basic
FSM, it can be defined as an ordered set of five elements, as shown in (2):

M = {S, C, δ, S0, O} (2)

where S is the finite state set of the system and S = {S0, S1, S2, . . . , Sm}, C is the input
set of the system and C = {C1, C2, . . . , Cm}, δ is the state transition rules of the system,
S0 is the initial state of the system and S0 ⊆ S, O is the output set of the system and
O = {O1, O2, . . . , Om}.
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In engineering applications, a state transition diagram is usually used in FSM design,
representing the transition condition and process of the system more vividly. The basic
FSM is shown in Figure 3.
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According to the above analysis, it can be found that the second state of a basic FSM is
determined by the current state, the system event, and the transition function. Meanwhile,
it can only transfer between the finite states. Similarly, during the working process of the
PMBLDC motor drive, different MOSFETs need to be conducted according to the rotation
direction of the motor and the different rotor positions. Therefore, the concept of the FSM
can be combined with the PMBLDC motor drives, with the Hall signal as the system state
and the conducted MOSFETs as the system event. The six normal Hall signals and two
fault Hall signals are marked with S1 : S8, as shown in Table 2. The different conducted
MOSFETs are marked with C1 : C6, as shown in Table 3.

Table 2. System states of the FSM.

System State Sector Ha Hb Hc

S1 π11/6π/6 H1 = 100
S2 π/6π/2 H2 = 110
S3 π/25π/6 H3 = 010
S4 5π/67π/6 H4 = 001
S5 7π/63π/2 H5 = 001
S6 3π/211π/6 H6 = 101
S7 None H7 = 111
S8 None H8 = 000

Table 3. System events of the FSM.

System Event Conducted MOSFETs

C1 Q1/Q4
C2 Q1/Q6
C3 Q3/Q2
C4 Q3/Q6
C5 Q5/Q2
C6 Q5/Q4

Then the finite state set of the proposed PMBLDC motor drive system is S = {S1, S2, . . . , S8}.
The input set of the system is C = {C1, C2, . . . , C6}. The initial state is S0 ⊆ {S1, S2, . . . , S6},
as the rotor could be in any sector in the initial state. The output set is O = {S1, S2, . . . , S8}.

When there are no faults in the three Hall sensor, the 12 transition functions of the
system can be derived from the operation of the motor drive and expressed as:

δ(S1, C2) = S2, δ(S1, C5) = S6
δ(S2, C4) = S3, δ(S2, C6) = S1
δ(S3, C3) = S4, δ(S3, C1) = S2
δ(S4, C5) = S5, δ(S4, C2) = S3
δ(S5, C6) = S6, δ(S5, C4) = S4
δ(S6, C1) = S1, δ(S6, C3) = S5

(3)
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The corresponding normal FSM of the PMBLDC motor drives is shown in Figure 4.
Using the proposed FSM in Figure 4, the Type 1 Hall sensor fault can be detected whenever it
happens, as an abnormal state transition function appeared when the Hall sensor fails. Take
the case of Hall sensor faults in Figure 2, when the fault in Hall Sensor A occurs at sector
5π/67π/6 and π/25π/6, there are abnormal state transition functions of δ(S4, C5) = S7
and δ(S3, C3) = S2, while the normal state transition functions are δ(S4, C5) = S5 and
δ(S3, C3) = S4.
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However, for the Type 2 and 3 Hall sensor faults, the proposed FSM in Figure 4 cannot
finish the fault detection in real-time, as there are no abnormal state transition functions
appeared when the Hall sensor fails.

For the three fault types, the Type 1 fault can be represented by a logical failure, and
the Type 2 and 3 faults can be described by a timing failure. It can be found that there are
only logic constraints in the basic FSM in Figure 4, that is why it cannot detect the Type 2
and 3 Hall sensor faults in time, and the similar problem comes to the fault diagnosis
methods in the other researches.

Therefore, both the logic constraints and time constraints are essential to realize
the RFD of the Hall sensor faults, and the following definitions about time zone are
introduced [38,39].

Definition 1. Time zone. The range of the global clock L in the proposed FSM model is described as
[0,+∞). If the global clock L is divided into k sub zones l1, l2, . . . , lk, then each of the time point
in the sub zones can be represented by L1, L2, . . . , Lk, in which (L1 < L2 <, . . . ,< Lk). So that
the set of {L1, L2, . . . , Lk} can be used as the time zone division for the time constraint τ, as shown
in Figure 5.
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From the above definition of the time zone division, the time constraint τ of t1 < l < t2
can be divided into three sub time zones of [0, t1], (t1, t2) and [t2,+∞).

Definition 2. Valid time zone. In the proposed FSM in Figure 4, the state transition events set is
C, then in events set ∃Ci ∈ C. In the time zone division in Figure 5 ∃li ∈ L, which means that li
is a sub time zone of the global clock L. If the system event Ci occurs in li and the state transition
could be triggered by Ci, the time zone li is called a valid time zone for the system event Ci.

Definition 3. Invalid time zone. In contrast with the valid time zone, if the system event Ci occurs
in li and the state transition could not be triggered by Ci, the time zone li is called an invalid time
zone for the system event Ci.
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In some real-time systems, the state transition is constrained by the system state
variables. Meanwhile, the time constraint of these state variables can also be used as the
boundary condition of the system state transition. Based on the definitions of time zone,
the basic FSM can be extended with a time constraint, which can be used as the judgment
of whether the system state transition is normal. A state transition with both time and
variable constraints is shown in Figure 6.
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In Figure 6, S1 and S2 are two system states, Ci is a system input. There are two bound-
ary conditions in the state transition: variable constraint X == −1 and time constraint
20 < li < 25. When the system inputs is Ci, the state transition from S1 to S2 holds true
only when the system variable X == −1 occurs in the valid time zone (20, 25). When the
system variable X == −1 occurs in the invalid time zone (0, 20] or [25,+∞), or system
variables other than X == −1 appear in the time zone (20, 25), the state transition from S1
to S2 is false.

When it comes to the PMBLDC motor drive in Figure 1, the system operation is similar
to the state transition with variable constraint and time constraint:

Assuming that the system state (Hall signal) is Si, and the system input (conducted
MOSFETs) is Ck, then the next system state Sj can be obtained from the transition function
as Sj = δ(Si, Ck). If all the three Hall sensors are normal, a corresponding edge signal will
be detected when the state transition from Si to Sj is completed. Therefore, the appearance
of the edge signal can be treated as the variable constraint of the transition from Si to Sj
and signed with Xi→j. The appearance time of the edge signal can be used as the time
constraint of the transition from Si to Sj and signed with Ti→j.

Then the proposed FSM of the PMBLDC motor drive in Figure 4 can be extended to an
extended finite state machine (EFSM) with variable constraints and time constraints. The
relation between the variable constraint and the edge signal of the Hall sensors is shown
in Table 4.

Table 4. Variable Constraints of the EFSM.

Variable Constraint Edge Signal Variable Constraint Edge Signal

X1→2 Eb = 1 X1→6 Ec = 1
X2→3 Ea = −1 X2→1 Eb = −1
X3→4 Ec = 1 X3→2 Ea = 1
X4→5 Eb = −1 X4→3 Ec = −1
X5→6 Ea = 1 X5→4 Eb = 1
X6→1 Ec = −1 X6→5 Ea = −1

Subsequently, the 12 new transition functions of the EFSM are expressed as:

δ(S1, C2, [Eb = 1, T1→2]) = S2, δ(S1, C5, [Ec = 1, T1→6]) = S6
δ(S2, C4, [Ea = −1, T2→3]) = S3, δ(S2, C6, [Eb = −1, T2→1]) = S1
δ(S3, C3, [Ec = 1, T3→4]) = S4, δ(S3, C1, [Ea = 1, T3→2]) = S2
δ(S4, C5, [Eb = −1, T4→5]) = S5, δ(S4, C2, [Ec = −1, T4→3]) = S3
δ(S5, C6, [Ea = 1, T5→6]) = S6, δ(S5, C4, [Eb = 1, T5→4]) = S4
δ(S6, C1, [Ec = −1, T6→1]) = S1, δ(S6, C3, [Ea = −1, T6→5]) = S5

(4)

Based on the above definitions and the basic FSM in Figure 4, the normal EFSM of the
PMBLDC motor drive can be established, as shown in Figure 7.
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It can be found that there are both logic constraints and time constraints in the estab-
lished EFSM in Figure 7. Then the fault detection of the Hall sensors can be realized by
detecting the logical states of the variable constraints and solving the time constraints of the
state transition. When it comes to the logical states of the variable constraint, i.e., the logical
state of the edge signal, it’s easy to obtain the corresponding variable constraint from the
current system state and input event. However, the time constraint of the state transition is
related to the real-time speed of the motor, which means it cannot be obtained directly.

Thus, we need to establish a speed observer, which will be used to estimate the motor
speed in real-time and obtain the valid time zone of the state transition.

3.2. Proposed RFD Method and Fault Analysis

According to the mathematical model of the PMBLDC motor drive, the dynamic
equation of speed and current in normal operation can be expressed as:{

dωm
dt = 1

J (−Bvωm + Te − Tl)
di
dt =

1
Lm

(−Rsi− ea + Ua)
(5)

{
Te = kti
ea = kemfωm

(6)

where, ωm is the motor speed, J is the inertia moment, Bv is the viscous damping coefficient,
Te is the electromagnetic torque, Tl is the load torque, i is the armature current, Lm is the
stator inductance, Rs is the stator resistance, ea is the back electromotive force, Ua is the
armature voltage, kt is the torque constant, kemf is the back electromotive force constant.

During the fault detection, the motor speed is necessary to solve the time constraints
of the state transition. Next, a motor speed observer based on the super twisting algorithm
(STA) is designed with the angular speed of the motor as the observation [40].

The differential equation of the estimated armature current î can be expressed as:

dî
dt

= − Rs

Lm
î +

kemf
Lm

ξ(si) +
Ua

Lm
(7)

where si = î− i is the armature current estimation error, ξ(si) is a robust term based on the
super twisting algorithm.

The robust term ξ(si) is described as:

ξ(si) = −k1|si|1/2sign(si)− k2

∫ t

0
sign(si)dt− k3si (8)
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From Equations (5) and (7), the differential equation of the armature current estimation
error can be expressed as:

dsi

dt
= − Rs

Lm
si +

kemf
Lm

ξ(si) +
kemf
Lm

ωm (9)

Here, the two disturbance terms in (9) are represented by Ω1(si) and Ω2, in which
Ω1(si) = −siRs/Lm and Ω2 = −ωmkemf/Lm. Then the differential term of Ω2 can be
expressed as:

dΩ2

dt
=

kemf
Lm J

(−Bvωm + kti− Tl) (10)

In Ω1(si) and
.

Ω2, terms Lm, J, Rs, kemf, Bv and kt are all constants, terms ωm, i and Tl
are all bounded variables.

Therefore, there exist two constants ρ1 and ρ2 that make Equation (11) holds true.

‖Ω1‖ ≤ ρ1‖si‖, ‖
.

Ω2‖ ≤ ρ2 (11)

Taking Ω1(si) and Ω2 into Equation (9), we can get (12):

dsi

dt
= Ω1(si) + Ω2 +

kemf
Lm

ξ(si) (12)

Based on the above analysis, if the coefficients k1, k2 and k3 satisfy the following
Equation (13), the armature current estimation error si will converge to zero in finite
time [41]. 

k1 >
(

2k2ρ1+k3ρ2−k2k3
2k3−0.5ρ1

)1/2

k2 >
2ρ2−k2

1
2

k3 >
ρ1(0.5k2

1+2k2)
k2+2k2

1−ρ2

(13)

Consequently, the convergence and stability of the proposed sliding surface in the
STA observer can be ensured similar to [41]. After the sliding mode is established, the
estimated speed can be expressed as Equation (14):

Then the estimated speed can be expressed as Equation (14):

ω̂m = k2

∫ t

0
sign(si)dt (14)

As there is observation error between the estimated speed and actual speed, an error
threshold ωthr is set. When the motor drive system is working, the threshold value ωthr is
always greater than the residual value ωres between the estimated speed ω̂m and actual
speed ωm, as shown in (15):

ωres = |ω̂m −ωm| < ωthr (15)

To facilitate the subsequent description, a virtual reference variable ωr is introduced
into the control system, as described in (16):

ωr =
π

3(t− tn)
(16)

where π/3 is the rotation angle (electrical angle) of the motor in each commutation cycle, t
is the current time of the motor drive system, tn is the initial time of the motor drive system
in the commutation cycle.

Assumed that the initial state of the motor drive system at, and the system input
is Ck. Then the next state after Si can be calculated by using the transition functions
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in Equation (4), which is signed with Sj. The corresponding variable constraint of the
transition from Si to Sj is signed with Xi→j, and the valid time zone of Xi→j is signed
with (tmin, tmax). According to the definitions of the EFSM, only when the edge signal
corresponding to Xi→j occurs in the time range tmin < t < tmax, the state transition from Si
to Sj is normal.

In order to analyze the time zone division in the process of state transition intuitively,
the relationship among the three signals of the motor estimated speed ω̂m, the error
threshold ωthr and virtual reference variable ωr is expressed in Figure 8.
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In Figure 8, according to the relationship among ω̂m, ωthr and ωr, the time zone can
be divided into three parts as follows:

(1) Invalid time zone (tn, tmin]. In this interval, ωr keeps decreasing and gradually
approaches ω̂m, but ωr is always greater than ω̂m. Meanwhile, the error is always greater
than the set error threshold ωthr.

(2) Valid time zone (tmin, tmax). The error between ωr and ω̂m is always less than the
set error threshold ωthr in this interval.

(3) Invalid time zone (tmax, tn+1). After time t exceeds tmax, the decreasing ωr is
always less than ω̂m. Moreover, the error between ωr and ω̂m is always greater than the
set error threshold ωthr.

According to the signal curve in Figure 8 and the above analysis, the time zone division
can be summarized as shown in Equation (17):

t < tmin ωr > ω̂m + ωthr

tmin < t < tmax ω̂m −ωthr < ωr < ω̂m + ωthr

t > tmax ωr < ω̂m −ωthr

(17)

The proposed STA observer is used to divide the time zone of the variable constraint
condition Xi→j during the state transition process and solve the problem of the time
variable constraint condition Ti→j in the extended finite state machine. The above workflow
based on the FSM-STA Hall sensor fault diagnosis algorithm is summarized, and its
implementation logic is shown in Figure 9.
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When the fault diagnosis system is working, to ensure that the faulty sensor signal is
detected and identified in the shortest time, the control system will sample and compare
the state transition of the motor drive system in each control cycle. If a state transition
process is regarded as a fault signal, the control system records the fault information and
carries out the corresponding signal compensation control. Oppositely, if no fault signal is
detected, the system is detected to be running normally and proceed to the logic decision
of the following control cycle.

Taking the failure of a single Hall sensor as an example, the fault diagnosis system
will have different detection results for three different types of Hall sensor failures:

(1) Fault Type 1: When a new jump edge signal is detected in the current commutation
period, which is not the signal corresponding to the current variable constraint condition
Xi→j, it indicates that the Hall sensor with jump edge signal faults with abnormal state
transition behavior.

(2) Fault Type 2: When a new jump edge signal is detected in the current commutation
period occurring at this time ωthr < ωr − ω̂m, which corresponds to the current variable
constraint condition Xi→j, but at this time, it indicates that the variable constraint condition
Xi→j does not occur in the effective time region. Then, it can be known that the Hall sensor
with jump edge signal faults with advance state transition behavior.

(3) Fault Type 3: It is supposed that a new edge signal is not detected until the current
commutation cycle ωr < ω̂m − ωthr. In that case, it indicates that the state transition
behavior of the system is not completed in the effective time zone. Therefore, it can be
observed that the Hall sensor that should have the edge signal has a Fault Type 3.
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According to the above analysis and the fault diagnosis logic in Figure 9, the fault
diagnosis algorithm is designed after integrating the established finite state machine
with the motor speed observer based on the STA. The proposed fault diagnosis strategy
can effectively distinguish the Hall signal when the motor speed changes direction from
the Hall signal when the sensor fails and complete the Hall sensor fault diagnosis and
identification task.

3.3. Signal Reconstruction and Fault-Tolerant Control

After the fault diagnosis is completed, the control system also needs to perform fault-
tolerant control on the faulty sensor. Hence, the operational stability of the motor drive
system can be maintained under fault conditions.

In the fault-tolerant control of the Hall sensor, the rotor rotating angle of the motor
should be estimated in real-time. Then the compensation signal of the fault sensor should
be generated by the estimation signal, which can be used as the reference signal for
motor commutation control of the control system. Through the STA motor speed observer
established above, the output motor can be used to estimate the speed ω̂m. The rotation
angle θm of the motor rotor can be estimated in the form of integral. The estimated value
of the motor rotation angle θ̂m can be expressed as:

θ̂m =
∫ t

0
ω̂mdt (18)

The initial time of the motor drive system in the current commutation cycle is denoted
as tn, the initial state is denoted as Si, and the subsequent state of the system is driven by
the system input events Sj.

Suppose that the ideal time for the state Sj to appear is t̃n+1. Then, when the motor
rotor runs in the commutation interval, the ideal average speed ω̃n+1 of the motor can be
expressed as:

ω̃n+1 =
π

3
(
t̃n+1 − tn

) (19)

Since the state variable ω̃n+1 is related to the running state of the motor drive system
and cannot be accurately calculated, the actual value of the ideal time t̃n+1 when the state
Sj appears cannot be obtained. Therefore, the motor estimated speed signal ω̂m from the
STA observer is used instead of the state quantity ω̃n+1 as the average speed of the motor
during the commutation interval. Based on this, the estimated value t̂n+1 of the ideal time
t̃n+1 can be derived according to Equations (15) and (16), as shown in Equation (20).

∫ t̂n+1

tn
ω̂mdt =

π

3
(20)

Simultaneously, to improve the operation stability of the drive system, the accuracy of
the estimated state transition time must be enhanced as much as possible. Therefore, the
actual speed of the motor in the previous commutation interval is taken as the initial value
of the integral in Equation (20) during each calculation, as shown in Equation (21):

ωn =
π

3(tn − tn−1)
(21)

Through Equations (20) and (21), the estimation value of state Sj existence time t̂n+1
can be calculated. Then, combining with the normal state transition, compensating Hall
signals of the corresponding Hall sensors can be generated according to different fault
conditions and used as reference signals in the commutation control of the motor. Similarly,
for the fault-tolerant control in the subsequent motor operation cycle, the fault Hall sensor
signals that need to compensate can be updated and replaced in real-time by updating the
commutation time tn and the motor estimated speed ω̂m.
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4. Experimental Verification
4.1. Experimental Platform

To validate the efficacy of the proposed fault diagnosis and fault-tolerant control
strategy, experimental tests are conducted based on a 35-W PMBLDC motor prototype.
The overall structure of the proposed real-time fault diagnosis and fault-tolerant control
system for Hall sensors in PMBLDCM drives is shown in Figure 10.
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The experimental setup is built, as displayed in Figure 11. The details of the controller
are as follows: the digital signal processor (DSP) TMS320F28335 (Texas Instruments, Dallas,
TX, USA) is selected as the core control unit; the IR2136s 3-phase bridge driver (Infineon,
New bieberg, Germany) is selected as the gate driver; the three-phase inverter consists of the
N-channel MOSFET transistor IRFR4615 (Infineon, New bieberg, Germany) with a switching
frequency of 5 kHz. In the experiments, the speed and torque signal are measured by the
sensor (JN-DN). The currents are detected by Allegro current sensors (ACS712ELCTR-05B-T
(Allegro MicroSystems, Manchester, NH, USA)). The time interval of Hall state monitoring
is 0.1 ms. The main parameters of the motor are indicated in Table 5.
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Table 5. Main parameters of the PMBLDC motor.

Rated Power Rated Speed Rated Torque Rated Voltage

35 W 1500 rpm 0.18 N ·m 24 V

The parameters of the STA observer are selected as follows: k1 = 0.5, k2 = 6, k3 = 0.8.

4.2. STA Observer Experimental Results

Experiments verify the estimation performance of the proposed STA observer. Mean-
while, the motor speed range is set from 600 rpm to 1200 rpm.

As shown in Figure 12, the estimated current can effectively reflect the actual current,
and the maximum error between the actual speed and estimated speed is about 20 rpm.
Accordingly, the fault diagnosis threshold during the fault diagnosis process is set to
40 rpm.
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4.3. Fault Diagnosis Experimental Results

The proposed Hall fault diagnosis strategy is signed with M1. To evaluate the effec-
tiveness and superiority of the strategy, a comparative experiment with the fault diagnosis
method M2 in [29] is carried out.

Experimental conditions: (1) The controller will run the PMBLDC motor to 200 rpm
under the premise of the normal hall signal. When the motor speed reaches 200 rpm
and the system enters the steady state, the experimental data will start to be recorded.
(2) The motor speed will be increased to 1200 rpm from 0.2 s to 0.4 s. The three different
Hall fault types will be simulated in the motor speed increase, and the corresponding
fault diagnosis experiments will be analyzed. (3) It is an effective method to realize the
simulation of the Hall fault that switching the input signal of the I/O port from the Hall
signal to the high level signal. (4) The Hall signal changes according to the sequence
011→001→101→100→110→010→011. (5) The reconstructed signal is output from the
I/O port.

(1) Fault Type 1 diagnosis experiments: The I/O ports of the DSP are utilized to
monitor the Hall signals. When the Hall state change to 010, the I/O port obtaining the
Hall signal Ha will maintain the high level to simulate fault type 1. At the same time, M1
and M2 are adopted to realize the Hall fault diagnosis experiment.

As shown in Figure 13a, the Hall signal fault occurred at t = 335 ms, and the Hall state
changed from 010 to 110. Compared to M1 with M2 in Figure 13b, the proposed strategy
M1 can immediately diagnose the fault. Meanwhile, when the Hall fault is detected, the
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output level signal of the fault diagnosis I/O port is converted from low to high. However,
M2 did not reflect fault information until t = 336 ms. The strategy M2 took 1 ms longer
than M1.
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(2) Hall Fault Type 2 diagnosis experiments: Similarly, when the I/O ports acquire the
Hall state of 001, the Hall Fault Type 2 will be assumed. It can be seen from Figure 14 that
the fault occurred at t = 362 ms, and the proposed fault diagnosis strategy M1 can detect
the diagnosis instantly after the appearance of the fault. On the contrary, the strategy M2
detected the Hall Fault Type 2 until the Hall signal jump from low level to the high level,
and this strategy caused a wasted of 6.7 ms. Hence, the proposed fault diagnosis strategy
M1 can diagnose the Hall fault faster than the method M2.
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(3) Hall Fault Type 3 diagnosis experiments: When the I/O ports detect the Hall state
of 001 at t = 372 ms, the Hall signal Ha will maintain the high level to simulate the Hall
Fault Type 3. Figure 15 shows the comparative experimental results under the Hall Fault
Type 3. On account of no Hall signal change appears when the Hall sensor fault occurs,
the proposed fault diagnosis strategy M1 cannot detect the fault immediately. However,
strategy M1 diagnoses the fault signal in 375.2 ms, which is 1.3 ms faster than strategy M2.
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Based on the above fault diagnosis experimental results, the comparison of fault
diagnosis results between M1 and M2 are summarized in Table 6. It can be found that the
proposed fault diagnosis strategy is equipped with the superior fault diagnosis performance
compared with Method 2.

Table 6. Comparison of fault diagnosis results between M1 and M2.

M1 M2 Performance

Fault Sector
and

Fault Time

π/25π/6 335.0 ms 335.0 ms 336.0 ms M1 Faster

7π/63π/2 362.0 ms 362.0 ms 368.7 ms M1 Faster

3π/2π/2 372.0 ms 375.2 ms 376.5 ms M1 Faster

4.4. Fault-Tolerant Control Experimental Results

After the Hall fault was diagnosed, it is necessary to reconstruct the fault signal and
generate the compensated signal to realize fault-tolerant control. The experiments are
carried out to verify the validity of the proposed Hall fault-tolerant control strategy.

4.4.1. Fault-Tolerant Control at Load Constant

Experimental conditions: (1) The same with the fault diagnosis experiments, the fault-
tolerant control experiments also drive the PMBLDC motor to 200 rpm. Then the controller
will drive the motor from 200 rpm to 1200 rpm in 0.2 s. (2) The single and double Hall
fault-tolerant control experiments will be verified in the process of motor speed increase.
(3) Relevant experimental dates are stored by the RS422 communication protocol.

(1) Single Hall fault-tolerant control experimental results: As seen from Figure 16a,
the experiment assumes the fault of the Hall signal Ha occurs at t = 0.27 s. Meanwhile,
when the fault is diagnosed, the Hall signal reconstruction strategy can ensure the regular
operation of the motor. As seen in Figure 16a, the ideal signal can replace the original
normal Hall signal. Figure 16b,c showed that the motor speed fluctuated when the fault
occurred, and the fluctuation range is 25 rpm. Fortunately, the motor is always in a stable
state under the proposed strategy. From Figure 16d, the instantaneous current at the fault
point is 2.25 A. The control strategy quickly stabilizes the current after a failure, and it
is challenging to find the difference of operation state before and after Hall failure after
stability. The experimental results show that the proposed fault-tolerant strategy can
rapidly recover the drive system from the fault in a single Hall fault case.
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(2) Double Hall fault-tolerant control experimental results: Figure 17a shows that the
Hall signal Ha and Hb failed at t = 0.3 s and t = 0.32 s, respectively. It is apparent that the
double Hall signal fault occurred at t = 0.32 s. As shown in Figure 16b, the motor speed
fluctuated within the fluctuation range of 30 rpm. The detailed speed curves at the fault
point can be seen in Figure 17c. The busbar current curve is shown in Figure 17d. To all
appearances, the maximum instantaneous current is 2.11 A at the double Hall fault point.
After adopting the fault-tolerant control strategy proposed in this paper, the motor speed
and current of the system tend to be stable. Hence, we can know that the fault-tolerant
control can effectively troubleshoot the double Hall fault problem.
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Figure 17. Double Hall fault-tolerant control experimental results: (a) the Hall signal curves of the motor; (b) the speed 
curves of the motor; (c) the detail speed curves at the fault point; (d) the busbar current of the motor. 
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4.4.2. Fault-Tolerant Control at Load Variation

Experimental conditions: At the load variation experiments, the control system drives
the PMBLDC motor to 1200 rpm. When the running time is 0.3 s, the motor load will
increase from 0.05 N·m to 0.1 N·m. Meanwhile, the control system will simulate the failure
of Ha at t = 0.4 s.

Hall fault-tolerant control experimental results at load variation: As shown in Figure 18b,d,
the load variation occurred at t = 0.3 s. And the current has also significantly fluctuated,
which is a normal phenomenon. Subsequently, the Ha faulted at t = 0.4 s, and the current
fluctuated abnormally. After the fault occurred, Figure 18c shows that the fault-tolerant
control method can ensure stable operation of the PMBLDC motor with a slight increase of
speed error. Hence, we can know that the fault-tolerant control can be adopted in the load
variation condition.
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The experiment results demonstrated that the proposed fault-tolerant control strategy
can reconstruct the Hall signal in case of the single or double Hall failure and make the
drive system restore the stable operation rapidly. Meanwhile, the large current fluctuations
are inexistent, and the reliability of the drive system is enhanced.

5. Conclusions

This paper focuses on the real-time fault diagnosis and fault-tolerant control strategy
for Hall sensors in PMBLDC motor drives. Firstly, the Hall sensor faults are classified into
three types based on the different sectors of the rotor when the fault occurs in Section 2. In
Section 3, a real-time fault diagnosis strategy based on the EFSM and STA speed observer
is proposed for the Hall sensor failure of the PMBLDC motor. Meanwhile, the Hall signal
compensation controller is also present in Section 3, designed to realize the fault-tolerant
control. The proposed method is simple to be implemented in engineering.

Furthermore, a 35-W PMBLDC motor experimental platform is set up in Section 4.
According to the experimental results, the proposed fault diagnosis takes less time to
diagnose the Hall fault than the method in [29]. Further, the proposed fault-tolerant control
strategy can ensure the stable operation of the motor under Hall sensor failure situations
with failures of single or double Hall sensors.

Finally, with the application background of the electric brake system, the proposed
method will be applied to the unmanned aerial vehicle (UAV) brake system in future works.
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The successful application of the strategy is of great significance to improve the operational
reliability of UAVs.
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Abbreviations

Notation Physical significance
Ha, Hb, Hc Hall signals of the Hall Sensors A, B and C
Ea, Eb, Ec Edge signals of the Hall signals
Fa, Fb, Fc Fault states of the Hall Sensors A, B and C
S1, S2, . . . , S8 System states of the FSM
C1, C2, . . . , C6 System events of the FSM
Xi→j Variable constraint of the FSM
Ti→j Time constraint of the FSM
ωm Motor speed
J Inertia moment
Bv Viscous damping coefficient
Te Electromagnetic torque
Tl Load torque
i Armature current
Lm Stator inductance
Rs Stator resistance
ea Back electromotive force
Ua Armature voltage
kt Torque constant
kemf Back electromotive force constant
î Estimated current
si Estimated current error
k1, k2, k3 Coefficient of the STA observer
Ω1, Ω2 Disturbance terms
ω̂m Estimated speed
ωres Residual value
ωthr Error threshold
ωr Virtual reference speed
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