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Abstract: Lossy audio codecs compress (and decompress) digital audio streams by removing infor-
mation that tends to be inaudible in human perception. Under high compression rates, such codecs
may introduce a variety of impairments in the audio signal. Many works have tackled the problem of
audio enhancement and compression artifact removal using deep-learning techniques. However, only
a few works tackle the restoration of heavily compressed audio signals in the musical domain. In such
a scenario, there is no unique solution for the restoration of the original signal. Therefore, in this
study, we test a stochastic generator of a Generative Adversarial Network (GAN) architecture for this
task. Such a stochastic generator, conditioned on highly compressed musical audio signals, could
one day generate outputs indistinguishable from high-quality releases. Therefore, the present study
may yield insights into more efficient musical data storage and transmission. We train stochastic and
deterministic generators on MP3-compressed audio signals with 16, 32, and 64 kbit/s. We perform
an extensive evaluation of the different experiments utilizing objective metrics and listening tests.
We find that the models can improve the quality of the audio signals over the MP3 versions for 16
and 32 kbit/s and that the stochastic generators are capable of generating outputs that are closer to
the original signals than those of the deterministic generators.

Keywords: musical audio enhancement; audio restoration; bandwidth extension; compression
artifact removal; codec enhancement; generative adversarial network

1. Introduction

The introduction of MP3 (i.e., MPEG-1 layer 3 [1]) was transformative in how music
was stored, transmitted, and shared in digital devices and on the internet. MP3 players,
sharing platforms and streaming resulted directly from the possibility to considerably
compress audio data without noticeable perceptual compromises. Compared to lossless
audio coding formats, which allow for a perfect reconstruction of the original PCM audio
signal, lossy formats (like MP3) typically lead to better compression by ignoring the parts
of the signal to which humans are less sensitive. This process is also called perceptual
coding, which takes into account the physio- and psychological abilities of human auditory
perception, resulting in so-called psychoacoustic models [2].

While there exist several different lossy audio codecs (e.g., AAC, Opus, Vorbis, AMR),
MP3 is undoubtedly the most commonly used. It is built upon an analysis filter bank and
a subsequent computation of the modified discrete cosine transform (MDCT). In paral-
lel, the signal is analyzed based on a perceptual model that exploits the psychoacoustic
phenomena of auditory masking to determine sound events in the audio signal that are con-
sidered to be beyond human hearing capabilities. Based on this information, the spectral
components are quantized with a specific resolution and coded with variable bit alloca-
tion, while keeping the noise introduced in this process below the masking thresholds [3].
This process may introduce a variety of deficiencies when configured with incorrect or
very extreme parameters. For example, under large compression rates, high-frequency
content is susceptible to being removed, resulting in bandwidth loss. Pre-echoes can oc-
cur when decoding very sudden sound events for which the quantization noise spreads
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out over the synthesis window and consequently precedes the event causing the noise.
Other common artifacts are so-called swirlies [4], characterized by fast energy fluctuations
in the low-level frequency content of the sound. Furthermore, there are other problems
related to MP3 compression, such as double-speak, as well as a general loss of transient
definition, transparency, loss of detail clarity, and more [4].

Many works exist which tackle the problem of audio enhancement, including the re-
moval of compression artifacts. The most common recent methods used for these types
of problems are based on deep learning. Typically, they focus on specific types of impair-
ments present in the audio signals (e.g., reverberation [5], bandwidth loss [6], or audio
codec artifacts [7–11]). Additionally, different types of neural network architectures have
been studied for these tasks; for example, Convolutional Neural Networks (CNNs) [12],
WaveNet-like architectures [8,13], and UNets [14,15]. However, most of the works in this
line of research tackle the enhancement of speech signals [7–10,12–18], and only a few
publications exist for musical audio restoration [11,19–21]. This focus on speech is under-
standable, given the wide range of speech enhancement techniques in telephony, automatic
speech recognition, and hearing aids. Additionally, compared to musical audio signals,
speech signals are easier to study, as they are more homogeneous, narrow-banded, and usu-
ally monophonic. In contrast, musical audio signals, particularly in the popular music
genre, are highly varied. They typically consist of multiple superimposed sources, which
can be of any type, including (polyphonic) tonal instruments, percussion, (singing) voice,
and various sound effects. In addition, music is typically broad-banded, containing fre-
quencies spanning over the entire human hearing range.

Given that studies on deep-learning-driven audio codec artifact removal for musical
audio data are underrepresented in audio enhancement research, in this work, we attempt
to provide some more insights into this task. We investigate the limits of a generative
neural network model when dealing with a general popular music corpus comprising
music released in the last seven decades. In particular, we are interested in the ability of
the model to regenerate lost information of heavily compressed musical audio signals using
a stochastic generator (which is not very common in audio enhancement, with [10,22] being
some exceptions). This work is not only relevant for the restoration of MP3 data in existing
(older) music collections. In light of current developments in musical audio generation,
where full songs can already be generated from scratch [23], musical audio enhancement
may soon possess a much more generative aspect. It has already been shown that strong
generative models can enhance heavily corrupted speech through resynthesis with neural
vocoders [22]. Along these lines, examining a generative (i.e., stochastic) decoder for heavily
compressed audio signals may contribute to insights about more efficient musical data
storage and transmission. Today, music streaming is increasingly common, which poses
issues regarding energy consumption, and consequently, environmental sustainability.
When accepting deviations from the original recording, higher compression rates could
be reached with a generative decoder without perceptual compromises in the listening
experience. Moreover, for heavily compressed audio signals, there is no single best solution
to recover the original version. Therefore, it may be interesting for users to generate
multiple recoveries and pick the one they like most.

We introduce a Generative Adversarial Network (GAN) [24] architecture for the restora-
tion of MP3-encoded musical audio signals. We train different stochastic and deterministic
generators on MP3s with different compression rates. Using these models, we investigate
whether (1) restorations of the models considerably improve the MP3 versions, (2) if we
can systematically pick samples among the outputs of the stochastic generators which are
closer to the original than such of the deterministic generators, and (3) if the stochastic
generators generally output higher-quality restorations than the deterministic generators.
To that end, we perform an extensive evaluation of the different experiment setups utilizing
objective metrics and listening tests. We find that the models are successful in points 1 and
2, but the random outputs of the stochastic generators are approximately on a par with (i.e.,
do not improve) the overall quality compared to the deterministic models (point 3).
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The proposed GAN architecture is based on dilated convolutions with skip connec-
tions, combined with a novel concept which we call Frequency Aggregation Filters. These
are convolutional filters spanning the whole frequency range, which contribute to the stabil-
ity of the training and constitute a consequent take on the problem of non-local correlations
in the frequency spectrum (see Section 3.1.3). We also find that using so-called self-gating
considerably reduces the memory requirement of the architecture by halving the number
of input maps to each layer without degradation of the results (see Section 3.1.2). In order
to prevent mode collapse, we propose a regularization that enforces a correlation between
differences in the noise input and differences in the model output (see Section 3.2.1). As op-
posed to most other works (but in line with a few other approaches using GANs [25]
and U-Net-based architectures [14,15]), we directly input (and output) the (non-linearly
scaled) complex-valued spectrum to the generator, eliminating the need to deal with phase
information separately.

The rest of this paper is organised as follows. In Section 2 we revise previous works
in bandwidth extension and audio enhancement. In Section 3 we describe in depth the pro-
posed GAN architecture (Section 3.1), the training procedure (Section 3.2), the dataset
(Section 3.3) and the evaluation methods (Section 3.4). Finally, in Section 4 we present
and discuss the results and conclude with suggestions for future work in Section 5. Au-
dio examples of the work are provided in the accompanying website (Available online:
https://sonycslparis.github.io/restoration_mdpi_suppl_mat/ (accessed on 4 June 2021).

2. Related Work

In this work, Generative Adversarial Networks (GANs) are employed to restore MP3-
compressed musical audio signals to their original high-quality versions. This task falls
into the intersection of audio enhancement and bandwidth extension. Therefore, we review
works on both these domains.

2.1. Bandwidth Extension

Low-resolution audio data (i.e., audio signals with a sample rate lower than 44.1 kHz)
are generally preferable for storage or transmission over band-limited channels, like stream-
ing music over the internet. Additionally, lossy audio encoders can significantly reduce
the amount of information by removing high-frequency content, but at the expense of
potentially hampering the perceived audio quality. In order to restore the quality of such
truncated audio signals, bandwidth extension (BWE) methods aim to reconstruct the miss-
ing high-frequency content of an audio signal given its low-frequency content as input [26].
BWE is alternatively referred to as audio re-sampling or sample-rate conversion in the field of
Digital Signal Processing (DSP), or as audio super-resolution in the Machine Learning (ML)
literature. Methods for BWE have been extensively studied in areas like audio streaming
and restoration, mainly for legacy speech telephony communication systems [13,16,17,27]
or, less commonly, for degraded musical material [19,20].

Pioneering works to speech BWE were originally algorithmic and operated based on
a source-filter model. There, the problem of regenerating a wide-band signal is divided into
finding an upper-band source and the corresponding spectral envelope, or filter, for that
upper band. While methods for source generation were based on simple modulation tech-
niques, such as spectral folding and translation of a so-called low-resolution baseband [28],
the efforts focused on estimating the filter or spectral envelope [29]. These works intro-
duced the so-called spectral band replication (SBR) method, where the lower frequencies
of the magnitude spectra are duplicated, transposed, and adjusted to fit the high-frequency
content. Because in most use-cases for speech BWE the full transmission stack is con-
trolled, most of these algorithmic methods rely on side information about the spectral
envelope, obtained at the encoder from the full wide-band signal, and then transmitted
within the bitstream for subsequent reconstruction at the decoder.

Learning-based approaches to speech BWE rely on large models to learn dependencies
across the lower and higher ends of the frequency spectrum. Methods based on non-
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negative matrix factorization (NMF) treat the spectrogram as a fixed set of non-negative
bases learned from wide-band signals [27]. These bases are fixed at test time and used to
estimate the activation coefficients that best explain the narrow-band signal. The wide-
band signal is then reconstructed by a linear combination of the base vectors weighted by
the activations. These methods efficiently up-sample speech audio signals up to 22.05 kHz,
but are sensitive to non-linear distortions due to the linear-mixing assumption. Dictionary-
based methods can significantly improve the speech quality over the NMF approach by
reconstructing the high-resolution audio signals as a non-linear combination of units from
a pre-defined clean dictionary [30], or by casting the problem as an l1-optimization of an
analysis dictionary learned from wide-band data [31].

Early works on speech BWE using neural networks inherited the source-filter method-
ology found in previous works. By employing spectral folding to regenerate the wide-band
signal, a simple NN is used to adjust the spectral envelope of the generated upper-band [16].
Direct estimation of the missing high-frequency spectrum was not extensively studied until
the introduction of deeper architectures [17]. Advances in computer vision [32,33] inspired
the usage of highly expressive models to audio BWE, leading to significant improve-
ments in the up-sampling ratio and quality of the reconstructed audio signal. Different
approaches followed: by generating the missing time-domain samples in a process analo-
gous to image super-resolution [34], by inpainting the missing content in a time-frequency
representation [20], or by combining information from both domains, preserving the phase
information [35]. Powerful auto-regressive methods for raw audio signals based on Sam-
pleRNN [36] or WaveNet [13] are able to increase the maximum resolution to a 16 kHz and
24 kHz sample-rate, respectively, without neglecting phase information, as it is the case
in most works operating in the frequency domain [6,17,19,20,27]. Most recent techniques
using sophisticated transformer-based GANs can up-sample speech to full-resolution audio
at a 44.1 kHz sample rate [6].

2.2. Audio Enhancement

Audio signals may suffer from a wide variety of environmental adversities, for ex-
ample: sound recordings using low-fidelity devices or in noisy and reverberant spaces;
degraded speech in mobile or legacy telephone communications systems; musical material
from old recordings, or heavily compressed audio signals for streaming services. Audio
enhancement aims to improve the quality of corrupted audio signals by removing noisy
additive components and restoring distorted or missing content to recover the original au-
dio signal. The field was first introduced for applications in noisy communication systems
to improve the quality and intelligibility of speech signals [37]. Many studies have been
carried out on speech audio enhancement, such as for speech recognition, speaker identi-
fication and verification [38–40], hearing assistance devices [41,42], de-reverberation [5],
and so on. In the specific case of audio codec restoration, many different techniques exist for
improvement of speech signals [7–10], yet only few works have attempted the restoration
of heavily compressed musical audio signals [11,21].

Classic speech enhancement methods follow multiple approaches, primarily based on
analysis, modification, and synthesis of the noisy signal’s magnitude spectrum and often
omitting phase information. Popular strategies are categorized into spectral subtraction
methods [43], Wiener-type filtering [44], and statistical model-based [45] and subspace
methods [46]. These approaches have proven successful when the additive noise is station-
ary. However, under highly non-stationary noise or reduced signal-to-noise ratios (SNR),
they introduce artificial residual noise.

Recent deep-learning approaches to speech enhancement outperform previous meth-
ods in terms of perceived audio quality, effectively reducing both stationary and non-
stationary noise components. Popular methods learn non-linear mapping functions
of noisy-to-clean spectrogram signals [18] or learn masks in a time-frequency domain
representation [5,14,47]. Many architectures have been proposed: basic feed-forward
DNNs [18], CNN-based [12], RNN-based [48], and more sophisticated architectures based
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on WaveNet [8] or U-Net [14]. GANs are also increasingly popular in speech enhance-
ment [49–52]. Pioneering works using GANs operated either on the waveform domain [49]
or on the magnitude STFT [53]. Subsequent works mainly focused on the latter represen-
tation due to the reduced complexity compared to time-domain audio signals [51,52,54].
Recent works operating directly on the raw waveform were able to consider a broader
type of signal distortions [50] and to improve the reduction of artifacts over previous
works [55]. Successive efforts were made to further reduce artefacts by, for example, taking
into consideration human perception. Some works directly optimize over differentiable
approximations of objective metrics, such as PESQ [54]. However, these metrics correlate
poorly with human perception, and some works defined the objective metric in embed-
ding spaces from related tasks [56] or by matching deep features of real and fake batches
in the critic’s embedding space [57].

The vast majority of the speech audio enhancement approaches mentioned above
operate on the magnitude spectrum and ignore the phase information [20,21,51,52]. At syn-
thesis, researchers often reuse the phase spectrum from the noisy signal, introducing
audible artifacts that would be particularly annoying in musical audio signals. To address
this, phase-aware models for speech enhancement use a complex ratio mask [47], or, as we
have seen, operate directly in the waveform domain [50,55]. Inspired by a recent work
demonstrating that DNNs implementing complex operators [58] may outperform previous
architectures in many audio-related tasks, new state-of-the-art performances were achieved
on speech enhancement using complex representations of audio data [14,15]. Recent work
was able to further improve these approaches by introducing a complex convolutional
block attention module (CCBAM) and a mixed loss function [59].

3. Materials and Methods

In the following, we describe the experiment setup. This includes the model ar-
chitecture (see Section 3.1) and the training procedure (see Section 3.2). Furthermore,
the data used and the data representation are presented in Section 3.3, and the objective
and subjective evaluation methods are discussed in Section 3.4.

3.1. Model Architecture

The model employed in this work is a Generative Adversarial Network (GAN),
conditioned on spectrogram representations of MP3-compressed audio files (see Figure 1
for an overview on architecture and training). As common in GANs, there are two separate
models, the generator G and the critic D. G receives as input an excerpt of an MP3-
compressed musical audio signal in spectrogram representation y (i.e., non-linearly scaled
complex STFT components, see Section 3.3.1) and learns to output a restored version
x̂ of that excerpt (i.e., the fake data), approximating the original, high-quality signal x.
D learns to distinguish between such restorations x̂ and original high-quality versions
of the signal x (i.e., the true data). In addition to the true/fake data, D also receives
the MP3 versions of the respective excerpts. That way, it is ensured that the information
present in the MP3 data is faithfully preserved in the output of G. We test stochastic and
deterministic generators in our experiments. For the stochastic models, we also provide
some noise input z ∼ N (0, I), resulting in different restorations for a given MP3 input.
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Figure 1. Schematic depiction of the architecture and training procedure.

As the training criterion, we use the GAN Wasserstein loss [60] as

Γ(D, G) =
1
N ∑

i
D(yi, xi)− D(yi, G(yi, zi)) (1)

and we are interested in minG maxD Γ(D, G), meaning the parameters of G are optimized to
minimize this loss, and the parameters of D are optimized to maximize it. Note that the op-
timization of G only affects the second term of Equation (1), resulting in a maximization of
D(yi, G(yi, zi)).

3.1.1. Architecture Details

For details on the implemented architecture, please refer to Table 1. We implement
both the generator G and the critic D convolutional in time. This allows us to use less
overlap (i.e., 50%) when chopping up the training data, as the convolutional architectures
obtain differently shifted versions of the input by design. At test time, G is applied to
variable-length and potentially relatively long input sequences (e.g., full songs). In such
a setting, G does not perform very well if trained on short excerpts with zero-padding
in the time dimension. Therefore, we do not use zero-padding for G during training.

The critic D is convolutional in time, too, resulting in as many loss outputs as there are
spectrogram frames in the input (the individual costs are simply averaged for computing
the final Wasserstein loss). We are using two convolutional groups throughout the critic
stack, which amounts to two independent critics. Only in the output layer, those two
groups are joined again. This is to provide D with two different views on the input, (1) the
signed square-root of the complex STFT components (see Section 3.3.1) and (2) the square-
root of the magnitude spectrum of the generator output (we found empirically that this
resulted in more stable training than when using the log-magnitude spectrogram).

Many convolutional architectures with the same output and input size used for data
restoration and in-painting employ the symmetrical U-Net paradigm (first introduced
in [61]) with bottleneck layers and skip connections. In contrast, the architecture proposed
in this work is non-symmetrical, mainly facilitating dilated convolutions for increasing
receptive fields, and the main part of the architectures of G and D are identical (see
Table 1). Only the top parts of the stacks differ, wherein in G the aggregated informa-
tion is fed into deconvolution layers, while in D the information is used to compute
the Wasserstein distance.
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Table 1. Architecture details of generator G and critic D for four-second-long excerpts (i.e., 336 spectrogram frames), where
(·)-brackets mark information applying only to G, and information in [·]-brackets applies only to D. During training, no
padding is used in the time dimension for G, resulting in a shrinking of its output to 212 time-steps.

Layer In Maps Out Maps Kernel Size Dilation Padding Non-Linearity Output Size

Input - - - - - - 2× 1024× (336)[212]
Conv1 2 18 3× 3 1 1, 1 PReLU 18× 1024× (336)[212]
Conv2 18 38 3× 3 2 2, 2 PReLU 38× 1024× (336)[212]
Conv3 38 38 3× 3 4 4, 4 PReLU 38× 1024× (336)[212]

Conv4 38 4096 1024× 1 1 0, 0 PReLU 4096× 1× (336)[212]
Reshape1 - - - - - 128× 32× (336)[212]
ReMap 128 256 1× 1 1 0, 0 PReLU 256× 32× (336)[212]

Conv5 256 256 3× 3 1 1, (0)[1] PReLU 256× 32× (334)[212]
(Noise
Concat) - - - - - - 320× 32× 334

Conv6 (320)[256] 256 3× 3 2 2, (0)[2] PReLU 256× 32× (330)[212]
SelfGating - - - - - - 128× 32× (330)[212]

Conv7 128 256 3× 3 4 4, (0)[4] PReLU 256× 32× (322)[212]
SelfGating - - - - - - 128× 32× (322)[212]

Conv8 128 256 3× 3 8 8, (0)[8] PReLU 256× 32× (306)[212]
SelfGating - - - - - - 128× 32× (306)[212]

Conv9 128 256 3× 3 16 16, (0)[16] PReLU 256× 32× (274)[212]
SelfGating - - - - - - 128× 32× (274)[212]

Conv10 128 256 3× 3 1 1, (0)[1] PReLU 256× 32× (272)[212]
SelfGating - - - - - - 128× 32× (272)[212]

Conv11 128 256 3× 3 2 2, (0)[2] PReLU 256× 32× (268)[212]
SelfGating - - - - - - 128× 32× (268)[212]

Conv12 128 256 3× 3 4 4, (0)[4] PReLU 256× 32× (260)[212]
SelfGating - - - - - - 128× 32× (260)[212]

Conv13 128 256 3× 3 8 8, (0)[8] PReLU 256× 32× (244)[212]
SelfGating - - - - - - 128× 32× (244)[212]

Conv14 128 256 3× 3 16 16, (0)[16] PReLU 256× 32× (212)[212]
SelfGating - - - - - - 128× 32× 212

(Reshape2) - - - - - 4096× 1× 212
(DeConv4) 38 4096 1024× 1 1 0, 0 PReLU 38× 1024× 212

(DeConv3) 38 38 3× 3 4 4, 4 PReLU 38× 1024× 212
(DeConv2) 18 38 3× 3 2 2, 2 PReLU 18× 1024× 212
(DeConv1) 2 18 3× 3 1 1, 1 PReLU 2× 1024× 212
(Output) - - - - - 2× 1024× 212

[Conv15] 128 256 3× 3 1 1, 1 PReLU 256× 32× 212
[Conv16] 256 1 32× 1 1 0, 0 - 1× 1× 212

We use Parametric Rectified Linear Units (PReLUs) [62] for all layers, and skip con-
nections for D in the convolutional layers Conv6–Conv14 in Table 1. The noise input z
(to the generator G) is simply repeated in the two convolutional dimensions and concate-
nated to layer Conv5.

3.1.2. Gated Convolutions

In order to increase the architecture size under limited resources, a handy modification
to common convolutions is self-gating convolutional layers. This idea was also proposed
in [63], but we use PReLU activations instead of linear units for the gated output units
(linear units resulted in unstable training). The characteristic of (self-)gating convolutions
is that half the output maps of each convolutional layer is used to element-wise gate
the other half of the output maps (where we use sigmoid non-linearities on the gating
units and PReLUs on the gated units). We found that with self-gating layers, the network’s
performance does not degrade, even though the operation effectively halves the number



Electronics 2021, 10, 1349 8 of 21

of output maps for each layer. The advantage of self-gating is a considerable reduction of
memory, as the successive layer receives only half the input maps compared to non-self-
gating layers. In practice, we use only one layer with twice as many output maps as input
maps, which are then used for self-gating. Formally, we describe the operation with two
different weight matrices as

yl = PReLUl(xl ∗Wl + al) · σ(xl ∗Vl + bl) (2)

where xl ∈ RR×P×T is the input to layer l with R convolutional input maps, yl ∈ RS×P×T

is the resulting self-gated output of layer l with S convolutional output maps (where S = R
in our architecture), Wl , Vl ∈ RR×S×K×K are two weight matrices with quadratic kernels of
size K× K, and al , bl ∈ RS are bias vectors. PReLU are parametric ReLU activations [62],
σ is the sigmoid non-linearity, ∗ is the convolution operator and · is the Hadamard product.
This operation is applied to all convolutional layers Conv6-Conv14 in Table 1.

3.1.3. Frequency Aggregation Filters

The neural network architectures used in audio processing are often derived from
the visual domain. Convolutional neural networks are particularly well-suited for image
processing because, in natural images, close pixels are usually more highly correlated
than pixels which are further apart. Using stacks of convolutional layers, the filter kernels
in the lower layers can learn highly correlated information, and filters in the higher layers
can learn more complex combinations of filter responses of the lower layers. That way,
as a rule of thumb, the higher up the information is in the convolutional hierarchy, the less
correlated information is represented, which results in a hierarchical aggregation of pixel
information that is well-suited for natural images.

Such a correlation assumption may also hold for the time dimension when work-
ing with musical audio data in spectrogram representation. However, it does not hold
in the frequency dimension, where highly correlated spectral energy is potentially spread
over the whole frequency range. In order to comply with this characteristic, it is common
to employ non-rectangular filters in the input layer of a convolutional network stack,
for example, kernels of shape [1, 32] in [64]. Nevertheless, when considering harmonics of
tonal instruments or percussive sounds, correlated information may be so distant in the fre-
quency axis that also with vertical filter kernels, a complete acoustic source may only be
fully represented in the highest layer of the hierarchy. This fact contradicts the useful
characteristic of efficient aggregation of information in convolutional network stacks to
represent the least correlated information (i.e., the most complex patterns) in the highest
layers of the hierarchy.

In order to tackle the problem of highly correlated frequency bins very distant in the fre-
quency dimension, we take a novel approach. As it is not obvious before training which
frequency bins are most correlated in the training data, and it is therefore not clear how to
best design the architecture, we allow the network to learn a useful hierarchy of frequency
aggregation during training (see Figure 2). To that end, in Layer Conv4 (see Table 1), we
use 4096 filter kernels that span the whole frequency dimension and only convolve in time
(i.e., no padding in the frequency dimension). Then, we reshape the output maps (see
Reshape1 in Table 1) so that we again obtain a 2D convolutional architecture and let the net-
work learn which filter kernels are most correlated, that is, in what layer of the hierarchy
which filter responses need to be brought together (throughout layers Conv5–Conv14).
In the generator G, Reshape2 reshapes back to 4096 feature maps and DeConv4 inverts
the frequency aggregation.
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Figure 2. Schematic depiction of the Frequency Aggregation module for one time-frame. The frame is filtered with 4096
kernels resulting in filter responses of size 4096× 1 (Conv4 in Table 1). By reshaping, the responses are then separated into
32 groups (of size 128 each) and re-combined again through a stack of dilated convolutions (Conv5–Conv14 in Table 1).

3.2. Training Procedure

Each model is trained for 40k iterations and a batch size of 12, which takes about 2 days
on two NVIDIA Titan RTX with 24 GB memory each. We use the ADAM optimizer [65]
with a learning rate of 1× 10−3 and gradient penalty loss to restrict the gradients of D to 1
Lipschitz [66]. We also use a loss term that penalizes the magnitudes of the output of D
for real input data, preventing the loss from drifting. Furthermore, He’s initialization is
performed for all the layers in the architecture [62].

3.2.1. Preventing Mode Collapse

We found that the Generator G tends to ignore the input noise z. This may be because
G is densely conditioned on x, and the output variability in the data is limited given an
input with a specific characteristic. In order to prevent such a mode collapse, to update
G during training, we define an additional cost term which is maximal when the noise
input to G does not influence the output of G. To that end, for a fixed yi, we compute
the ratio between the Euclidean distance of two arbitrary input noise vectors {zi, zj},
and the distances between the corresponding frequency profiles (summing over the time
axis) and the rhythm profiles (summing over the frequency axis) of the output magnitude
spectrogram of G, resulting in loss Lfreq and Lrhyt, respectively:

Lprofile =
ϑ ‖zi − zj‖∥∥∥∥dᵀ P̂◦

1
2

zi − dᵀ P̂◦
1
2

zj

∥∥∥∥p

p

(3)

where P̂◦
1
2

zi is the Hadamard root of the power spectrum of the output of G for input noise
vector zi, d is a column vector of 1s for the frequency profiles (resulting in the loss Lfreq)
and a row vector of 1s for the rhythm profiles (resulting in Lrhyt). The scalar ϑ controls
the strength of the regularization, p = 1.3 for frequency profiles and p = 1.6 for rhythm
profiles in our experiments.

In practice, for each conditional input yi to G (i.e., each instance with index i in a batch),
we compute two outputs G(xk, {zi, zj}k) using randomly sampled {zi, zj}k ∼ N (0, I),
and use those outputs to compute Lprofile, as well as the common gradient update of G.
Note that in order to minimize Lprofile, G could simply learn to introduce huge changes
in its output when the input noise z changes. However, in practice, this is prevented
by the Wasserstein loss, which introduces a strong bias towards plausible (i.e., obeying
the data distribution) outputs of G. Therefore, Lprofile is effective in pushing the generations
of G away from deterministic outputs while the overall training process remains stable.
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3.3. Data

The model is trained on pairs of audio data, where one part is the MP3 version,
and the other part is a high-quality (44.1 kHz) version of the signal. We use a dataset of
approximately 64 h of Nr 1 songs of the U.S. charts between 1950 and 2020. The high-
quality data is then compressed to 16 kbit/s, 32 kbit/s and 64 kbit/s mono MP3 using
the LAME MP3 codec, version 3.100. (https://lame.sourceforge.io/ (accessed on 31 May
2021). The total number of songs is first divided into train, eval, and test sub-sets with
a ratio of 80%, 10%, and 10%, respectively. We then split each of the songs into 4-s-long
segments with 50% overlap for training and validation. For the subjective evaluation (see
Section 3.4.5), we split the songs into segments of 8 seconds.

3.3.1. Data Representation

The main representation used in the proposed method are the complex STFT com-
ponents of the audio data hj,k ∈ CJK, as it has been shown that this representation works
well for audio generation with GANs in [67]. The STFT is computed with a window size
of 2048, and a hop size of 512. In addition, we perform non-linear scaling to all com-
plex components, in order to obtain a scaling which is closer to human perception than
when using the STFT components directly. That is, we transform each complex STFT
coefficient hj,k = aj,k + i bj,k by taking the signed square-root of each of its components
hσ

j,k = σ(aj,k) + i σ(bj,k), where the signed square-root is defined as

σ(r) = sign(r)
√
|r| (4)

3.4. Evaluation

We perform objective and subjective evaluations for the proposed method. The main
goal of the evaluation is to assess the similarity between the reference signals (i.e., the high-
quality signals) and the signal approximations (i.e., MP3 versions of the audio excerpts or
outputs of the proposed model). The objective metrics used include Log-Spectral Distance
(LSD), Mean Squared Error (MSE), Signal-to-Noise Ratio (SNR), Objective Difference Grade
(ODG), and Distortion Index (DI). We also perform a subjective evaluation in the form of
the Mean Opinion Score (MOS), which is described in Section 3.4.5.

3.4.1. Objective Difference Grade and Distortion Index

The Objective Difference Grade (ODG) is a computational approximation to subjec-
tive evaluations (i.e., the subjective difference grade) of users when comparing two signals.
It ranges from 0 to −4, where lower values denote worse similarities between the signals.
The Distortion Index (DI) is a metric that is differently scaled but correlated to the ODG
and can be seen as the amount of distortion between two signals. Both the ODG and DI
are based on a highly non-linear psychoacoustic model, including filtering and masking to
approximate the human auditory perception. They are part of the Perceptual Evaluation of
Audio Quality (PEAQ) ITU-R recommendation (BS.1387-1, last updated 2001) [68]. We use
an openly available implementation of the basic version (as defined in the ITU recommen-
dation) of PEAQ (https://github.com/akinori-ito/peaqb-fast (accessed on 31 May 2021),
including the ODG and Distortion Index (DI). Even though PEAQ was initially designed for
evaluating audio codecs with minimal coding artifacts, we found that the results correlated
well with our perception.

3.4.2. Log-Spectral Distance

The log-spectral distance (LSD) is the Euclidean distance between the log-spectra of
two signals and is invariant to phase information. Here, we calculate the LSD between

https://lame.sourceforge.io/
https://github.com/akinori-ito/peaqb-fast
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the spectrogram of the reference signal and that of the signal approximation. This results
in the equation

LSD =
1
L

L−1

∑
l=0

√√√√ 1
W

W−1

∑
f=0

[
10 log10

P(l, f )
P̂(l, f )

]2

(5)

where P and P̂ are the power spectra of x and x̂, respectively, L is the total number of
frames, and W is the total number of frequency bins.

3.4.3. Mean Squared Error

The LSD described above (see Section 3.4.2) is particularly high when comparing MP3
data with high-quality audio data. This is because it is standard practice found in many
MP3 encoders (including the one we use) to perform a high-cut, removing most frequencies
above a specific cut-off frequency. For values close to zero, log-scaling introduces negative
numbers with very high magnitudes. Therefore, when comparing log-scaled power spectra
of MP3 and PCM, we obtain particularly high distances. This generally favors algorithms
that add frequencies in the upper range (like the proposed method). In this regard, a fairer
comparison is the Mean Squared Error (MSE) between the square-root of the power spectra
P of the two signals:

MSE =
1
L

L−1

∑
l=0

1
W

W−1

∑
f=0

[√
P(l, f )−

√
P̂(l, f )

]2
(6)

3.4.4. Signal-to-Noise Ratio

The signal-to-noise ratio (SNR) measures the ratio between a reference signal and
the approximation residuals. As it is computed in the time domain, it is highly sensitive to
phase information. The SNR is calculated as

SNR = 10 log10
‖s‖2

2

‖s− ŝ‖2
2

(7)

where s is the reference signal, and ŝ is the signal approximation.

3.4.5. Mean Opinion Score

We asked 15 participants (mostly expert listeners) to provide absolute ratings (i.e., no
reference audio excerpts) of the perceptual quality of isolated musical excerpts. The lis-
tening test was performed with random, eight-second-long audio excerpts of the test set.
We presented to the listeners five high-quality audio excerpts, 15 MP3s (5× 16 kbit/s,
5× 32 kbit/s and 5× 64 kbit/s) and 50 restored versions (using 25 stochastic restorations
with random noise z and 25 deterministic restorations). Among these 25 restorations per
model, we restored 10× 16 kbit/s, 10× 32 kbit/s and 5× 64 kbit/s MP3s. All together, this
results in 70 ratings per user.

The participants were asked to give an overall quality score and instructed to consider
both the extent of the audible frequency range and noticeable, annoying artifacts. They
provided their rating using a Likert-scale slider with five quality levels: (1) very bad,
(2) poor, (3) fair, (4) good and (5) excellent). From these results, we computed the Mean
Opinion Score (MOS) [69].

4. Results and Discussion

In the following, we present the results of the performed evaluations. In Section 4.1
we discuss the results of the objective metrics and in Section 4.2 we discuss the subjective
evaluation (i.e., the MUSHRA test and the MOS). Figure 3 provides a visual impression of
the model output by comparing the spectrograms of some high-quality audio segments,
the corresponding MP3 versions, and some restorations.
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(a) (b) (c) (d) (e)

Figure 3. Spectrograms of (a) original audio excerpts, (b) corresponding 32 kbit/s MP3 versions, and (c–e) restorations with different
noise z randomly sampled from N (0, I).

4.1. Objective Evaluation

We tested the method for three different MP3 compression rates (16 kbit/s, 32 kbit/s
and 64 kbit/s) as an input to the generator. Moreover, as stated above, we assumed that
there were multiple valid solutions for an MP3 to be restored with very high compression
rates. This would also mean that when using a stochastic generator, some of all possible
samples should be closer to the original than when only using a deterministic generator.
In order to test this hypothesis, for each compression rate, we train a stochastic generator
(with noise input z) and a deterministic generator (without noise input). Then, for any
input y taken from the test set, we sample 20 times with the corresponding generator using
zi ∼ N (0, I), and for each objective metric, we take the best value of that set. Note that all
objective metrics are computed by comparing the restored data with the original versions.
Therefore, when picking samples to optimize a specific metric, we do not pick the sample
with the best “quality”, but rather the restoration that best approximates the original.

Table 2 and Figure 4 show the results (i.e., the comparison to the high-quality data) for
the stochastic and the deterministic models, and the respective MP3 baselines. For high
compression rates (i.e., 16 kbit/s and 32 kbit/s), the best reconstructions of the stochastic
models generally perform better than the baseline MP3s in most metrics and improve over
the outputs of the deterministic models. This indicates that the facilitation of a stochastic
generator is actually useful for restoration tasks. For some metrics (except LSD), the deter-
ministic models perform on a par with the MP3 baselines. That is reasonable, as there are
many different ways to restore the original version, and it is unlikely that a deterministic
model outputs a close approximation. In Figure 4 the strong violin-shaped forms in the fig-
ures indicate that the restorations form two groups in the ODG and DI metrics. From a
visual inspection of the respective data, it becomes clear that those excerpts in the lower
(worse) groups are without percussion instruments, indicating that the models cannot add
meaningful high-frequency content for things such as singing voice or tonal instruments.
The SNR is always worse for the restorations (compared to the MP3 baselines), which
shows that the phase information is not faithfully regenerated. Given the high variety of
possible phase information in the high-frequency range, particularly for percussive sounds,
this is not surprising, but also does not hamper the perceived audio quality.
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For the 64 kbit/s MP3s, we see that the reconstructions are worse than the MP3 itself,
except in the LSD metric. Note that 64 kbit/s mono MP3s are already close to the original.
The fact that the generator performs worse on these data indicates that in addition to adding
high-frequency content (which is mostly advantageous, as can be seen in the LSD results),
it also introduces some undesirable artifacts in the reconstruction of the MP3 information.

Table 2. Results of objective metrics for stochastic (sto) and deterministic (det) models and MP3
baselines (mp3) for different compression rates (16 kbit/s, 32 kbit/s, 64 kbit/s). Higher values are
better for ODG, DI and SNR; lower values are better for LSD and MSE.

ODG DI LSD MSE SNR

mp3_16k −3.08 −1.67 10.98 0.40 13.69
det_16k −3.12 −1.77 4.15 0.30 8.95
sto_16k −2.80 −1.19 3.72 0.26 9.51

mp3_32k −3.04 −1.56 9.75 0.31 13.67
det_32k −2.99 −1.48 3.83 0.32 7.66
sto_32k −2.74 −1.07 3.75 0.26 9.57

mp3_64k −2.64 −0.86 4.89 0.07 17.85
det_64k −2.95 −1.40 3.54 0.16 12.13
sto_64k −2.74 −1.02 3.59 0.17 11.51
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Figure 4. Cont.
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Figure 4. Violin plots of objective metrics for stochastic (sto) and deterministic (det) models and MP3 baselines (mp3) for different
compression rates (16 kbit/s, 32 kbit/s, 64 kbit/s). Higher values are better for ODG, DI and SNR; lower values are better for LSD
and MSE.

Frequency Profiles

In order to test the influence of the input noise z onto the generator output, we inputted
random MP3 examples and restored them while keeping the noise input fixed. Then, we
calculated the frequency profiles of the resulting outputs by taking the mean over the time
dimension. Figure 5 shows examples of this experiment, which makes it clear that a specific
z consistently causes a characteristic frequency profile over different examples. This is
advantageous when z is chosen manually to control the restoration of an entire song, where
a consistent characteristic is desired throughout the whole song.

4.2. Subjective Evaluation

In this section, we describe our own assessment when listening to the restored audio
excerpts (Section 4.2.1), and then we provide results of the Mean Opinion Score (MOS),
where we evaluate the restorations in a listening test with expert listeners.

4.2.1. Informal Listening

For sound examples of the proposed method, please refer to the accompanying website
(available online: https://sonycslparis.github.io/restoration_mdpi_suppl_mat/ (accessed
on 4 June 2021). When listening to the restored audio excerpts compared to the MP3 ver-
sions, the overall impression was a richer, higher bandwidth sound that could be described
as “opening up”. Additionally, we noticed that the model was able to remove some MP3
artifacts, particularly swirlies, as described in the introduction (see also [4]). It is clearly
audible that the model adds frequency content which got lost in the MP3 compression.
When comparing the restorations directly to the high-quality versions, it is noticeable
that the level of detail in the high frequencies is considerably lower in the restorations.
On closer inspection of the restorations, we could hear that for specific sound events,
the model performed particularly well (i.e., adds convincing high-frequency content and
removes specific compression artifacts), whereas other sources did not show considerable
improvement, and some events tended to cause undesired, audible artifacts.

Among the sound events which generally improved very well are percussive elements
like snare, crash, hi-hat, and cymbal sounds, but also other onsets with steep transients and
non-harmonic high-frequency content, like the strumming of acoustic guitars or sibilants or
plosives (‘s’ and ‘t’) in a singing voice. Additionally, sustained electric guitars underwent
considerable improvement. Note that all these sound types do not possess harmonics, but
instead require the addition of high-frequency noise in the restoration process. Considering
the nature of percussive sounds and the wide variety of sources in the training data, this
is a reasonable outcome. On the one hand, percussive sounds dominate other sources
in the higher frequency range, which constitutes the main difference between MP3 and high-

https://sonycslparis.github.io/restoration_mdpi_suppl_mat/
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quality versions of the audio excerpts. On the other hand, harmonic sources are extremely
varied, and their harmonics are of different characteristics. In addition, harmonics are
rarely found above 10 kHz, which is the range in which the critic can best determine
the difference between MP3 and high-quality audio signals.
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Figure 5. Frequency profiles of 50 random four-second-long excerpts from the test set (in 32 kbit/s) for different random
input noise vectors z. The blue lines show the profiles of the individual samples, the green line shows the mean profile of
the excerpts, and the dotted red line shows the mean of the high-quality excerpts for comparison. It becomes clear that z is
strongly correlated with the energy in the upper bands and that a specific z yields a consistent overall characteristic.

Sometimes, the generator adds undesired, sustained noise, mainly when the audio
input is very compressed or when there are rather loud, single tonal instruments or singing
voices. Other undesired artifacts added by the generator are mainly “phantom percus-
sions”, like hi-hats that do not have meaningful rhythmic positions, triggered by events
in the MP3 input that get confused with percussive sources. Additionally, the generator
sometimes overemphasizes ’s’ or ’t’ phonemes of a singing voice. However, in some cases,
percussive sounds not present in the original audio signals are added, which are rhythmi-
cally meaningful. In general, the overall characteristics of the percussion instruments are
often different in the restorations compared to the high-quality versions. This is reasonable,
as the lower frequencies present in the MP3 do not provide information about their charac-
teristic in the higher frequency range, wherefore the characteristic needs to be regenerated
by the model (dependent on the input noise z).

4.2.2. Formal Listening

Table 3 shows the results of the listening test (i.e., MOS ratings). Overall, the orig-
inal and the 64 kbit/s MP3s (mp3_64k) obtained the highest ratings and the restored
64 kbit/s MP3s (det_64k and sto_64k) performed slightly worse. The ratings for the re-
stored 16 kbit/s and 32 kbit/s (det_16k, sto_16k, det_32k and sto_32k) are considerably
better than the MP3 versions (mp3_16k and mp3_32k). This shows that the proposed
restoration process indeed results in better perceived audio quality. However, the random
samples from the stochastic generators were not assessed as better than the outputs of
the deterministic generators (the differences are not significant, as detailed below). We
note that for the high compression rates, we reached only about half the average rating of
the high-quality versions (but about double the rating of the MP3 versions). While overall,
a restored MP3 version possesses a broader frequency range, weak ratings may result from
off-putting artifacts, like the above-mentioned “phantom percussions”. In eight-second-
long excerpts, only one irritating artifact can already lead to a relatively weak rating for
the whole example.

As the variance of the ratings is rather high, we also computed t-tests for statistical
significance comparing responses to the different stimuli. We obtained p-values < 0.05
(<10−5) when comparing det and sto to mp3 for compression rates below 64 kbit/s. Con-
versely, we observed no statistically significant differences between ratings of det and sto
for all compression rates (p-values > 0.15). Responses to original and mp3_64k also show
no statistically significant differences (p-value = 0.49). We also observed no statistical
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significance between responses to mp3_64k and det_64k (p-value = 0.06), whereas there is
a significant difference between ratings of sto_64k and mp3_64k (p-value = 0.04).

Table 3. Mean Opinion Score (MOS) of absolute ratings for different compression rates. We compare
the stochastic (sto) versions against the deterministic baselines (det), the MP3-encoded lower anchors
(mp3) and the original high-quality audio excerpts.

Mean std

original 2.81 0.94

mp3_16k 0.74 0.79
det_16k 1.33 0.82
sto_16k 1.40 0.89

mp3_32k 0.80 0.71
det_32k 1.43 0.84
sto_32k 1.28 0.82

mp3_64k 2.92 0.95
det_64k 2.49 0.86
sto_64k 2.65 0.74

5. Conclusions and Future Work

We presented a Generative Adversarial Network (GAN) architecture for stochastic
restoration of high-quality musical audio signals from highly compressed MP3 versions.
We tested (1) whether the output of the proposed model improves the quality of the MP3
inputs, (2) whether the stochastic generator improves (i.e., can generate samples closer to
the original) over a deterministic generator, and (3) whether the output of the stochastic
variants are generally of higher quality than deterministic baseline models.

Results show that the restorations of the highly compressed MP3 versions (16 kbit/s
and 32 kbit/s) are generally better than the MP3 versions themselves, which is reflected
in a thorough objective evaluation, and confirmed in perceptual tests by human experts.
We also tested weaker compression rates (64 kbit/s mono), where we found that the pro-
posed architecture results in slightly worse results than the MP3 baseline. We could also
show in the objective metrics that a stochastic generator can indeed output samples that are
closer to the original than when using a deterministic generator. However, the perceptual
tests indicate that when drawing random samples from the stochastic generator, the results
are not assessed as significantly better than the results of the deterministic generator.

Due to the wide variety of popular music, the task of generating missing content is very
challenging. However, the proposed models succeeded in adding high-frequency content
for particular sources, resulting in an overall improved perceived quality of the music. Ex-
amples for sources where the model clearly learned to generate meaningful high-frequency
content are percussive elements (i.e., snare, crash, hi-hat and cymbal sounds), sibilants
or plosives (‘s’ and ‘t’) in a singing voice, strummed acoustic guitars and (sustained)
electric guitars.

We expect future improvements when limiting the style of the training data to particu-
lar genres or time periods of production. Additionally, as we use the complex spectrum
directly, the adaption to Complex Networks [58] could improve the results further. In order
to tackle the problem of “phantom percussions” (as described in Section 4.2.1), a beat de-
tection algorithm could provide additional information to the generator so that it is better
informed about the rhythmic structure of the input. For improvement in learning to restore
the harmonics of tonal sources, other representations (e.g., Magnitude and Instantaneous
Frequencies (Mag-IF) [70]) or a different scaling (e.g., Mel-scaled spectrograms) could be
tested for the input and output of the generator.
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