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Abstract: This paper presents a new indirect tire pressure monitoring system (TPMS) based on
adaptive extended Kalman filtering with unknown input (AEKF-UI) estimation of vehicle suspension
systems. The suggested methodology is based on the explicit correlation between tire pressure
and tire stiffness and is available in real time. AEKF-UI is used to simultaneously estimate the
time-varying parameter (tire stiffness) of vehicle suspension systems and the road roughness using
an unknown input estimator. Simulation studies demonstrate that the proposed algorithm can
simultaneously estimate tire stiffness (i.e., tire inflation pressure) variation and unknown road
roughness input. The feasibility and effectiveness of the proposed estimation algorithm are verified
through a laboratory-level experiment. This study offers a potential application for an alternative
indirect TPMS and the estimation of unknown road roughness used for automotive controller design.

Keywords: adaptive extended Kalman filter; sensor fusion; time-varying parameter estimation; tire
stiffness; tire pressure monitoring system; unknown road roughness input

1. Introduction

Tire pressure can significantly affect vehicle stability and fuel consumption. There-
fore, the electronic tire pressure monitoring system (TPMS) used to monitor tire inflation
pressure (nominally 32–35 psi), is rapidly becoming an essential electronic system in most
vehicles. The National Highway Transport Safety Administration (NHTSA) started investi-
gation on the implementation of tire pressure warning systems in vehicles and stipulated
that since 2008, all passenger cars and trucks manufactured in or imported into the United
States are required to be equipped with TPMS. For every 0.2 bar under normal inflation
levels, fuel consumption can increase and the tire lifetime can decrease by 20% [1]. Fur-
thermore, a lower tire pressure significantly affects pavement damage and decreases the
fatigue life of the asphalt surface layers by up to 200% and 300%, respectively [2]. Therefore,
TPMS is required not only for vehicle performance, including safety, ride quality and fuel
economy, but also for pavement maintenance.

There are two classes of TPMS: direct and indirect. Direct tire pressure monitoring
systems have physical pressure sensors mounted on the rim of each tire. An on-board
radio-frequency receiver communicates with the TPMS unit and accurately displays the
real-time tire pressure. This direct-type TPMS is used in the majority of vehicles available
on the market today owing to its high precision. Many researchers have attempted to
improve the performance of TPMS, with a primary focus on the use of robust pressure
sensor, antenna design and lower power consumption [3]. However, this approach has
some technical limitations. For example, additional electronic hardware generally includes
an embedded pressure sensor, an analog-to-digital converter, a microcontroller, a wireless
transceiver and a battery management system. Many researchers have attempted energy
harvesting systems to overcome the battery issue in direct TPMS [4,5]. In contrast to
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direct TPMS, indirect TPMS uses software algorithms with existing sensors of the vehicle
(frequently referred to as sensor fusion). For example, the resonant frequency of the wheel
speed can be used to monitor the tire pressure, as it correlates with tire pressure [6,7],
and wheel radius analysis using a sensor fusion technique that receives signals from the
anti-lock brake system has been developed based on the fact that the tire internal pressure
affects the effective rolling radius of the tire. Isermann et al. developed a new indirect
method based on a static nonlinear transformation of wheel speeds [8]. A self-adaptive
nonlinear filter with an optimal finite impulse response (FIR) derivative was designed to
estimate the tire longitudinal stiffness related to the tire pressure [9]. Marton et al. studied
frequency analysis-based tire pressure monitoring [10]. However, although these indirect
TPMS increases the inherent advantages, such as no requirement for additional pressure
sensor implementations, and have shown promising results, there are no commercialized
products based on indirect TPMS to date because there is still room for improvement in
terms of accuracy and reliability.

Therefore, the main objective of this study is to explore a new TPMS aimed at ad-
dressing the abovementioned issues of existing indirect TPMS. To achieve this research
goal, adaptive extended Kalman filtering with unknown input (AEKF-UI) estimation of
vehicle suspension systems is proposed for the new indirect-type TPMS in this study.
After estimating the time-varying parameter of tire stiffness, the linear static relationship
between the tire stiffness and inflation pressure is utilized to indirectly monitor the tire
inflation pressure, as shown in Figure 1. While a vehicle drives on a road, the road acts as
an unknown disturbance input to the vehicle suspension system. Thus, it is necessary to
simultaneously estimate unknown road roughness input. In this study, road roughness can
be obtained through the proposed algorithm. Compared with current indirect TPMS, the
proposed system can simultaneously monitor the tire pressure (after estimating the tire
stiffness) and estimate the unknown road roughness input. This is one of the advantages
of the proposed method, because the measurement of road roughness is significant for
understanding vehicle dynamics and for designing automotive control systems, but is
typically challenging [11]. Furthermore, the proposed algorithm is more accurate and
reliable because it is based on vehicle vertical dynamics, whereas most previous indirect
TPMS methods suffer from inaccuracy due to the absence of a proper vehicle dynamic
model. The quarter-car suspension model and the static relationship between the tire
stiffness and inflation pressure are described in Section 2. The proposed algorithm and
forgetting factor adjustment are described in Section 3. The simulation and experimental
validation are presented in Sections 4 and 5, respectively.
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Figure 1. Overview of new indirect TPMS enabled by adaptive extended Kalman filtering of vehicle
suspension systems.

2. Quarter-Car Suspension System

Various vehicle models have been developed for different purposes. Each model’s
suitability depends on the performance evaluation criteria [12,13]. The quarter-car sus-
pension model is designed in a two degree of freedom manner and primarily focuses
on the behavior of the sprung mass (the mass of the vehicle chassis) and the unsprung
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mass (the mass of a single wheel, tire and shock absorber), while the tire is modeled as a
linear spring (i.e., tire stiffness) in series with an unspring mass, as illustrated in Figure 2.
This model is widely used in various studies to simplify the complexity of algorithms as
much as possible while ensuring critical performance [14]. The fundamental assumption
of a linear quarter-car model is to neglect the complex linkage effects, whereas a practical
suspension system is more complicated from a kinematic point of view [15]. Hence, there is
an inevitable model–reality mismatch. Nonetheless, the quarter-car model greatly reduces
the complexity of the system, thereby being highly effective for embedded systems as
compared with higher-order suspension models [16]. Due to these compelling advantages,
many researchers have adopted a quarter-car suspension model for analyzing suspension
performance or control and the passive-type quarter-car suspension model is utilized
in this study. Road roughness (xr) acts as an unknown input to be either measured or
estimated. In this study, the unknown road input is simultaneously estimated by the
proposed algorithm.
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Figure 2. Schematic of quarter-car suspension system consisting of two primary masses (sprung
and unsprung).

2.1. State-Space Model of Quarter-Car Suspension Systems

Based on the quarter-car suspension model, the governing equations of a quarter-car
suspension model are derived as follows:

mb
..
xb + cs(

.
xb −

.
xw) + ks(xb − xw) = 0

mw
..
xw + cs(

.
xw −

.
xb) + ks(xw − xb) + ktxw = ktxr

(1)

In this study, the unknown time-varying parameter (i.e., tire stiffness) is considered as a
state variable and augmented into a state vector such that the equation can be transformed
into a nonlinear state equation. Equation (1) can then be expressed by the following
nonlinear equation of motion:

x =
[
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.
xb xw

.
xw kt

]T
=
[
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]T
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(2)
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] (3)
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where xb and xw are the sprung and unsprung mass displacement, respectively; the road
roughness (profile elevation) xr is an unknown input for the system; mb and mw denote
the sprung and unsprung masses, respectively. Note that the design of extended Kalman
filtering is required because two state variables (x5 and x3) in (3) are coupled (nonlinear).
The suspension system is described by a linear spring of stiffness ks and a linear damper
with a damping constant cs. The pneumatic tire is modeled by a linear spring of stiffness
kt. The vertical tire stiffness kt is the unknown parameter, which is modeled as the state
variable for random walk model [17]. This state-space model can be represented as a
global structure

.
x = f (x, u∗, w)
y = h(x, u∗, v)

(4)

where x is the state variable vector defined in (3); w is the process noise; v is the mea-
surement noise; f is the system function; u* is the unknown input for the system; h is the
output function; y is the measurable output;

..
xb and

..
xw are the sprung and unsprung mass

accelerations, respectively. These acceleration signals can be acquired from the controller
area network (CAN) bus, which is the central nervous system of a modern vehicle, upon
which the majority of intra-vehicular communication takes place [18,19].

2.2. Relationship between Tire Stiffness and Inflation Pressure

The key assumption of the proposed indirect TPMS is that it uses a linear relationship
between the tire stiffness and the pressure. To validate the assumption, the vertical tire
stiffness with the different tire pressures was measured using a tire test equipment (Flat-
trac CT plus, MTS® system). Under the normal operation conditions (150 kPa~300 kPa),
the relationship between the tire vertical stiffness and pressure exhibited linear charac-
teristics. Typically, a vehicle tire possesses viscoelastic characteristics. However, this has
been neglected in this study because the quarter-car suspension model-based TPMS is
operated in response to transient inputs [20]. A commercial tire for mid-size passenger
cars (type 225/45R17W, Hankook Tire) was used for the experiment. The measurements
were recorded five times at different tire pressures and then averaged, as shown in Table 1.
The measured vertical tire stiffness was linearly proportional to the internal tire pressure,
as shown in Figure 3. The sensitivity curve was estimated using the following regression
(curve fitting) formula (R2 = 0.998)

y = 713.91x + 60880 (5)

where y denotes the tire stiffness kt (N/m) and x denotes the tire inflation pressure (kPa).

Table 1. Measurement of tire vertical stiffness with different pressure.

Pressure (psi) Pressure (kPa) Stiffness (N/m)

27 186.2 193,780
31 213.7 213,450
35 241.3 233,350
39 268.9 252,960
43 296.5 272,440
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3. Adaptive Extended Kalman Filter with Unknown Input Estimation
3.1. Overview of EKF Algorithm with Unknown Input Estimation

The terms “dynamic state” and “parameter estimation” can be traced back to the 1970s
when Kalman filtering techniques were applied to improve the computational performance
of the traditional state estimation process. System modeling and identification methods
for nonlinear systems were developed using the extended Kalman filter (EKF). The EKF
is an effective means of state and unknown parameter estimation. EKF algorithms can
be derived from conventional Kalman filters [21,22]. Yang et al. proposed an extended
Kalman filter with unknown input (EKF-UI) to estimate unknown earthquakes for health
monitoring of structural systems in the field of civil engineering [23]. The derivation of the
EKF-UI is briefly explained as follows:

.
x(k) =

x(k)− x(k− 1)
∆t

⇒ x(k) =
.
x(k)∆t + x(k− 1) (6)

where ∆t is the time step; and k and k − 1 indicate the time instant at t = k∆t and t = (k −
1)∆t, respectively. Replacing (2) by (6) yields

x(k) = x(k− 1) + ∆t · f (x, u∗, w) (7)

Equation (7) can be expressed by a different notation as follows:

xk = ∆t · f (x, u∗, w) + xk−1 (8)

Equation (8) then becomes the global discrete-time equation as follows:{
xk = fk−1(xk−1, u∗k−1, wk−1)

yk = hk(xk, u∗k , vk)
(9)

where xk ∈ Rn×1 is the system state vector, yk ∈ Rm×1 is the measured variable vector,
u∗k ∈ R1×1 is the unknown input vector, wk ∈ Rn×1 is the process noise; and vk ∈ Rm×1

is the measurement noise vector. It is assumed that the measured sprung mass and the
unsprung mass acceleration are sampled at the exact time instant k · T(k = 0, 1, 2 · · · ).

E[wkwT
j ] = Qk · δkj (10)

E[vkvT
j ] = Rk · δkj (11)
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where δk and E[·] denote the Kronecker delta and the expected value operator, respectively.
{wk} and {vk} denote sequences of uncorrelated Gaussian random vectors with zero mean;
Qk and Rk represent covariance matrices. The discrete-time EKF-UI algorithm consists of
the following steps:

• Initialization of the filter at k = 0
x̂+0 = E[x0]
û∗0 = E[u∗0 ]

P+
0 = E[(x0 − x̂+0 )(x0 − x̂+0 )

T
]

S0 = E[(u∗0 − û∗0)(u
∗
0 − û∗0)

T ]

(12)

• Prediction stage

Ak−1 =
∂ fk−1

∂x

∣∣∣∣
x̂+k−1

(13)

x̂−k = fk−1(x̂k−1, u∗k−1, 0)
P−k = Ak−1P+

k−1 AT
k−1 + Qk−1

(14)

The superscript “–“ denotes that the estimate is a priori estimate. The prediction stage
then updates the state estimate and the estimation-error covariance.

• Unknown input estimation

Hk =
∂hk
∂x

∣∣∣∣
x̂−k

, D∗k =
∂hk
∂u∗

∣∣∣∣
û∗k

(15)

Kk = P−k HT
k (HkP−k HT

k + Rk)
−1

Sk = [D∗Tk R−1
k (I − HkKk)D∗k ]

−1

û∗k = SkD∗Tk R−1
k (I − HkKk)

×[yk − h(x̂−k , û∗k−1) + D∗û∗k−1]

(16)

Equation (15) represents a partial derivation matrix of hk and (16) represents the Kalman
gain and unknown input estimation. The superscript “+” denotes a posteriori estimate.

• Correction stage

x̂+k = x̂−k + Kk[yk − h(x̂−k , û∗k−1)]

P+
k = [I + KkD∗k SkD∗Tk R−1

k Hk] · (I − Kk Hk)P−k
(17)

Finally, the measurement of the state estimate and estimation-error covariance are
updated using (17).

3.2. Adaptive Extended Kalman Filter with Unknown Input

In this study, AEKF-UI with a forgetting factor is proposed to estimate time-varying
parameters (tire stiffness) because EKF-UI itself cannot estimate time-varying system
parameters. However, a constant forgetting factor does not adaptively weigh the covariance
of all states and optimal filtering cannot be assured. As a result, if the forgetting factor
is low, it has better tracking capability, but is vulnerable to noise contamination. In
contrast, if the forgetting factor is high, it is more robust to noise but has less tracking
proficiency. To overcome this problem, the adaptive fading Kalman filter was proposed
in [24]. When older data from the current estimate are no longer significant due to the
erroneous model associated with parameter uncertainty such as time-varying tire stiffness,
the undesirable effects from the erroneous model can be mitigated by the adaptive fading
Kalman filter [25,26]. In this study, the adaptive forgetting factor technique was employed
to track the time-varying parameters of the vehicle suspension system. To achieve this
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goal, the AEKF-UI should be capable of rejecting the effect of older data from a current
state erroneous model. As the filter estimation relies heavily on the past data, this may
cause the state estimation to diverge. The equations describing the AEKF-UI are identical
to those of the EKF-UI in (4)–(16) except for the forgetting factor in the time propagation
error covariance equation

P−k = λk−1 Ak−1P+
k−1 AT

k−1 + Qk−1, λk ≥ 1 (18)

Consequently, the influence of the latest measured data in the state and parameter
is overweighed and thus divergence is avoided. The performance of the AEKF-UI fully
depends on the selection of the forgetting factor. Therefore, the generation of an optimal
forgetting factor λk is a key problem.

zk = yk − h(x̂−k , û∗k−1) (19)

The residual, zk, is a white Gaussian noise sequence. An arbitrary gain Kk in (16) is
derived from the following covariance of the residual

C0,k = E[zkzT
k ] = HkP−k HT

k + Rk (20)

To find the optimal Kalman gain, the auto-covariance of the residual is first formulated
as follows:

Cj(k) = E[zk+jzT
k ]

= Hk+j Ak+j,k+j−1
×[I − Kk+j−1Hk+j−1] · · · Ak+2,k+1

×[I − Kk+1Hk+1]Ak+1,k
×[P−k HT

k − KkC0,k] ∀j = 1, 2, 3, · · ·

(21)

When (16) and (20) are substituted into (21), Cj,k should be zero, which implies that the
sequence of residuals is uncorrelated. However, in a practical situation, the real covariance
of the residual C0,k will be different from the theoretical one obtained from (16) to (20)
because of the error in the model parameters and noise covariance. Typically, the innovation
covariance is equal to C0,k when a dynamic equation is exact. However, the exact dynamic
equation of a nonlinear stochastic system is not available. Therefore, the estimation error
and the predicted error covariance may increase due to the effect of unknown information.
Thus, Cj,k may not be zero and the forgetting factor should be chosen such that the last
term of Cj,k in (21) for all j = 1,2,3,··· can be zero

P−k HT
k − KkC0,k = 0 (22)

If (22) holds, then the Kalman gain Kk is optimal. This condition forms the basis for
adaptive filtering algorithms. The term C0,k in (22) is computed not from (13)–(17) and (20),
but from the measured data. Tk and gλ,k are also defined as follows:

Tk = P−k HT
k − KkC0,k (23)

gλ,k =
1
2

n

∑
i=1

m

∑
j=1

T2
ij,k (24)

The optimality of the Kalman filter can be determined by (24) and T2
ij,k is (i,j) the

element of Tk. A smaller gk implies that the Kalman gain becomes more optimal. Hence,
the forgetting factor (λk) should be chosen to minimize gk.

3.3. Forgetting Factor Update

Real-time system identification, least-square estimation (LSE) [26], extended Kalman
filter [27] and Monte Carlo filter [28] can be used to identify system parameters. However,
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it is difficult to estimate time-varying parameters using these methods because they cannot
deal with abrupt parameter changes. Different techniques based on the LSE approach have
been proposed to overcome this issue using a constant forgetting factor [29]. As mentioned
above, the constant forgetting factor approach has a trade-off between tracking ability and
robustness to noise. The forgetting factor should be adaptively updated to identify and
track a time-varying parameter based on the following equation:

λl+1
k = λl

k + ϕ
∂gl

λ,k

∂λl
k
∀l = 0, 1, 2, · · · (25)

where the subscript k represents the time series; the superscript l represents the iteration
times in a time instant; and ϕ is the step length (learning rate) in the gradient descent
method. At the p-th iteration, if the following condition holds,∣∣∣λp

k − λ
p
k−1

∣∣∣ < ε (26)

The iteration is terminated and the optimal forgetting factor is determined by

λk = max
{

1, λ
p
k

}
(27)

However, the iterative computation method fails to achieve an explicit formula for
the calculation of λk and it is difficult to implement a real-time process. In this study, a
one-step AEKF-UI algorithm was employed to resolve this computational issue. Assuming
that Qk, Rk and Po are positive definite and that the measurement matrix Hk is full rank,
the optimal forgetting factor can be obtained by

λk = max{1, trace[Nk]/trace[Mk]} (28)

where
Mk = Hk Ak,k−1P+

k−1 AT
k,k−1HT

k (29)

Nk = C0,k − HkQk−1HT
k − Rk (30)

The forgetting factor can then be estimated using the following three recursive equa-
tions with initial conditions G1,0 = 0 and G2,0 = 0 :

C0,k = G1,k/G2,k (31)

G1,k = G1,k−1/λk−1 + zkzT
k (32)

G2,k = G2,k−1/λk−1 + 1 (33)

Substituting (16) into the optimality condition in (22) yields

P−k HT
k ×

{
I − [HkP−k HT

k + Rk]
−1

C0,k

}
= 0 (34)

HkP−k HT
k = C0,k − Rk (35)

Note that (35) implies that the optimality condition in (22) is equivalent to (20). Substi-
tuting (18) into (35) yields

λk Hk Ak,k−1P+
k−1 AT

k,k−1HT
k

= C0,k − HkQk−1HT
k − Rk

(36)

Simplifying (36) from (29) and (30) yields

λk I = Nk M−1
k , λk ≥ 1 (37)
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Equation (28) can then be obtained by taking traces on both sides of (37). The AEKF-
UI algorithm uses the variable weighting approach to compensate for the model error,
which can lead to an improvement in both optimality and convergence. Furthermore,
the proposed approach is efficient because of one-step forgetting factor update and has a
moderate computational burden; therefore, it is convenient to implement for industrial
applications. The overall flowchart of the AEKF-UI algorithm is shown in Figure 4.
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4. Simulation of AKEF-UI Algorithm

The simulation of the quarter-car suspension model was performed with the parame-
ters listed in Table 2. In the embedded MATLAB function block, the signal xr is used as
an unknown road roughness input. According to the international roughness index (IRI),
the road classification is based on different levels of its power spectral density function.
In this study, the measured road roughness [30] was used to compare the estimated road
roughness and evaluate its estimation performance. Figure 5 shows the road roughness
input and its power spectral density function using Welch’s method regressed by a slope
of −2.14, which is close to the typical value (−2) of the smooth road roughness classified
by IRI. Owing to the road input excitation, the vibration of the vehicle generated two
acceleration signals (

..
xb and

..
xw) assumed to be measurable outputs in the simulation. The

tire pressure drop scenario was set to suddenly decrease from 241.3 kPa (35 psi, normal) to
137.9 kPa (20 psi, abnormal) for 2.5 s (i.e., slew rate limited reference input) to imitate the
under-inflated tire status, as shown in Figure 6. The vehicle was also assumed to be driven
at a speed of 20 km/h and the simulation time was 40 s. The initial condition for state
variable is set to be x0 =

[
0 0 0 0 220000

]T and the initial covariance matrix is set
to be P0 = diag(1, 1, 1, 1, 105). The tuning of process and measurement noise covariance
matrices in the random walk model is a critical step for Kalman filter algorithms [31]. The
measurement noise covariance matrix is then tuned as to be Qk = 10−10 · I5×5 whereas the
measurement noise covariance matrix is set to be constant Rk = 0.5 · I2×2.
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Table 2. Parameters for the simulation of the quarter-car suspension model and AEKF-UI.

Symbol Parameters Value

mb Sprung mass 240.8 kg
mw Unsprung mass 56.9 kg
cs Damping coefficient 925.8 N·s/m
ks Suspension spring constant 29114 N/m
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The simulation results of the tire stiffness estimation are presented in Figure 7. The
estimated tire stiffness by AEKF-UI shows a good transient response without significant
delay in response to a sudden pressure drop whereas the EKF-UI is not capable of monitor-
ing the sudden pressure drop. Because the goal of a TPMS is to prevent traffic accidents
and increased tire rolling resistance due to under-inflated tires through early recognition of
a lower tire pressure (abnormal) than threshold pressure (i.e., 30 psi, normal) of the tires,
this quick transient behavior is sufficient for monitoring the sudden drop of tire pressure.
In this study, the performance index of root mean square error (RMSE) is used to evaluate
the tracking performance as follows [31]:

RMSE =

√√√√ 1
N

N

∑
k=1

(p(k)− p̂(k))2 =

√√√√ 1
N

N

∑
k=1

e(k)2 (38)

where N, p(k) and p̂(k) are the length of simulation time instants, true pressure and indirect
pressure estimation calculated from tire stiffness estimation using (5), respectively. e(k) is
the estimation error. The proposed algorithm can successfully track the tire stiffness with
small tracking error (RMSE = 12.96), as shown in Figure 7c, whereas the EKF-UI fails to
track the pressure, as shown in Figure 7a. The forgetting factor and error covariance of tire
stiffness estimation were also adaptively updated in the neighborhood of pressure drop, as
shown in Figure 7b,d. The proposed algorithm also simultaneously estimates the unknown
road roughness input, as shown in Figure 8. Unlike most previous TPMS, AEKF-UI can
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simultaneously estimate the time-varying parameter (tire stiffness) of vehicle suspension
systems and the unknown road roughness input.
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Figure 7. Simulation result of tire stiffness estimation; (a) responses of time-varying tire pressure to
slew rate limited input (pressure drop), (b) time evolution of the forgetting factor (inset, detail around
pressure change), (c) estimation error (AEKF−UI) and (d) convergence history of error covariance.

Various tire pressure change scenarios were applied to the simulation model to inves-
tigate the effectiveness of the proposed algorithm. These pressure change scenarios allow
the evaluation of the accuracy of the proposed algorithm in estimating the parameter change
under the same conditions such as process and measurement noise covariance matrices. The
further pressure drop was set to be decreased from 241.3 kPa to 41.4 kPa for 2.5 s, as shown in
Figure 9a. For arbitrary pressure change scenarios, the pressure starts to drop from 241.3 kPa
to 138 kPa and recovered to 195 kPa, as shown in Figure 9b. If an active tire inflation system
using a pneumatic pump is employed, this pressure change can be a potential pressure change
scenario. Similar to Figure 7, the estimated tire stiffness and desired tire pressure show good
agreement with small RMSE (23.21 for Figure 9a and 18.93 for Figure 9b).
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Figure 9. Simulation result of tire stiffness estimation with respect to different pressure drop scenarios;
(a,c) time response of time-varying tire pressure to slew rate limited input (241.3 kPa→ 41.4 kPa)
and (b,d) time response for arbitrary pressure change (241.3 kPa→ 138 kPa→ 195 kPa).

In general, the Kalman filter is robust against mismatched process noise covariance
due to parameter uncertainty [32,33]. Thus, the tire stiffness response of the quarter-car
suspension model with variable sprung mass was examined to investigate the robustness
of the proposed algorithm, because the variable sprung mass depends on the number of
passengers and one of the significant model uncertainties (i.e., mismatched process noise).
The nominal sprung mass of the suspension model (240 kg) was perturbed by−8% (220 kg)
and 8% (260 kg), respectively, as shown in Figure 10a. The estimated tire stiffness and actual
pressure input show good agreement. The simulation results show a good robustness
against the model uncertainty such as the variation of sprung mass because the estimation
error shows no significant changes, as listed in Table 3. Because of the P-adaptation, the
magnitudes of the forgetting factor and error covariance for the perturbed sprung mass
are more peaked compared to nominal (240 kg). The adaptive forgetting factor also allows
the compensation of model parameter uncertainty due to variable sprung mass. The peak
magnitude of error covariance histories is also closely related to the RMSE.

Table 3. Parameters for the simulation of the quarter-car suspension model and AEKF-UI.

Mass (kg) RMSE Relative Error to Nominal

220 17.57 35%
240 (nominal) 12.96 -

260 13.31 2.7%



Electronics 2021, 10, 1359 13 of 19

Electronics 2021, 10, x FOR PEER REVIEW 13 of 20 
 

 

In general, the Kalman filter is robust against mismatched process noise covariance 
due to parameter uncertainty [32,33]. Thus, the tire stiffness response of the quarter-car 
suspension model with variable sprung mass was examined to investigate the robustness 
of the proposed algorithm, because the variable sprung mass depends on the number of 
passengers and one of the significant model uncertainties (i.e., mismatched process noise). 
The nominal sprung mass of the suspension model (240 kg) was perturbed by −8% (220 kg) 
and 8% (260 kg), respectively, as shown in Figure 10a. The estimated tire stiffness and 
actual pressure input show good agreement. The simulation results show a good robust-
ness against the model uncertainty such as the variation of sprung mass because the esti-
mation error shows no significant changes, as listed in Table 3. Because of the P-adapta-
tion, the magnitudes of the forgetting factor and error covariance for the perturbed sprung 
mass are more peaked compared to nominal (240 kg). The adaptive forgetting factor also 
allows the compensation of model parameter uncertainty due to variable sprung mass. 
The peak magnitude of error covariance histories is also closely related to the RMSE. 

Table 3. Parameters for the simulation of the quarter-car suspension model and AEKF-UI. 

Mass (kg) RMSE Relative Error to Nominal 
220 17.57 35% 

240 (nominal) 12.96 - 
260 13.31 2.7% 

 

 
Figure 10. Simulation result of tire stiffness estimation with respect to different sprung masses. (a) 
Tire stiffness response to pressure drop (241.3 kPa → 138 kPa), (b) time evolution of the forgetting 
factor (inset, detail around pressure change), (c) estimation error and (d) convergence history of 
error covariance. 

5. Experimental Validation 
5.1. Proof of Concept Experiment 

As shown in Figure 11a, a laboratory-level test-bed was used as a quarter-car suspen-
sion and AEKF-UI was built in a real-time rapid control prototyping system (dSPACE®). 
The output signals, sprung and unsprung mass acceleration, were then measured by ac-
celerometers and the AEKF-UI algorithm indirectly estimated the tire pressure. As shown 
in Figure 4, the forgetting factor updates the p-adaptation loop to adaptively change the 
error covariance matrix. A pressure sensor (PN2023, IFM electronics®), a ball valve and a 

Figure 10. Simulation result of tire stiffness estimation with respect to different sprung masses.
(a) Tire stiffness response to pressure drop (241.3 kPa→ 138 kPa), (b) time evolution of the forgetting
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error covariance.

5. Experimental Validation
5.1. Proof of Concept Experiment

As shown in Figure 11a, a laboratory-level test-bed was used as a quarter-car suspen-
sion and AEKF-UI was built in a real-time rapid control prototyping system (dSPACE®).
The output signals, sprung and unsprung mass acceleration, were then measured by ac-
celerometers and the AEKF-UI algorithm indirectly estimated the tire pressure. As shown
in Figure 4, the forgetting factor updates the p-adaptation loop to adaptively change the
error covariance matrix. A pressure sensor (PN2023, IFM electronics®), a ball valve and
a pneumatic pump (NPK 09 DC, KNF®) were attached to the backside of the tire rim to
measure and control the tire inflation pressure. The pressure starts to drop from 224 kPa
to 142 kPa for 5 s, which is a rapid change compared to the normal situation, as shown in
Figure 11b. The estimated pressure from the tire stiffness was compared with the actual
pressure measured by a sensor. The random road profile was created by a hydraulic
actuating system as a road input and the random segment is repeated every 0.66 s, which
corresponds to 3.7 m with a vehicle speed assumed as 20 km/h. The linear variable dif-
ferential transformer (LVDT) type position transducer (MTA-5E-5KC, Sensor solutions®)
measured the road roughness profile segment, as shown in Figure 11c. Accelerometers
(352C22, PCB®) were used to measure the sprung and unsprung mass acceleration. The
spring and the damping coefficient were determined experimentally. The vertical load
and displacement were measured to obtain spring stiffness and sinusoidal excitation was
applied to determine the damping coefficient of the hydraulic damper. Based on these
experiments, ks and cs are measured as 20,663 N/m and 435.2 N·s/m, respectively. The
random road roughness for the experiment was generated using a hydraulic excitation
unit. The initial values for the state variables are zero and the initial setup for the tire
stiffness was 200,000 N/m (i.e., x0 =

[
0 0 0 0 200000

]T). The error covariance
matrix of the extended state vector was set to be P0 = diag(1, 1, 1, 1, 10). The covariance
matrices of both the system noise vector w and the measurement noise vector v were set to
be Qk = 10−8 · I5×5 and Rk = 10 · I2×2, respectively.
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Figure 11. Experimental setup for indirect pressure measurements; (a) schematic diagram with
photographs of quarter-car test-bed, (b) measured pressure drop scenario and (c) excited road
roughness input (vehicle speed of 20 km/h).

The estimated tire stiffness using the proposed algorithm and the measured actual
pressure are compared in Figure 12a. When the pressure suddenly drops from 224 kPa
(normal) to 142 kPa (abnormal), the proposed algorithm can track this sudden drop in
the inflation pressure and the tire pressure becomes steady-state (RMSE is 4.22). As the P-
adaptation rule is applied to EKF-UI, the history of the error covariance matrix is examined
to determine whether it has changed adaptively under optimality conditions. The forgetting
factor history and the convergence history of error covariance in tire stiffness estimation
are shown in Figure 12b,d. When the initial tire inflation pressure starts to drop from 38 s
to 43 s, the error covariance is adaptively updated and eventually converges in real time
because of the update of the forgetting factor calculated from (28). Figure 12d shows that
the error covariance is weighted by the forgetting factor. The weighted error covariance
matrix affects the time and measurement update process which results in time-varying
parameter estimation.
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To further investigate the effectiveness of proposed algorithm, different pressure
profiles are employed. The tire pressure is set to be suddenly dropped from 224 kPa to
142 kPa (abnormal) and slowly recovered to 180 kPa by using a pneumatic pump. The
tire pressure started to drop from 5 s to 10 s and slowly increased for 30 s, as shown in
Figure 13a. Another pressure drop scenario was set to be gradually decreased from 220 kPa
to 160 kPa for 30 s (i.e., different slew rate limited reference input) to represent the slow
under-inflated tire status, as shown in Figure 13b. Although the estimated tire stiffness
and desired tire pressure show some differences, these results seem to be acceptable for
monitoring purposes.
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5.2. Robustness Analysis

To evaluate the robustness of the proposed algorithm, the RMSE for different sprung
masses are analyzed and compared. The nominal sprung mass (240 kg) was perturbed
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by 220 kg (−8%) and 260 kg (8%), respectively, which is same as simulation, as shown in
Figure 14. The experimental results show a good robustness against the model uncertainty
such as the variation of sprung mass because the estimation error shows no significant
change, as listed in Table 4.
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Table 4. Comparison of RMSE for different sprung masses.

Mass (kg) RMSE Relative Error to Nominal

220 3.48 9.7%
240 (nominal) 3.17 -

260 3.12 1.5%

To further illustrate the robustness of AEKF-UI, the effect of electrical noise on the
estimation performance was examined [34]. The white Gaussian random noise was added
to the measured acceleration of unsprung mass. Because the random noise (error) can
be fitted to a normal Gaussian distribution with the variance σ2 = 0.248, as shown in
Figure 15b, it was confirmed by white Gaussian noise. An original random noise has
been modified to produce the more contaminated Gaussian noise, as shown in Figure 15d
(σ2 = 0.274) and (f) (σ2 = 0.380). The experimental results show a good robustness against
the Gaussian random noise extracted from acceleration sensor signal, as shown in Figure 16.
The estimation error shows no significant change, as listed in Table 5.
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Figure 16. Experimental results of tire stiffness estimation for three data sets of Gaussian random
noise; (a) response of time-varying tire stiffness to pressure drop with the sprung mass variation,
(b) time evolution of the forgetting factor, (c) indirect pressure estimation error (nominal and per-
turbed sprung mass) and (d) convergence history of the error covariance (inset: detail A, around
pressure change).
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Table 5. Comparison of RMSE for different Gaussian random noises (variances).

Variance RMSE Relative Error to Nominal

0.248 (nominal) 3.02 -
0.274 2.67 11.58%
0.380 4.22 39%

6. Conclusions

In this study, an adaptive extended Kalman filter with unknown input was developed
to estimate not only the tire stiffness for monitoring the inflation tire pressure indirectly but
also the unknown road roughness input of the vehicle suspension system. The proposed
algorithm is robust because it uses a weighting approach to compensate for errors in
the uncertainty model. The analytical recursive solution for the proposed algorithm
and the adaptive adjustment of the forgetting factor were successfully developed. We
demonstrated that it is possible to simultaneously estimate the time-varying parameter
of tire stiffness and unknown input through both simulation and experiment because the
proposed algorithm can pick up a sudden drop in tire inflation pressure (such as when the
pressure is sharply changed from the normal value of 224 kPa to the abnormal value of
142 kPa) and road roughness simultaneously. Although this indirect method of using sensor
fusion technology offers possibilities for vehicular electronic applications for advanced
TPMS and road roughness estimation, some technical issues remain to be further studied.
The future direction of research includes the improvement of the proposed algorithm for the
full-car suspension model (four individual stand-alone TPMS), the extension of the current
proof-of-concept experiment to an in-vehicle test-bed equipped with real suspension
system and the implementation of the proposed TPMS using a cost-effective embedded
microcontroller. In particular, the proposed algorithm based on the simple quarter-car
model should be experimentally evaluated in the future through in-vehicle tests because
the nonlinear characteristics of suspension systems were neglected and approximately
modeled by the linear quarter-car suspension model.
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