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Abstract: This paper presents a tool wear monitoring methodology on the abrasive belt grinding
process using vibration and force signatures on a convolutional neural network (CNN). A belt tool
typically has a random orientation of abrasive grains and grit size variation for coarse or fine material
removal. Degradation of the belt condition is a critical phenomenon that affects the workpiece quality
during grinding. This work focuses on the identifation and the study of force and vibrational signals
taken from sensors along an axis or combination of axes that carry important information of the
contact conditions, i.e., belt wear. Three axes of the two sensors are aligned and labelled as X-axis
(parallel to the direction of the tool during the abrasive process), Y-axis (perpendicular to the direction
of the tool during the abrasive process) and Z-axis (parallel to the direction of the tool during the
retract movement). The grinding process was performed using a customized abrasive belt grinder
attached to a multi-axis robot on a mild-steel workpiece. The vibration and force signals along
three axes (X, Y and Z) were acquired for four discrete sequential belt wear conditions: brand-new,
5-min cycle time, 15-min cycle time, and worn-out. The raw signals that correspond to the sensor
measurement along the different axes were used to supervisedly train a 10-Layer CNN architecture to
distinguish the belt wear states. Different possible combinations within the three axes of the sensors
(X, Y, Z, XY, XZ, YZ and XYZ) were fed as inputs to the CNN model to sort the axis (or combination
of axes) in the order of distinct representation of the belt wear state. The CNN classification results
revealed that the combination of the XZ-axes and YZ-axes of the accelerometer sensor provides more
accurate predictions than other combinations, indicating that the information from the Z-axis of the
accelerometer is significant compared to the other two axes. In addition, the CNN accuracy of the
XY-axes combination of dynamometer outperformed that of other combinations.

Keywords: convolutional neural network; manufacturing; prediction; grinding process; vibration
and force signal
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1. Introduction

In manufacturing industries, the requirements for high-quality precision parts with
complex geometries have been increasing rapidly [1–3]. A workpiece generally goes
through various stages such as machining, finishing and polishing to attain prescribed
design specification and tolerance [4]. The development of science technology, modern con-
trol theory, and advanced machining techniques using multi-axis arm robot has enabled
automated finishing and polishing for curved surfaces to achieve uniform quality.

The quality of surface finish for a complex geometry part in manufacturing processes,
e.g., grinding and polishing, depends primarily on two main variables, i.e., (1) the condition
of belt grinding tool and (2) the combination of operating parameters such as cutting speed,
force, feed rate, polymer wheel hardness and grit size. Monitoring the condition of the
belt grinding tool is necessary because if the tool deterioration is undetected, it will affect
the material removal mechanism and ultimately affect the workpiece’s surface quality.
In addition, the polishing process parameters are also an important aspect as they must be
adaptable during the manufacturing process depending on certain scenarios or condition
such as (1) the curvature shape of the workpiece, (2) the changes in abrasive tool wear
condition, (3) the hardness of the workpiece, which is generally not fully uniform and
(4) the area of the workpiece being manufacture, e.g., at the edges or toward the part center.
This study focuses on predicting belt grinding tool condition from brand-new to wear with
certain manufacturing parameters.

Several studies on tool condition monitoring found in manufacturing process literature
mainly concentrate on the cutting tool and the milling process [5–9], while those on the
belt grinding tool condition and prediction are still limited [10]. The abrasive belt grinding
is a modification of the traditional rigid grinding process. However, the advantage of
belt grinding over traditional grinding lies in its ease to uniformly machine any intricate
geometries for workpieces [11,12]. The polymer wheel backing of the belt grinding tool
on which the belt embedded with abrasive grains rests enables conformability with the
intricate surfaces [13]. Due to the nature of the polymer backing’s compliant, the process is
highly nonlinear and dependent on the process parameters [11,14]. The belt grinding tool
consists of three primary parts, namely the driving mechanism, the polymer wheel and the
belt itself. The driving mechanism generally consists of at least two wheels in which the
belt rotates. The compliance depends primarily on the type and contour of the backing
material, and finally, the belt grit size and grain composition define the longevity and the
material removal characteristics. Apart from the three primary components, the operating
style, such as the applied force, the depth of cut, feeding direction, lubrication, the angle of
feed etc., also affects the process dynamics [15].

Out of all the process parameters, only the belt degradation over the cycle time cannot
be controlled. The degradation of the belt happens with the abrasive grains withering out
or by the grains degenerating resulting in loss of performance of the tool [16]. Several
approaches have been proposed on monitoring tool states in the grinding process using
the sensor data acquired during the process and state of the art machine learning (ML)
algorithm [17–20]. Apart from the tool wear, Deep Learning (DL) based auto-encoder archi-
tecture has been used to perform pixel-level classification of weld seam/bead states [20].
Spectrograms computed from the sound signals with DL method have been used to classify
wear states of the abrasive belt [10]. A multi-sensor fusion method of vision and sound
have been used along with a light gradient boosting machine (LightGBM) algorithm to
monitor in-process grinding material removal rate (MRR) [21,22].

The advancement of the manufacturing process equipped with an intelligent method
opens the possibilities to answer the existing challenges. An alternate monitoring strategy
using CNN and signals input from the accelerometer and force sensor is proposed in
this study for monitoring the belt states. To apply ML and DL methods in tool condition
monitoring, the inputs representing the dynamic condition between the abrasive grinding
tool and the workpiece play an important role. It has been studied that the appearance
of vibration, force and torque variable in the polishing process can be determined as the
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indicator of the tool wear condition [17]. To date, most of tool wear condition monitoring
methods in abrasive processes, such as grinding and polishing, rely on human-interference
inspection and is typically conducted as an offline measurement exercise. The offline
measurements consequently will interrupt the entire grinding and polishing process due
to dismounting and re-mounting procedures of the working coupon to its reference point.
This interruption leads to disruptions in the production line. This paper aims to open the
possibility of using the DL method for belt tool condition prediction and the potential
implementation towards online monitoring systems.

CNN is one of the DL algorithms based on the convolution sliding kernel approach [23].
CNN is usually implemented for classification and prediction methods to avoid unnec-
essary intermediate step of computing sparse representation such as time, frequency
and time-frequency features as they can handle raw data with minimum pre-processing.
The CNN algorithm has also been applied in 1-dimensional (1-D) signal, e.g., audio and
vibration signal, and 2-dimensional (2-D) data, e.g., images. More details of CNN algorithm
is described in Section 2. Specific to the application of CNN in the manufacturing area,
especially in tool condition monitoring, CNN has been applied in tool condition monitoring
such as for end milling [7]. The previous work of the authors in [13] presents the application
of analysis of variance (ANOVA) combined with an adaptive neuro-fuzzy inference system
(ANFIS) to model material removal. The combined ANOVA and ANFIS method is used to
obtain the optimum configuration between the process parameters/variables of abrasive
belt grinding such as RPM, feed, force, rubber hardness and grit size and the stock material
removal rate. In the present work, the CNN method is applied to the vibration and force
signal from a three-axis accelerometer and a three-axis dynamometer collected during the
polishing process to monitor the belt degradation. A new belt grinding tool was used in the
polishing process of the mild-steel workpiece with certain manufacturing parameters until
wear. The workpiece’s polishing process was performed using a customized abrasive belt
grinding attached to a multi-axis arm robot. The vibration and force signals are acquired
from the 4 discrete sequential conditions of the belt grinding tool from new to wear (brand-
new, 5-min cycle time, 15-min cycle time, worn-out) during the polishing process of the
mild-steel workpiece. The ‘5-min cycle time’ and ’15-min cycle time’ mean that the belt is
prepared by polishing continuously for 5 and 15 minutes, respectively. This study also aims
to correlate the vibration and force sensor axes directions with the belt grinding condition.

The paper is organized into 5 Sections. Section 1 briefly reviews the belt degradation,
its influence on surface quality, and the real-time monitoring strategies. Section 2 gives
a brief overview of the CNN architecture used for this work. Section 3 introduces the
robotized belt grinding experimental setup, processing parameters and data acquisition
setup. Section 4 presents and discusses the CNN classification results on the sensor data.
Finally, Section 5 summarizes this investigation’s findings and future works.

2. Materials and Methods
2.1. Convolutional Neural Network (CNN)

CNN is a feed-forward neural network inspired by the brain’s visual cortex and
specializes in processing data with a grid or a sequential structure [24]. CNN is specifically
designed for handling multiple arrays as the input. This initial input process of CNN
is analogous to imitating the eyes to identify images, followed by a training process for
further recognition of the scene [25]. However, to predict well on tricky scenarios, in many
cases CNN must be designed with a more complicated architecture. Even though CNN
takes higher computational time and hardware resources compared to traditional ML
methods (support vector machine (SVM), artificial neural network (ANN) and adaptive
neuro-fuzzy inference system (ANFIS) etc.), they are very efficient in processing raw data
with minimum pre-processing.

CNN’s are well known as a first applied method for tool wear prediction compared to
other DL methods such as recurrent neural network (RNN), gated neural network (GNN)
and long short-term memory (LSTM) [10,11,21,26]. CNN can have different architectures,
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and it depends based on the problem at hand. The model might have different layers such
as VGG-16 (16 layers), LeNet, googleNet (22 layers), AlexNet (8 layers), ResNet (152 lay-
ers), etc., and also can use different transformation such as ReLu (rectified linear unit),
Dropout and batch normalization. The parameters used for the model training are primarily
chosen in such a way as to reduce computational cost and hardware utilization. CNN train-
ing parameters are chosen based on exhaustive search or on trial and error [27,28].

The first modern CNN used by Tavakkoli et al. [29] has a 7-layer structure (excluding
the input layer), namely LeNet-5, which has the following structures C1, S2, C3, S4, C5 and
F6 output. In addition, Zhang et al. [27] reported that several layers in a CNN model are
to be considered for better performance. The following layers on CNN considered in this
work following [27], are as follows:

• The sub-sampling layer is usually used to reduce the dimensions coming from the
input. The sub-sampling layer’s goal is to reduce the number of trainable parameters
needed on CNN, which can speed up the performance of CNN. The speed means
computational time. By optimizing the CNN architecture, the accuracy and compu-
tational time cost could be obtained as fast as possible. The speed also means using
fewer resources in identifying images.

• The convolutional layer works by imitating the properties of the visual cortex of the
brain for studying the features from input images. Filters or kernels trained at this
layer can identify specific shapes. For example, if it is used to study an image, the filter
might learn for edge detection. The following is the equation in the convolution layer:

(f ∗ g)(t) def
=
∫ ∞

−∞
f (τ)g(t− τ)dτ (1)

Equation (1) is a formula to calculate the image filter for each pixel. A detailed
illustration is presented in Figures 1–5, and a summary of all convolution process is shown
in Figure 6.

Figure 1. Binary conversion of feature map 1.

• The loss layer is the output of CNN, which is an important part of the neural network.
This function calculates loss that corresponds to the difference between the model
output and the original ground truth. The magnitude of the loss value determines the
rate of gradient change and weights updation during backpropagation.

• The fully connected layer is found in most neural networks. Fully connected layers
use matrix multiplication to get the output from that layer.

• ReLU layer is used for thresholding or similar to the activation function on neural
network. They bring in non-linearity to the model. The following is the equation in
the ReLU layer max(0,x) function:
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g(x) = ReLU(x) =
{

x , x ≥ 0
0 , x ≤ 0

(2)

g′(x) = ReLU′(x) =
{

1 , x ≥ 0
0 , x ≤ 0

(3)

At this stage, the map feature results will be fed into the search function for the highest
value between x and 0. The architecture of the ReLU layer process is presented in Figure 7.

Figure 2. Binary conversion of feature map 2.

Figure 3. Binary conversion of feature map 3.

• The pooling layer is very similar to the convolutional layer. This operation in the
pooling layer is essential for reducing the spatial size of the feature map. To reduce
computational cost, a dimension reduction process is necessary. This layer is useful for
extracting domain features that are rotational and invariant so that the model training
process becomes more effective. The pooling operations are of many types based on
model performance, namely maximum, average, minimum pooling, etc. An example
of the max-pooling process of feature map 1 to feature map 9 is presented in Figure 8.

• Figure 9 shows how a 2D input image transforms when it passes through series of
a convolutional layer to produce a feature map. The pooling layer is generally used
to reduce the feature map size between convolutions. The pooling method that is
often used in CNN is the max pooling method. In very rare cases averaging pooling is
also used.
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• The flattening layer changes a matrix data form (2D and 3D) into a one-dimensional
array to enter the next layer, typically before the output layer or SoftMax activation.
This layer places all pixel data in one row and makes a connection with the last layer.
An illustration of a 3 × 3 matrix conversion to a one-dimensional matrix is illustrated
in Figure 10.

Figure 4. Binary conversion of feature map 4.

Figure 5. Binary conversion of feature map 25.

The CNN architecture discussed in this section is suitable for solving image classi-
fication, object detection, object location and image segmentation problems. Examples
of case studies in image recognition using CNN typically have three stages: the input,
CNN and output stages. A detailed explanation of the stages of CNN is presented in [30–32].
Figure 11 shows the stages carried out by CNN from the input image, convolutional layer,
pooling layer and flattening layer.
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Figure 6. The architecture of convolutional layer (binary conversion) from feature map 1 to 25.

Figure 7. ReLU layer function applied in convolutional layer process.

Figure 8. Max pooling: (a) feature map 1; (b) feature map 9.
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Figure 9. The architecture of the max-pooling layer.

Figure 10. The architecture of flattening layer.

Figure 11. Step-by-step process of CNN from convolutional layer, pooling layer to flattening layer.
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2.2. CNN Structure Used in the Present Study

The structure of CNN varies depending on the application, for example, the structure
presented in [33]. The details of the CNN architecture to classify belt wear states is pre-
sented in Figure 12. The CNN architecture consists of 10 layers, namely 6 one dimensional
(1D) convolution layer, 1 max-pooling layer, 1 global average pooling layer, 1 drop layer
and 1 fully connected layer. Furthermore, each 1D convolution layer constitutes 200 fil-
ters, in which the filter weights have been initialized with random values before training.
Additionally, the kernel length of size 4 is used in the convolution process between the
signal and filter. At the first stage, the CNN receives the raw time-series 1D signals from
a three-axis dynamometer sensor (X, Y and Z) and a three-axis accelerometer sensor (X,
Y and Z). In the first layer (L1), each raw signal (X, Y and Z) from the dynamometer and
accelerometer sensors are convolved with the filter kernels. Subsequently, the results of
the convolutions at each layer are used as input to the next layers. In the fourth layer, to
reduce the number of inputs, a pooling layer is applied. In this case, the max-pooling is
taken. In the next three layers (L5, L6 and L7), the values from the max-pooling layer are
convolved with the filter kernels. In the eighth layer (L8), in order to reduce the number of
parameters, the global average pooling layer is applied. In this case, all of the values from
each filter were averaged, which results in only one value and turns the total number of
the parameter to 1200 (6 inputs × 200 filters). In the ninth layer, a dropping layer is applied
to prevent overfitting in the training stage. Finally, all of the nodes from the drop layer
is fully connected. In layer 4 (L4), the max-pooling layer was chosen because it helps to
have a high contrast feature map of the resulting convolution in the middle of the feature
engineering process. On the contrary, average pooling was chosen in the last convolution
(L8) to smoothen the feature maps.

Figure 12. CNN model and architecture for 3-axis acceleration and 3-axis force data training and prediction.

3. Experimental Setup

This study employs a 3-axis accelerometer and 3-axis dynamometer sensor signature
to predict the belt wear that affects the polishing quality. The following subsection presents
in detail the experimental polishing setup and data acquisition procedure:
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3.1. Polishing Process Equipment, Sensors and Data Acquisition

The experiments were performed using a multi-axis arm robot mounted with an
abrasive belt grinding setup, as presented in Figure 13. The experimental setup consisted
of ABB 6660-205-193 robot that was primarily used for imparting motion in the grinding
direction. The belt grinder used in this work was electrically powered that can run at
11,000 RPM at no-load condition. The belt grinder could polish and grind with belts
about 8” to 3/4” wide × 18” long. The belt grinder was coupled to a force control present
in the end effector of the ABB robot with the help of a customized bracket. The force
control was closed-looped into the robot controller to ensure the force input from the
operator and imparted force in the normal direction (Z-axis) are equal. Normal direction
is usually preferred to achieve uniform material removal. As far as the experimental
trials, a force of 20 N was applied throughout this study. The experimental conditions
used in this work are listed in Table 1. Four different belt condition representing four
different classes of wear level in this study were prepared beforehand by performing
actual grinding processes at different cycle times, as depicted in Table 2. During the
polishing experiments, one variable output process parameter was the belt wear condition
(four levels). Other process parameters such as feed rate, grinding speed and force control
were maintained at a constant value, as presented in Table 1.

Figure 13. A customized abrasive belt-grinding experiment and sensors position (accelerometer
and dynamometer).

Table 1. Experimental condition.

Parameters Description

Belt type Aluminium oxide with grit size 60
Force control Constant force of 20 N using ATI force sensor

Grinding speed Constant at feed rate of 50 mm/s
Workpiece Mild steel with uniform surface roughness

Contact wheel Shore A Hardness 80
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Table 2. Four states of abrasive belt under monitoring.

Belt No. Abrasive Belt Grinding Label Usage Time (min)

1 Brand-new belt 0
2 5-min cycle time belt 5
3 15-min cycle time belt 15
4 Worn-out belt 30

Kistler 8763A500 triaxial accelerometer sensor was attached near the tension arm of the
electric belt grinder to obtain the vibration signal during polishing (i.e., contact between belt
tool and workpiece), as presented in Figure 13. In addition, Kistler 9254 three-component
dynamometer was placed below the mild-steel workpiece, as shown in Figure 13. NI data
acquisition (DAQ) module and LabVIEW environment were used to acquire vibration
signal in a digitized format with a sampling frequency of 2 kHz. In the case of the
dynamometer, a DAQ device supported by the DEWESoft platform was used to acquire
force signals across normal and tangential directions. The signals corresponding to the
force and accelerometer sensors were synchronized offline.

ABB Robot studio was used to configure and was planned for the tool path. The tool
path planning for the linear run performed in this work has five different zones, A–E,
as presented in Figure 14. The region between A–B was used to align the tool head over the
machining region. Zone B–C was used to attain the force required for grinding. C–D was
the zone where force control is actively applied. Finally, Zone D–E was used to decelerate
the force sensor and robot motion. The whole experiments performed in this study were
carried out in a non-lubricated condition on a mild steel workpiece.

Figure 14. Abrasive tool path on the mild-steel workpiece.

3.2. Vibration and Force Data Acquisition

This paper is an extension work of the previous study that applied ML methods to
sensor signatures [17,18]. The difference to the work reported by Pandiyan et al. [17] is that
they used short-time Fourier transform (STFT) on acoustic emissions signal to detect the
change in contact mechanisms caused by tool wear in abrasive belt grinding. However,
in the present study, CNN methods are developed to predict the wear level of the belt tool
using 3-axes accelerometer and 3-axes dynamometer signatures instead of the acoustic data.
All accelerometer and force sparse features from the 3 axes were used as input data in the
ML method [18]. However, extracting features and feeding them into the ML algorithms is
a two-step procedure and is computationally expensive. In this study, the CNN algorithm
evaluates which axis/axes of the sensor signature(s) are more relevant for classifying
the abrasive belt wear state using raw sensor signals. An example of raw vibration and
force signal from the X-axis sensor direction for different belt tool states, i.e., brand-new,
5-min cycle time, 15-min cycle time and worn-out (from top to bottom) is presented in
Figure 15a,b. For interested readers, a complete raw signals plot of Figure 15 is presented
in [18].
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Figure 15. Raw signals of x-axis sensor direction: (a) vibration and (b) force.

The raw vibration and force signals dataset were acquired with a sampling frequency
of 2 kHz for 3.5 s, resulting in 7000 data points as presented in Figure 15. Prior to the
convolution process, the raw datasets were segmented into a smaller data form. The raw
datasets were reshaped to 200 data points with 10% overlaps. The new 200 data points
were equivalent to a window of 0.1 sec of the sampling frequency of the polishing process.
According to previous works [18], 200 data points can still capture the polishing process’s
dynamic behavior. The pre-processing of the raw dataset produced 64,000 new rows of
datasets for each class and 256,000 new datasets for all four classes combined, i.e., brand-
new, 5-min cycle time, 15-min cycle time and worn-out. These datasets were then divided
into two sets for training and validation. The CNN model computation used 80% of
256,000 datasets (192,000 datasets) as the training set and another 20% of 256,000 datasets
(64,000 datasets) for validation.

A sample of data input signals for the CNN algorithm from three directions (X, Y and
Z-axes) of the accelerometer is presented in Figure 16. Based on the visualization of
the vibration signals corresponding to four different belt conditions, it is evident that
distinguishing them is challenging. An example of force signals from three directions (X,
Y and Z-axes) of the dynamometer is presented in Figure 17. Synonymous to the vibration
signals, differentiating belt conditions visually is also challenging. A detailed illustration
of the data input preparation for the CNN method is presented in Figure 18. As presented
in Figure 18, raw vibration and force data were collected from three axes. The raw data
was then divided further into a smaller sized window for CNN training.
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Figure 16. Vibration signals: (a) X-axis, (b) Y-axis and (c) Z-axis.

Figure 17. Force signals: (a) X-axis, (b) Y-axis and (c) Z-axis.
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Figure 18. Data input preparation for CNN algorithm. The data consist of 3-axes vibration and 3-axes
force signal.

4. Results and Discussion
4.1. CNN Results of Vibration Data

This sub-section provides the CNN classification results of vibration signals from
three categories: (1) single-axis accelerometer (X, Y and Z), (2) double-axes accelerometer
(XY, XZ and YZ) and (3) triple-axes (XYZ).

This study is based on the CNN design, as illustrated in Figure 12 on the accelerometer
sensor data. To provide a better understanding for the classification labels in Table 3
confusion matrix results in Tables 4–6 and Figures 19 and 20, they are renamed as follows
(as presented in Table 2):

• Brand-new as Belt No.1.
• 5-min cycle time as Belt No.2.
• 15-min cycle time as Belt No.3.
• Worn-out as Belt No.4.

4.1.1. Vibration Signal of Single-Axis Accelerometer (X, Y and Z)

As depicted in Table 3a, the CNN classification result in the X-axis indicates that all
796 datasets of the “brand-new” class can be classified correctly without misclassification.
In the “5-min cycle time” class, 796 datasets were classified correctly. However, 2 datasets
were misclassified as “15-min cycle time”, and other 2 datasets were misclassified as “worn-
out”. In the “15-min cycle time” class, all 798 datasets were also successfully classified.
For the “worn-out” class, 793 datasets were classified correctly, and only 1 dataset was
identified as a “15-min cycle time” class.

Additionally, Table 3b shows that 795 datasets of the “brand-new” class corresponding
to the Y-axis can be classified correctly, and 1 dataset was misclassified as a “5-min cycle
time” class. In the “5-min cycle time” class, 798 datasets were classified correctly. However,
2 datasets were extremely misclassified as “worn-out” class. In the “15-min cycle time” class,
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717 datasets were classified correctly. However, 83 datasets were classified incorrectly as
“worn-out” class. The worst classification occurs in the “worn-out” class, where 670 datasets
were classified correctly, but 89 datasets were classified incorrectly as “brand-new” and
16 datasets were identified as “5-min cycle time” class, while other 19 datasets were
misclassified to the “15-min cycle time” class.

Table 3. Training curves and confusion matrix of single-axis vibration data.

Model Accuracy and Loss Confusion Matrix

(a)
Vibration data of

X-axis

(b)
Vibration data of

Y-axis

(c)
Vibration data of

Z-axis

Note: please see Table 2 for detailed information on the classification label.

Table 3c shows CNN results on Z-axis vibrational signals. 790 datasets of “brand new”
class were classified correctly, 1 dataset was incorrectly classified as “5-min cycle time”
class, and 5 datasets were misclassified as “worn-out” class. In the “5-min cycle time” class,
791 datasets were classified correctly, 3 datasets were incorrectly classified as “15-min cycle
time” class, and 6 datasets were incorrectly classified as “worn-out” class. For the “15-min
cycle time” class, 748 datasets were classified correctly, and there were 52 datasets classified
incorrectly as “worn-out” class. Similar to the Table 3b result, the poor classification result
occurred in the “worn-out” class, where class 2 datasets were misclassified as “brand-new”
class, 47 datasets were incorrectly identified as “5-min cycle time”, and 26 datasets were
misclassified as “15-min cycle time” class.
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Table 3 shows the accuracy and loss curves during CNN training using the accelerom-
eter sensor data from X, Y or Z axes. In Table 3, it can be seen that processing 7672 data
for 50 epoch takes 17 to 20 s. When trained with sensors derived from the X-axis of the
accelerometer, the accuracy of the CNN model results in higher accuracy (accuracy: 95.78)
than the other axes (Y-axis, accuracy: 87.47%; Z-axis, accuracy: 89.43%).

Table 4. Training curves and confusion matrix of double-axis vibration data.

Model Accuracy and Loss Confusion Matrix

(a)
Vibration data of

XY-axis

(b)
Vibration data of

XZ-axis

(c)
Vibration data of

YZ-axis

Note: please see Table 2 for detailed information on the classification label.

4.1.2. Vibration Signal of Double-Axis Accelerometer (XY, XZ and YZ)

The sensor data from two axes were combined to examine the dynamic behavior of the
abrasive process. This combined signal is inputted into the CNN algorithm. A confusion
matrix from the CNN model that used two-axis (XY, XZ and YZ) from the accelerometer
sensor is presented in Table 4. Table 4b indicates that the result across XZ-axis shows
higher accuracy with the CNN compared to other combination. Table 4a indicates that
all 796 datasets of “brand-new” can be classified appropriately. Additionally, in the “5-
min cycle time” class, 797 datasets were classified correctly, 1 dataset was misclassified
as “brand-new”, and 2 datasets were misclassified as “15-min cycle time”. For the “15-
min cycle time” class, all 800 datasets were classified correctly. In the “worn-out” class,
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788 datasets were classified correctly, and another 6 datasets were shifted to the “15-min
cycle time” class.

Table 4 shows the accuracy and loss curves during CNN training using two inputs
from sensors with a combination of XY, XZ or YZ inputs. In Table 4, it can be seen that
processing 7672 data with 50 epoch takes 17 to 20 s. When trained with sensors derived
from the XZ-axes of the accelerometer, the accuracy of the CNN model results in higher
accuracy (accuracy: 96.40%) than the other axes (XY-axes, accuracy: 95.06%; YZ-axes,
accuracy: 94.92%).

Table 5. Model accuracy and loss and confusion matrix of single-axis force data.

Model Accuracy and Loss Confusion Matrix

(a)
Force data of X-axis

(b)
Force data of Y-axis

(c)
Force data of Z-axis

Note: please see Table 2 for detailed information on the classification label.

4.1.3. Vibration Signal of Triple-Axis Accelerometer (XYZ)

Figure 19 shows the confusion matrix of the CNN model that used the data from
the three axes of the accelerometer sensor. Figure 19 indicates that 795 datasets of the
“brand-new” class can be classified appropriately, and 1 dataset was misclassified as a
“5-min cycle time” class. For the “5-min cycle time” class, 794 datasets were classified
correctly, 6 datasets were misclassified to the “15-min cycle time” class. In the “15-min
cycle time” class, all 800 datasets were classified correctly. In contrast to the “worn-out”
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class, 765 datasets were classified correctly, and 29 datasets were misclassified as “15-min
cycle time” class.

Figure 19 shows the accuracy and loss model during CNN training using all accelerom-
eter sensor inputs. Figure 8 shows that processing 7672 data with the 50 epochs take 18.2 s.
When trained with sensors derived from the XYZ-axis accelerometer, the accuracy of the
CNN model yields an accuracy of 94.23%.

Table 6. Training curves and confusion matrix of double-axis force data.

Model Accuracy and Loss Confusion Matrix

(a)
Force data of XY-axis

(b)
Force data of XZ-axis

(c)
Force data of YZ-axis

Note: please see Table 2 for detailed information on the classification label.

4.2. CNN Results of Force Signals

This sub-section provides the CNN classification results of force data from three categories:
(1) single-axis (X, Y and Z), (2) double-axis (XY, XZ and YZ) and (3) triple-axis (XYZ).

4.2.1. Force Signal of Single-Axis Dynamometer (X, Y and Z)

This study also utilized the CNN method for the three-axis force data, as presented
in Table 5. The CNN result in the X-axis (Table 5a) indicates that 793 datasets of the
“brand-new” class can be classified appropriately, and 3 datasets were misclassified to
the “5-min cycle time” class. In the “5-min cycle time” class, 797 datasets were classified
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correctly, 3 datasets were identified as “brand-new” class. In the “15-min cycle time” class,
798 datasets were classified correctly, 1 dataset was classified incorrectly to “brand-new”,
and 1 dataset was classified incorrectly as “worn-out”. In the “worn-out” class, 747 datasets
were classified correctly. However, 47 datasets were classified incorrectly to the “15-min
cycle time” class.

Table 5b shows that 794 datasets of the “brand-new” class can be classified, and 2 datasets
were incorrectly classified as “5-min cycle time” class. In the “5-min cycle time” class,
796 datasets were classified correctly, and 4 datasets were identified as “worn-out”. In the
“15-min cycle time” class, 771 datasets were classified correctly, and 29 datasets were classi-
fied incorrectly to the “worn-out” class. Meanwhile, in the “worn-out” class, 764 datasets
were classified correctly, and 30 datasets were classified incorrectly to the “15-min cycle
time” class.

Figure 19. (a) Model accuracy and loss curves; and (b) confusion matrix of triple-axis vibration data (please see Table 2 for
detailed information on classification label).

Figure 20. (a) Model accuracy and loss; and (b) Confusion matrix of triple-axis force data. (Please see Table 2 for detailed
information on the classification label).

Table 5c shows that 794 datasets of the “brand-new” class can be classified correctly.
However, 2 datasets were misclassified as “5-min cycle time” class. In the “5-min cycle
time” class, 798 datasets were classified correctly, and 2 datasets were incorrectly classified
as “15-min cycle time”. In the “15-min cycle time” class, 788 datasets were classified
correctly. However, 12 datasets were classified incorrectly to the “worn-out” class. In the
“worn-out” class, 785 datasets were classified correctly, and 9 datasets were misclassified
as “15-min cycle time” class.

Table 5 shows the accuracy and loss curves during CNN training using force data input
from X, Y or Z axes. In Table 5, it can be seen that processing 7672 data with 50 epochs took
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nearly 17 to 20 s. When trained with sensors derived from the X-axis of the dynamometer,
the accuracy of the CNN model resulted in higher accuracy (accuracy: 93.07%) than the
other axes (Y-axis, accuracy: 92.14%; Z-axis, accuracy: 92.94%).

4.2.2. Force Signal of Double-Axis Dynamometer (XY, XZ and YZ)

The force signature across two directions were combined to examine the dynamic
behavior during the abrasive process. This combined signal was input into the CNN algo-
rithm. The confusion matrices from the CNN model that used two-axis (XY, XZ and YZ) is
presented in Table 6. According to the CNN results presented in Table 6, Table 6a indicates
that the CNN model results show highest than other combinations. In detail, Table 6a
indicates that all 796 datasets of the “brand-new” class can be classified perfectly. For the
“5-min cycle time” class, 797 datasets were classified correctly, 1 dataset was identified
as “brand-new” class, and 2 datasets were incorrectly classified as “15-min cycle time”
class. In the “used” class, all 800 datasets were also classified perfectly. Furthermore, in the
“worn-out” class, 788 datasets were classified correctly, and 6 datasets were incorrectly
identified as “15-min cycle time” class.

Table 6 shows the accuracy and loss curves during CNN training with inputs from
axes combinations such as of XY, XZ or YZ. In Table 6, it can be seen that processing
7672 data with the number of 50 epochs takes 17 to 20 s. When trained with sensors derived
from the XY-axis of the dynamometer, the accuracy of the CNN model results in higher
accuracy (accuracy: 99.80%) than the other axes (XZ-axes, accuracy: 95.53%; YZ-axes,
accuracy: 96.47%).

4.2.3. Force Signal of Triple-Axis Dynamometer (XYZ)

Model accuracy and the confusion matrix from the CNN model that used tree axis
from dynamometer sensor is presented in Figure 20. Figure 20 indicates that 793 datasets
of “brand-new” can be classified appropriately, and three datasets were misclassified to
the “5-min cycle time” class. Additionally, in the “5-min cycle time” class, 797 datasets
were classified correctly, 2 datasets were misclassified to “brand-new” class and 1 dataset
was misclassified to “15-min cycle time” class. Moreover, in the “15-min cycle time” class,
798 datasets were classified correctly and 2 datasets were incorrectly classified to “worn-
out” class. For the “worn-out” class, 790 datasets were classified correctly and 4 datasets
were misclassified to the “15-min cycle time” class.

Figure 20 shows the accuracy and loss curves during CNN model training using all
dynamometer sensor inputs. In Figure 9, it can be seen that processing 7672 data with the
number of 50 epochs takes 18.2 s. When trained with sensors derived from the XYZ-axis
dynamometer, the accuracy of the CNN model yields an accuracy of 96.34%.

4.3. Statistical Measurement of CNN Prediction and Classification
4.3.1. Accelerometer (Vibration) Data

This section provides a statistical summary of CNN prediction and classification of
abrasive belt grinding condition from brand-new to worn-out condition. The statistical
summary of metrics such as training time, testing time, accuracy on test data and loss on
test data.

Training Time

Table 7 shows the summary of ‘training time’ for the CNN model. Each combination
of three-axis accelerometer sensor showed different time required to train the model.
Table 7 indicates that a combination of the XY axes of the accelerometer sensor shows less
‘training time’, i.e., 14.71 ± 0.51 s than other axis combination.
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Table 7. CNN summary of ‘training time’ (sec).

Data No.# X Y Z XY XZ YZ XYZ

1 20.21 18.29 17.98 31.11 27.91 16.06 18.20
2 18.05 18.10 17.91 29.11 27.99 14.60 18.00
3 18.18 18.06 18.16 29.09 27.97 14.57 18.57
4 18.27 17.97 18.02 29.64 27.82 15.03 18.37
5 19.23 18.12 18.09 29.00 28.00 14.64 18.43
6 18.31 18.08 18.10 29.07 28.04 14.30 18.14
7 18.45 18.19 18.40 29.06 27.69 14.46 18.23
8 18.16 17.94 18.03 29.26 27.69 14.43 18.65
9 17.97 18.35 17.91 29.07 27.81 14.47 18.35

10 18.21 17.88 18.03 28.97 27.76 14.56 18.53

A box plot of the ‘training time’ of the CNN model for a different accelerometer axis
direction is presented in Figure 21. All of the model’s combination input showed that
the standard deviation value is small (Q3-Med), as presented in Table 7. This is indicated
that the proposed architecture model was able to train the CNN model. The highest time
required to train the model is shown by the XY combination (29.64 s). In training the
model, using a single input axis (X, Y or Z), it is shown that the time required is almost
similar. However, by using more input (all axis), the time needed to train the model was
not reduced.

Figure 21. Box plot of ‘training time’ for all sensor axis of the accelerometer.

The boxplot is divided into four quartiles, namely 1st, 2nd, 3rd, and 4th quar-
tiles. The 1st, 2nd, 3rd, and 4th quartiles show a range data distribution of 0–25%,
25–50%, 50–75%, and 75–100%, respectively. The grey and yellow color in the boxplot
of Figures 21–28. indicates the second, and third quartile, respectively. A wider box in the
boxplot shows more distribution of data.
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Figure 22. Box plot of ‘testing time’ for all sensor axis of the accelerometer.

Figure 23. Box plot of ‘accuracy on test data’ for all sensor axis of the accelerometer.

Figure 24. Box plot of ‘loss on test data’ for all sensor axis of the accelerometer.
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Figure 25. Box plot of ‘training time’ for all sensor axis of the dynamometer.

Figure 26. Box plot of ‘testing time’ for all sensor axis of the dynamometer.

Figure 27. Box plot of ‘accuracy on test data’ for all sensor axis of the dynamometer.
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Figure 28. Box plot of ‘loss on test data’ for all sensor axis of the dynamometer.

Testing Time

Table 8 shows the summary of ‘testing time’ for the CNN model. Each combination of
three-axis accelerometer sensor showed a different time to test the model. Table 8 indicates
that a combination of the accelerometer sensor’s YZ-axes shows less time (0.22 ± 0.01 s)
than other axis combination.

Table 8. CNN summary of ‘testing time’ (s).

Data No. X Y Z XY XZ YZ XYZ

1 0.28 0.28 0.29 0.31 0.35 0.21 0.22
2 0.29 0.28 0.30 0.31 0.32 0.22 0.23
3 0.29 0.30 0.29 0.31 0.35 0.23 0.23
4 0.29 0.29 0.29 0.32 0.32 0.24 0.23
5 0.29 0.29 0.28 0.35 0.36 0.21 0.24
6 0.29 0.30 0.30 0.32 0.31 0.24 0.22
7 0.29 0.31 0.12 0.31 0.31 0.21 0.23
8 0.30 0.29 0.29 0.32 0.30 0.21 0.24
9 0.28 0.29 0.29 0.35 0.31 0.23 0.25

10 0.29 0.28 0.29 0.34 0.32 0.24 0.23

A box plot of ‘testing time’ of the CNN model for a different combination of accelerom-
eter axis is presented in Figure 22. All of the model’s combination input showed that
the standard deviation value is low (Q3-Med), as presented in Table 8. This indicated
that the proposed architecture model was able to test the CNN model. The highest time
required to test the model is shown by the XZ combination (0.33 s). In training the model,
using a single input axis (X, Y or Z), it is shown that the required processing time is almost
similar. However, by using more input (all axis), the time needed to train the model was not
reduced. This issue was confirmed when we compared between YZ and XYZ combination.

Accuracy of Test Data

Table 9 shows the summary of the performance of the CNN model. Each combination
of three-axis accelerometer sensor showed different accuracy. Table 9 indicates that a
combination of the accelerometer sensor XY-axes shows better accuracy than that of other
combinations (1.00 ± 0.00). The lowest accuracy was found when the model was trained
using Y-axis (0.95 ± 0.03).
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Table 9. CNN summary of ‘accuracy on test data’.

Data No. X Y Z XY XZ YZ XYZ

1 1.00 0.93 0.99 1.00 0.99 1.00 0.99
2 0.99 0.96 0.96 1.00 0.98 0.99 1.00
3 1.00 0.98 0.95 1.00 1.00 1.00 1.00
4 1.00 0.94 0.99 1.00 1.00 0.98 1.00
5 1.00 0.94 0.97 1.00 1.00 1.00 1.00
6 0.98 0.95 0.99 1.00 1.00 1.00 0.99
7 0.99 0.98 0.98 1.00 1.00 1.00 0.99
8 0.99 0.89 0.97 1.00 1.00 0.99 1.00
9 1.00 0.94 0.94 1.00 1.00 1.00 1.00

10 1.00 0.97 0.99 1.00 1.00 0.99 1.00

A box plot of ‘accuracy on test data’ of the CNN model for a different combination
of accelerometer axis is presented in Figure 23. The CNN model, which is trained using
XY-axis datasets, showed the highest accuracy (1.00 ± 0.00). In contrast, The CNN model
based on Y-axis indicated the lowest accuracy (0.89± 0.02). Additionally, the CNN which is
trained using Y and Z datasets, showed wider deviation among the others axis combination.

Loss on Test Data

Table 10 shows the loss value of the CNN model. The loss value is important to indicate
the summation of the error in the evaluation and testing datasets. Each combination of
three-axis accelerometer sensor showed different loss value. Table 10 indicates that a
combination of the accelerometer sensor’s XY-axes shows a better loss value than other
combinations (0.02 ± 0.01). The worst loss value was found when the model was trained
using Y-axis (0.20 ± 0.05).

Table 10. CNN summary of ‘loss on test data’.

Data No. X Y Z XY XZ YZ XYZ

1 0.03 0.23 0.07 0.02 0.04 0.04 0.05
2 0.05 0.21 0.18 0.02 0.07 0.11 0.02
3 0.03 0.13 0.15 0.03 0.01 0.02 0.07
4 0.04 0.24 0.11 0.01 0.02 0.15 0.04
5 0.04 0.21 0.17 0.02 0.02 0.04 0.07
6 0.09 0.21 0.06 0.03 0.02 0.02 0.08
7 0.06 0.12 0.12 0.02 0.01 0.05 0.05
8 0.04 0.29 0.15 0.03 0.01 0.07 0.04
9 0.04 0.23 0.15 0.02 0.02 0.05 0.05

10 0.04 0.16 0.11 0.02 0.02 0.05 0.04

A box plot of ‘loss on test data’ of the CNN model for a different combination of
accelerometer axis is presented in Figure 24. The CNN model, which is trained using
XY-axis datasets, showed the lowest value (0.02 ± 0.01). In contrast, The CNN model based
on the Y and Z axis indicated the higher loss and wider deviation value among others
axis combination.

4.3.2. Dynamometer (Force) Data

This section provides a statistical summary of CNN prediction and classification of
abrasive belt grinding condition from brand-new to worn-out condition. The statistical
summary includes ‘training time’, ‘testing time’, ‘accuracy on test data’ and ‘lost on
test data’.

Training Time

Table 11 shows the summary of ‘training time’ for the CNN model. Each combination
of three-axis dynamometer sensor showed different time required to train the model.
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Table 11 indicates that a combination of the XY-axes of the dynamometer sensor shows less
training time (14.23 ± 0.54 s) than other axis combinations.

Table 11. CNN summary of ‘training time’ (s).

No. X Y Z XY XZ YZ XYZ

1 30.17 29.69 32.49 15.68 18.58 30.97 30.63
2 30.72 30.68 30.93 13.97 15.12 28.70 28.18
3 31.70 30.74 31.42 13.93 15.41 28.44 28.34
4 30.39 30.12 29.54 13.95 15.49 28.66 28.50
5 29.50 29.64 29.77 13.99 15.63 28.72 28.26
6 30.28 31.50 30.79 13.99 15.50 28.41 28.44
7 31.66 29.73 29.72 13.96 15.57 29.19 28.45
8 29.82 29.60 31.56 14.10 15.58 28.71 28.19
9 30.06 29.34 29.27 14.36 15.41 28.32 28.26

10 31.28 29.42 29.82 14.36 15.39 28.40 28.33

A box plot of the ‘training time’ of the CNN model for a different combination of
dynamometer axis is presented in Figure 25. All of the combined input of the model showed
that the value of the standard deviation is small, as presented in Table 11. This is indicated
that the proposed architecture model was able to train the CNN model. The highest time
required to train the model is presented on Z-axis (32.49 s). Using double and triple input
axis in training, the model shows that the ‘training time’ required is less than the single-axis,
especially XY with 14.23 s on average.

Testing Time

Table 12 shows the summary of ‘testing time’ for the CNN model. Each combination of
three-axis accelerometer sensor showed a different time to test the model. Table 12 indicates
that a combination of XZ-axes of accelerometer sensor shows less time (0.22 ± 0.01 s) than
other axis combination.

Table 12. CNN summary of ‘testing time’ (s).

No. X Y Z XY XZ YZ XYZ

1 0.33 0.36 0.34 0.33 0.22 0.31 0.31
2 0.31 0.37 0.34 0.35 0.21 0.31 0.31
3 0.34 0.34 0.38 0.34 0.21 0.31 0.33
4 0.33 0.39 0.35 0.35 0.21 0.32 0.31
5 0.32 0.33 0.34 0.35 0.21 0.32 0.34
6 0.34 0.36 0.32 0.33 0.22 0.32 0.31
7 0.33 0.34 0.33 0.33 0.22 0.31 0.32
8 0.33 0.34 0.35 0.34 0.22 0.32 0.32
9 0.36 0.32 0.33 0.34 0.22 0.31 0.35

10 0.37 0.33 0.33 0.33 0.21 0.32 0.31

A box plot of ‘testing time’ of the CNN model for a different combination of dy-
namometer axis is presented in Figure 26. All of the model’s combination input showed
that the standard deviation value is small, as presented in Table 12. This is indicated
that the proposed architecture model was able to test the CNN model. The highest time
required to test the model is shown by the XZ combination (0.21 s) compared to the single
input axis (X, Y and Z) and double input axis (XY and YZ). In addition, by using more
inputs (XYX) the time needed to test the model was not improved even better.

Accuracy on Test Data

Table 13 shows the summary of the performance of the CNN model. Each combination
of three-axis dynamometer sensor showed different accuracy. Table 13 indicates that a
combination of the XZ-axes of the dynamometer sensor shows better accuracy (1.00 ± 0.00)
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than other axis combinations. The lowest accuracy was found when the model was trained
using Y-axis datasets, i.e., 0.95 ± 0.02.

Table 13. CNN summary of ‘accuracy on test data’.

Data No. X Y Z XY XZ YZ XYZ

1 0.98 0.98 0.98 0.99 1.00 1.00 1.00
2 0.98 0.94 0.99 1.00 1.00 0.99 0.97
3 0.99 0.93 0.99 1.00 1.00 0.99 1.00
4 0.99 0.96 0.99 1.00 1.00 1.00 0.99
5 0.99 0.94 0.97 0.99 1.00 1.00 1.00
6 0.97 0.94 0.97 0.99 1.00 1.00 1.00
7 0.99 0.96 0.99 0.99 1.00 1.00 1.00
8 0.94 0.96 0.96 1.00 1.00 0.99 1.00
9 0.99 0.94 0.99 1.00 1.00 0.95 1.00

10 0.98 0.95 0.99 1.00 1.00 1.00 1.00

A box plot of ‘accuracy on test data’ of the CNN model for a different combination
of dynamometer axis is presented in Figure 27. The CNN model, which is trained using
XZ-axis datasets, showed the highest accuracy (1.00 ± 0.00). In contrast, The CNN model
based on Y-axis indicated the lowest accuracy (0.95± 0.02). Additionally, the CNN which is
trained using Y and Z datasets showed wider deviation among the others axis combination.

Loss on Test Data

Table 14 shows the loss value of the CNN model. The loss value is important to indicate
the summation of the error in the evaluation and testing datasets. Each combination of
three-axis dynamometer sensor showed different loss value. Table 14 indicates that a
combination of the XZ-axes of the accelerometer sensor shows a better loss value than other
combinations (0.02 ± 0.01). The worst loss value was found when the model was trained
using Y-axis (0.15 ± 0.03).

Table 14. CNN summary of ‘loss on test data’.

Data No. X Y Z XY XZ YZ XYZ

1 0.10 0.09 0.10 0.04 0.03 0.02 0.02
2 0.08 0.18 0.06 0.02 0.02 0.04 0.07
3 0.06 0.18 0.06 0.02 0.02 0.05 0.02
4 0.05 0.13 0.06 0.03 0.03 0.02 0.03
5 0.06 0.18 0.12 0.03 0.02 0.03 0.02
6 0.09 0.19 0.11 0.04 0.02 0.02 0.02
7 0.05 0.11 0.07 0.03 0.02 0.02 0.02
8 0.15 0.14 0.14 0.03 0.02 0.07 0.02
9 0.05 0.18 0.08 0.03 0.03 0.10 0.03

10 0.10 0.15 0.06 0.03 0.01 0.03 0.03

A box plot of the “loss on test data” of the CNN model for a different combination
of dynamometer axis is presented in Figure 28. The CNN model, which is trained using
XZ-axis datasets, showed the lowest value (0.02± 0.01). In contrast, The CNN model based
on the Y and Z axis indicated the higher loss and wider deviation value among others axis
combination.

4.3.3. Discussion

Based on the CNN results presented in Section 4.1 for vibration signals and Section 4.2
for force signals, it is found that the sensor data across different axes has significant
variation in representing the dynamic behavior of the abrasive process, which is directly
related to the belt grinding condition.
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In vibration signals, the X-axis direction shows the highest classification accuracy
among the single-axis sensors assessment compared to those from the other two single-axis
sensors assessment compared to those from the other two (Y-axis and Z-axis). The result of
the combining axes showed that the combination of XZ and YZ has higher accuracy than
the XY combination. Moreover, the signal combination from the triple-axis (XYZ) does
not improve the accuracy. The accuracy summary of the three-axis accelerometer signals
assessment is presented in Table 15.

Table 15. Accuracy summary of CNN results for three-axis accelerometer and its combination.

Belt No.
X Y Z XY XZ YZ XYZ

C I C I C I C I C I C I C I

1 796 0 795 1 790 6 796 0 796 0 796 0 795 1
2 796 4 798 2 791 9 797 3 798 2 798 2 794 6
3 798 2 717 83 748 52 800 0 800 0 800 0 800 0
4 793 1 670 124 719 75 788 6 794 0 794 0 765 29

Total 3183 7 2980 210 3048 142 3181 9 3188 2 3188 2 3154 36

Note: C is the correct prediction (classification), and I is the miss-classification. For ‘Belt No.’ information, please refer to Table 2. This table
is extracted from all confusion matrix of CNN results in Section 4.1.

In force signals, all single-axis sensor assessment shows significant accuracy drop due
to a lot of misclassified datasets. In addition, the result combining sensor data between
two axes shows that higher accuracy is obtained from the combination of XY compared to
the other combinations (XZ and YZ). Moreover, the triple-axis (XYZ) signal combination
does not show better accuracy compared to the single-axis and double-axis assessment.
The accuracy summary of the three-axis accelerometer signals assessment is presented in
Table 16.

Table 16. Accuracy summary of CNN results for three-axis dynamometer and its combination.

Belt No.
X Y Z XY XZ YZ XYZ

C I C I C I C I C I C I C I

1 793 3 794 2 794 2 796 0 794 2 794 2 795 1
2 797 3 796 4 798 2 797 3 797 3 798 2 794 6
3 798 2 771 29 788 12 800 0 793 7 794 6 800 0
4 747 47 764 30 785 9 788 6 794 0 793 17 765 29

Total 3135 55 3125 65 3165 25 3181 9 3178 12 3179 27 3154 36

Note: C is the correct prediction (classification), and I is the miss-classification. For ‘Belt No.’ information, please refer to Table 2. This table
is extracted from all confusion matrix of CNN results in Section 4.2.

5. Conclusions

A methodology for abrasive belt grinding condition monitoring and worn state predic-
tion is presented. The methodology is focused on understanding the effect of the directions
of vibration and force signatures with respect to the belt wear rate. This proposed methodol-
ogy also responds to the open question, i.e., opening the possibility of applying DL for tool
condition monitoring and its potential application. From the presented result, the method-
ology revealed that the accelerometer and dynamometer’s direction has a certain relation
to the physical behavior of the belt grinding process, especially on the dynamics in the
contact between the belt tool and workpiece. In vibration signal analysis, XZ and YZ
direction combination have more accuracy than the others. In contrast, in force signal
analysis, the combination of XY gives the most accurate results in comparison to the others.
Another outcome of this study is also attributed to our future work that the DL model
can be embedded into a monitoring measurement system to monitor the belt state during
the abrasive process without interrupting the ongoing grinding process. Even though
the DL method has potential application in tool wear prediction of mild steel, this study
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needs further investigation if the proposed DL prediction can be generalized and translated
across different materials during grinding, which is the research direction in progress.
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