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Abstract: Maritime safety issues have aroused great attention, and it has become a difficult problem
to use the sky-wave over-the-horizon radar system to locate foreign targets or perform emergency
rescue quickly and timely. In this paper, a distributed multi-point sky-wave over-the-horizon radar
system is used to locate marine targets. A positioning algorithm based on the Doppler frequency
is proposed, namely, the two-step weighted least squares (2WLS) method. This algorithm first
converts the WGS-48 geodetic coordinates of the transceiver station to spatial rectangular coordinates;
then, introduces intermediate variables to convert the nonlinear optimization problem into a linear
problem. In the 2WLS method, four mobile transmitters and four mobile receivers are set up, and
the Doppler frequency is calculated by transmitting and receiving signals at regular intervals; it is
proven that the 2WLS algorithm has always maintained a better positioning accuracy than the WLS
algorithm as the error continues to increase with a certain ionospheric height measurement error and
the Doppler frequency measurement error. This paper provides an effective method for the sky-wave
over-the-horizon radar to locate maritime targets.

Keywords: sky-wave over-the-horizon radar; two-step weighted least squares; marine target positioning

1. Introduction

The sky-wave over-the-horizon radar (OTHR) uses ionospheric reflection or refraction
to realize the propagation of radio waves. It mainly uses shortwave frequency bands,
usually 3–30 MHz, and its range can break through the limitations of the curvature of the
earth beyond the line-of-sight [1], and the over-the-horizon radar is mainly used for early
warning [2]. It has a long detection record and long warning time for aircraft and missiles
flying at low altitude. It is an effective means of low-altitude defense.

Meanwhile, the sky-wave over-the-horizon radar system’s ability to locate ship tar-
gets in distance and azimuth has also attracted widespread attention [3]. The sky-wave
over-the-horizon radar system is positioned to transmit radar signals from the transmit-
ting antenna, which are reflected or refracted by a relatively stable ionosphere; then, they
reach the target, and reach the receiving antenna after being scattered by the target to
detect the ship target beyond the visible range. The state of the ionosphere determines the
positioning performance of the skywave over-the-horizon radar system, and the models
describing the ionosphere state are usually divided into the International Reference Iono-
sphere (IRI) model, the Chapman ionosphere model and the multiple pseudo-parabolic
model (MQP) [1]. In this paper, the MQP model is used to describe the OTHR system
in which multistatic radar signals travel through the ionosphere. In the OTHR system,
the transmitted signal with a specific frequency hits the ship target after being reflected
by different ionospheres of different heights. In addition, the signal bounced back from
the ship target can also reach the receiver after being reflected by different ionospheres of
different heights [4]. These factors lead to multiple propagation paths, which is called the
multipath ionospheric propagation (MIP) phenomenon [5].
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There are many positioning methods for multistatic radar systems, for example,
target positioning based on the combination of the time difference of arrival (TDOA), the
frequency difference of arrival (FDOA) and the angle of arrival (AOA). The author of [6]
proposes a weighted least squares (WLS) scheme to estimate the target location in the TRM
multistatic radar system by considering the measured azimuth angle and the measured
elevation angle. An iterative double extended Kalman filter (EKF) algorithm is proposed
to locate mobile transmitters by using TDOA and FDOA [7]. However, for moving targets,
the Doppler frequency can often be used as an important positioning parameter [8]. The
Doppler frequency in [9] is used to locate multiple-input multiple-output (MIMO) radar
systems with a wide range of separation stations. The position and speed of the target
can be obtained in the Doppler estimation frequency. The author of [10] uses two best
linear unbiased estimators (BLUE) based on the measured Doppler frequency to obtain
the display solution of the neighboring target position. Based on the highly nonlinear
positioning optimization problems obtained by these methods [11], the grid search method
is very popular, but it requires a lot of calculation [12]. In [13], after establishing a suitable
cost function by using the Doppler frequency measurement, the coverage area is searched
grid by grid to find the position of the target in the two-dimensional space. However, there
is very little research on target positioning for sky-wave over-the-horizon radar systems.
Due to the particularity of the signal propagation path in the ionosphere [14], refraction or
reflection will occur, which makes it difficult to locate [15].

In this paper, a signal model of the sky-wave over-the-horizon radar system based on
the Doppler frequency measurement is established to obtain a positioning optimization
equation, and a two-step weighted least square method (2WLS) is proposed to transform the
highly non-linear optimization problem into a linear optimization problem. The simulation
shows that the 2WLS algorithm has better positioning accuracy than the WLS algorithm
within a certain range of ionospheric height measurement error and the Doppler frequency
measurement error.

2. Signal Model

In the OTHR system in this paper, there are M1 transmitters (The transmitter both
transmits and receives signals), M2 receivers, and a stationary ship target (when the target
is stationary, the receiving station is in motion and the Doppler frequency can be measured).
Each transmitter radiates signals of different frequencies to the ionosphere, and reaches
the target through ionosphere refraction or reflection, and then each receiver receives the
reflection of the target—its propagation model [16] is shown in Figure 1.
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In order to further describe the propagation path model, this paper uses an equivalent
figure to represent the path propagation [13], as shown in Figure 2. Using the ionosphere
as the reflecting surface [17], the transmitting station and the receiving station are mirrored
to produce virtual stations [18], which makes the signal propagation route from a broken
line to a straight line [19], and it is convenient for the following formula derivation.
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Therefore, in this article there are L = M1 + M2 moving receiving stations(The trans-
mitter both transmits and receives signals) and a stationary target, and the moving speed
and trajectory of the receiving stations are known. After a short time interval, each re-
ceiving station receives the target signal once. It is assumed that each receiving station
receives N target signal measurements, a total of M = LN Doppler measurements can be
obtained. The virtual receiver’s position ablh

i (The position latitude and longitude of the
virtual receiver and the real receiver are the same, and the altitude is twice the height of the
ionosphere), the speed vblh

i (The virtual receiver has the same speed as the real receiver) are
developed to estimate the target position uo

BLH , then express the observed value of Doppler
frequency fd as

fd =
fc

c
·

vblh
i (uo

BLH − ablh
i )

‖uo
BLH − ablh

i ‖
+ εi, i = 1, · · · , M (1)

where the original carrier frequency of the signal is fc, c is the propagation speed of the
signal, εi is the measurement error.

The normalized Doppler frequency fi is written as:

fi =
vblh

i (uo
BLH − ablh

i )

‖uo
BLH − ablh

i ‖
+ ni, i = 1, · · · , M (2)

where fi , c fd/ fc, ni = cεi/ fc, i are the index of the receivers. For the sake of simplicity, fi
will be called the Doppler frequency measurement value.

Next, all the measured noise is composed into a vector n = [n1, · · · , nM], which is a
Gaussian random variable with zero mean and its covariance matrix is Qd = E[nnT ]. All
measured values form the vector f = [ f1, · · · fM]T , then the conditional probability density
function of the measured value relative to the target position u can be expressed as:

p(f

∣∣∣∣∣u) = 1

(2π)M√|Qd|
exp

{
−1

2
(f− fo(u))TQ−1

d (f− fo(u))
}

(3)
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where
fo(u) = [ f1

o(u), · · · fM
o(u)]T

fi
o(u) = vblh

i (uBLH−ablh
i )

‖uBLH−ablh
i ‖

, i = 1, · · ·M (4)

It can be seen from the above formula that the ML estimation of the target position is
obtained through the following optimization problem:

min
u

(f− fo(u))TQ−1
d (f− fo(u)) (5)

Since the relationship between f o
i (u) and u is highly non-linear, it is difficult to solve

directly. Next, one algorithm is proposed to solve this optimization problem.

3. Two-Step Weighted Least Squares (2WLS)

In many papers, the WLS algorithm is applied to the multistatic radar system posi-
tioning, and a good positioning estimation is obtained [20]. Therefore, in this article, the
WLS algorithm is applied to the sky-wave over-the-horizon radar system as the initial posi-
tioning, and the positioning is determined according to the 2WLS algorithm. Performance
is more optimized.

First, both the left and right sides of Equation (2) multiply by ‖uBLH − ablh
i ‖, to obtain:

fi‖uBLH − ablh
i ‖ = (vblh

i )
T

uBLH − di + kini, i = 1, · · ·M (6)

where di = (vblh
i )

T
ablh

i , ki = ‖uBLH − ablh
i ‖ represent the distance between the target and

the receiving station.
Then, squaring both sides of the equation in Equation (6):

f 2
i ‖uBLH − ablh

i ‖
2
= ((vblh

i )
T

uBLH)
2
+ d2

i − 2di(vblh
i )

T
uBLH + 2dikini + 2(vblh

i )
T

uBLHkini, i = 1, · · ·M (7)

Among them, high-order error terms k2
i n2

i are omitted [21].
Suppose the target location is uBLH = [Bu, Lu, Hu]

T (B is the geodetic longitude, L is
the geodetic latitude, and H is the altitude), the signal station is ablh

i = [Bi, Li, Hi]
T and

convert the WGS-84 geodetic coordinate system to a rectangular coordinate system [22]:

X = (N + H) cos(BR) cos(LR);
Y = (N + H) cos(BR) sin(LR);
Z = (N(1− e2) + H) sin(BR)

(8)

where the radius of the earth is R ≈ 6370km, the earth’s major and minor axes are
a = 6378.160km and b = 6356.775km, e =

√
(a2 − b2)/a2 is the first eccentricity of

earth, and:
BR = p/180 ∗ B;
LR = p/180 ∗ L;

N = a/
√
(1− e2) sin2(BR)

(9)

Then Equation (7) can be expressed as:

f 2
i (X2

u + Y2
u + Z2

u − 2XiXu − 2YiYu − 2ZiZu + (axyz
i )Taxyz

i )

=
.

X
2
i X2

u +
.

Y
2
i Y2

u +
.
Z

2
i Z2

u + 2
.

Xi
.

YiXuYu + 2
.

Xi
.
ZiXuZu + 2

.
Yi

.
ZiYuZu

−2di
.

XiXu − 2di
.

YiYu − 2di
.
ZiZu + d2

i + 2ki(v
xyz
i )TuXYZni − 2dikini, i = 1, · · ·M

(10)

Introducing the unknown vector α = [Xu, Yu, Zu, X2
u, Y2

u , Z2
u, XuYu, XuZu, YuZu]

T , Equa-
tion (10) can be rewritten in the matrix form as follows:

Rα-g=Hn (11)
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where:

R=[R1,R2,R3,R4,R5,R6,R7,R8,R9],
R1 = [−2X1 f 2

1 + 2d1
.

X1,−2X2 f 2
2 + 2d2

.
X2, · · · ,−2XM f 2

M + 2dM
.

XM]T,

R2 = [−2Y1 f 2
1 + 2d1

.
Y1,−2Y2 f 2

2 + 2d2
.

Y2, · · · ,−2YM f 2
M + 2dM

.
YM]T,

R3 = [−2Z1 f 2
1 + 2d1

.
Z1,−2Z2 f 2

2 + 2d2
.
Z2, · · · ,−2ZM f 2

M + 2dM
.
ZM]T,

R4 = [ f 2
1 −

.
X

2
1, f 2

2 −
.

X
2
2, · · · , f 2

M −
.

X
2
M],

R5 = [ f 2
1 −

.
Y

2
1, f 2

2 −
.

Y
2
2, · · · , f 2

M −
.

Y
2
M],

R6 = [ f 2
1 −

.
Z

2
1, f 2

2 −
.
Z

2
2, · · · , f 2

M −
.
Z

2
M],

R7 = [−2
.

X1
.

Y1,−2
.

X2
.

Y2, · · · − 2
.

XM
.

YM],

R8 = [−2
.

X1
.
Z1,−2

.
X2

.
Z2, · · · − 2

.
XM

.
ZM],

R9 = [−2
.

Y1
.
Z1,−2

.
Y2

.
Z2, · · · − 2

.
YM

.
ZM],

g = [− f 2
1 (a

xyz
1 )Taxyz

1 + d2
1,− f 2

2 (a
xyz
2 )Taxyz

2 + d2
2, · · · ,− f 2

M(axyz
M )Taxyz

M + d2
M],

H = diag
{

2d1(v
xyz
1 )

T
uXYZ − 2d1k1, 2d2(v

xyz
2 )

T
uXYZ − 2d2k2, · · · , 2dM(vxyz

M )
T

uXYZ − 2dMkM

}

(12)

Applying the WLS to Equation (11) gives the estimation values:

^
α = (RTW-1R)

-1
RTW-1g (13)

where:
W=HQdHT (14)

Observing Equation (14), it can be seen that W is related to the target position uXYZ,
but uXYZ is unknown, so in the following simulation, W = Qd will be processed to obtain
the initial WLS estimate of the target position, then substitute the initial estimate to obtain
a more accurate solution [23].

According to the Gauss-Markov theorem, when the measurement error is small,
^
α is

the best unbiased estimate of α, and the covariance matrix of
^
α is:

cov(α) = E[∆
^
α∆

^
α

T
] = (RTW-1R)

-1
(15)

where ∆
^
α = α− ^

α is the estimation error.
Observing

^
α, the target position estimation uXYZ can be obtained from the first three

elements of
^
α, uXYZ =

^
α(1 : 3), but the other elements of

^
α also contain the information of

uXYZ:
α2(1) = α(4), α(1)α(2) = α(7)
α2(2) = α(5), α(1)α(3) = α(8)
α2(3) = α(6), α(2)α(3) = α(9)

(16)

Using equation (16) and the definition of ∆
^
α, to obtain:

^
α(4) = X2

u +
^
α(1)∆

^
α(1) + ∆

^
α(4),

^
α(5) = Y2

u +
^
α(2)∆

^
α(2) + ∆

^
α(5),

^
α(6) = Z2

u +
^
α(3)∆

^
α(3) + ∆

^
α(6),

(17)
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Regarding each equation of (17) as a function of the target position uXYZ = [Xu, Yu, Zu]
T ,

and performing Taylor expansion at [α(1),α(2),α(3)]T , ignoring the error above the sec-
ond order can be obtained:

^
α(7) = XuYu +

^
α(1)∆

^
α(2) +

^
α(2)∆

^
α(1) + ∆

^
α(7),

^
α(8) = XuZu +

^
α(1)∆

^
α(3) +

^
α(3)∆

^
α(1) + ∆

^
α(8),

^
α(9) = YuZu +

^
α(2)∆

^
α(3) +

^
α(3)∆

^
α(2) + ∆

^
α(9)

(18)

Defining the estimated error of the target position ∆uXYZ , [∆
^
α(1), ∆

^
α(2), ∆

^
α(3)]

T
,

Therefore, regard the left side of the equal sign of each equation in (16) as the measurement
equation of ∆uXYZ, and the right side of the equal sign as the measurement error.

Then, in the joint identity, ∆
^
α(1) = ∆

^
α(1), ∆

^
α(2) = ∆

^
α(2) and ∆

^
α(3) = ∆

^
α(3),

second linear equation about ∆uXYZ can be constructed:

G∆uXYZ-h=∆
^
α (19)

where:

G = [G1; G2; G3],

G1 = E, G2 = diag
{
−2

^
α(1),−2

^
α(2),−2

^
α(3)

}
,

G3 =

 −
^
α(2) − ^

α(1) 0

− ^
α(3) 0 − ^

α(1)

0 − ^
α(3) − ^

α(2)

,

h = [h1; h2; h3],

h1 =

 0
0
0

, h2 =


^
α

2
(1)− ^

α(4)
^
α

2
(2)− ^

α(5)
^
α

2
(3)− ^

α(6)

, h2 =


^
α(1)

^
α(2)− ^

α(7)
^
α(1)

^
α(3)− ^

α(8)
^
α(2)

^
α(3)− ^

α(9)



(20)

Then, obtain the 2WLS estimate of ∆uXYZ:

∆uXYZ = (GTcov(α)−1G)
−1

GTcov(α)−1h (21)

Therefore, the final target position is estimated as:

uXYZ =
^
α(1 : 3) + ∆uXYZ (22)

Finally, convert the target position in the Cartesian coordinate system to the geodetic
coordinate system [23]:

L = arctan(Y/X) ∗ 180/π + 180,
B = arctan(Z/

√
X2 + Y2∗(1− e2)) ∗ 180/π,

H =
√

X2 + Y2 + Z2/(1− e2)2 − a
(23)

Then, to obtain the target final position coordinates uBLH = [Bu, Lu, Hu]
T , but in this

paper the ship’s goal is considered, Hu = 0.
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4. Simulation Results

In the paper, there are four transmitting stations and four receiving stations, the
transmitting station can also receive signals and stations perform a uniform linear motion,
so the coordinates and speed of the eight signal stations are set as:

ablh
1 = [36.93◦N, 115.99◦E, 0], vxyz

1 = [25 km/h, 10 km/h, 0]
ablh

2 = [31.73◦N, 113.77◦E, 0], vxyz
2 = [−20 km/h, 10 km/h, 0]

ablh
3 = [25.30◦N, 115.09◦E, 0], vxyz

3 = [10 km/h,−5 km/h, 0]
ablh

4 = [35.19◦N, 108.83◦E, 0], vxyz
4 = [15 km/h,−15 km/h, 0]

ablh
5 = [27.74◦N, 106.88◦E, 0], vxyz

5 = [5 km/h, 5 km/h, 0]
ablh

6 = [30.94◦N, 110.41◦E, 0], vxyz
6 = [10 km/h,−15 km/h, 0]

ablh
7 = [36.26◦N, 113.20◦E, 0], vxyz

7 = [0,−5 km/h, 0]
ablh

8 = [27.66◦N, 114.85◦E, 0], vxyz
8 = [10 km/h, 0, 0]

(24)

Labels one, two, three and four are transmitting stations, and labels five, six, seven and eight
are receiving stations. The initial hypothetical target location is uBLH = [28.81◦E, 123.42◦N, 0].
The detection range of the sky-wave over-the-horizon radar can reach low-altitude or maritime
targets of 800 km~2000 km [24], so the minimum detection range in this paper is about 950 km,
and the maximum detection range is about 1600 km.

This paper compares the estimation performance of the proposed 2WLS positioning
algorithm with the estimation algorithm WLS. Since the positioning performance of the
2WLS algorithm may be affected by the Doppler frequency error proposed in the article
or the reflected ionospheric height error [25], this paper is divided into three cases, one is
the positioning accuracy simulation based on the Doppler frequency error, the second is
the positioning accuracy simulation based on the ionospheric height error [26], and the
third is the positioning accuracy simulation based on the Doppler frequency error and the
ionospheric height error [27]. In the simulation, all receiving stations perform the Doppler
frequency measurement every 5 s, a total of 10 measurements are performed, and then, the
algorithm in this paper is used to locate the target. The results in the figure are all obtained
through 1000 Monte Carlo simulation experiments.

When simulating positioning accuracy based on the Doppler frequency error, assume
that the error of each Doppler frequency measurement is an independent and identically
distributed Gaussian variable, and its variance is σ2, that is, in the measurement model
shown in Equation (3), there are Qd=σ2I. Under different variance values σ2, compare
the positioning accuracy of the above two algorithms. Figure 3 shows the simulation
results. Ha1 = 90 km, Ha2 = 92 km, Ha3 = 95 km and Ha4 = 105 km are the first four
equivalent reflection heights of the ionosphere, and the last equivalent reflection height
of the ionosphere are Ha5 = 100 km, Ha6 = 102 km, Ha7 = 104 km and Ha8 = 110 km.
It can be concluded that compared with the traditional WLS positioning algorithm, the
2WLS positioning algorithm has better positioning performance when only the Doppler
frequency error changes.

When the positioning accuracy is simulated based on the height error of the reflected
ionosphere, the Doppler frequency error is set to 1 Hz, the basic ionospheric reflection
height of all transmitting stations and receiving stations is 100 km, and the error range is
0~10 km. The simulation result is shown in Figure 4, and it can be concluded that the error
increases with the height of the ionosphere, the positioning accuracy of 2WLS is far better
than that of WLS.
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Figure 5 shows the change in positioning accuracy when both the Doppler frequency
error and the ionospheric height error change. With the changes of the two, it can be seen
from the figure that in the case of the Doppler frequency error, the lower the reflection point
of the ionosphere, the better the positioning accuracy. On the contrary, when the ionospheric
height error is constant as the Doppler frequency error increases, the positioning accuracy
will also deteriorate. When the basic ionospheric reflection height of all transmitting
stations and receiving stations is 105 km, compare with the ionospheric random error of
5 km and the ionospheric random errors of 1km and 3 km, the positioning accuracy gap
is relatively large, which is also in line with the trend in Figure 5, that as the ionospheric
error becomes larger and larger, the positioning accuracy error also shows an approximate
exponential increase.



Electronics 2021, 10, 1472 9 of 10

Electronics 2021, 10, x FOR PEER REVIEW 9 of 11 
 

 

the positioning accuracy will also deteriorate. When the basic ionospheric reflection 
height of all transmitting stations and receiving stations is 105 km, compare with the 
ionospheric random error of 5 km and the ionospheric random errors of 1km and 3 km, 
the positioning accuracy gap is relatively large, which is also in line with the trend in 
Figure 5, that as the ionospheric error becomes larger and larger, the positioning accuracy 
error also shows an approximate exponential increase. 

 
Figure 5. The relationship between the Doppler frequency error, ionospheric height error and po-
sitioning accuracy. 

5. Conclusions 
In this paper, the signal propagation path was converted from a polygonal line to a 

straight line by using the principle of specular reflection according to the particularity of 
the sky-wave over-the-horizon radar signal propagating in the ionosphere; then, the 
signal model was established to obtain a highly nonlinear positioning optimization 
problem. The WLS algorithm was adopted to convert the nonlinear optimization prob-
lem into a linear optimization problem, which obtains the initial position estimation. The 
2WLS algorithm is proposed to further optimize the positioning accuracy. It can be ob-
tained that the 2WLS algorithm has better positioning accuracy than the WLS algorithm 
through simulation within a certain range of the Doppler frequency measurement error 
and ionospheric height measurement error. 

Although the 2WLS algorithm proposed in this paper has enriched the positioning 
estimation algorithm for marine ship targets in the sky-wave over-the-horizon radar 
system to a certain extent, it still needs further research in some aspects. In the future, the 
sky-wave over-the-horizon radar could locate multiple targets on maritime ships and use 
more advanced algorithms to combine with the algorithms in this article, such as the 
convex optimization algorithm and particle swarm optimization (PSO), to improve the 
accuracy of the algorithm and the validity of the conclusions. 

Author Contributions: F.R. and H.G. conceived and designed the experiments; F.R. and L.Y.
 performed the experiments; L.Y. and F.R. analyzed the data; F.R. contributed reagents/mater
ials/analysis tools; and F.R. and H.G. wrote the paper. All authors have read and agreed to 
the published version of the manuscript. 

Funding: This research was funded by the National Natural Science Foundation of China 
(No.61671333), the Natural Science Foundation of Hubei Province (No.2014CFA093), the Funda-
mental Research Funds for the Central Universities (No.2042019K50264, No.2042019GF0013 and 
2042020gf0003) and the Fundamental Research Funds for the Wuhan Maritime Communication 
Research Institute (No. 2017J-13). 

Conflicts of Interest: The authors declare no conflict of interest. 

Figure 5. The relationship between the Doppler frequency error, ionospheric height error and
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5. Conclusions

In this paper, the signal propagation path was converted from a polygonal line to a
straight line by using the principle of specular reflection according to the particularity of the
sky-wave over-the-horizon radar signal propagating in the ionosphere; then, the signal model
was established to obtain a highly nonlinear positioning optimization problem. The WLS
algorithm was adopted to convert the nonlinear optimization problem into a linear optimiza-
tion problem, which obtains the initial position estimation. The 2WLS algorithm is proposed
to further optimize the positioning accuracy. It can be obtained that the 2WLS algorithm has
better positioning accuracy than the WLS algorithm through simulation within a certain range
of the Doppler frequency measurement error and ionospheric height measurement error.

Although the 2WLS algorithm proposed in this paper has enriched the positioning
estimation algorithm for marine ship targets in the sky-wave over-the-horizon radar system
to a certain extent, it still needs further research in some aspects. In the future, the sky-
wave over-the-horizon radar could locate multiple targets on maritime ships and use more
advanced algorithms to combine with the algorithms in this article, such as the convex
optimization algorithm and particle swarm optimization (PSO), to improve the accuracy of
the algorithm and the validity of the conclusions.
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